

RECEIVED: July 3, 2011

ACCEPTED: July 4, 2011

PUBLISHED: July 19, 2011

Erratum: supersymmetric monojets at the Large Hadron Collider

Benjamin C. Allanach,^a Sebastian Grab^b and Howard E. Haber^b

^aDAMTP, CMS, University of Cambridge,
Wilberforce Road, Cambridge, CB3 0WA, U.K.

^bDepartment of Physics and SCIPP, University of California,
Santa Cruz, CA 95064, U.S.A.

E-mail: b.c.allanach@damtp.cam.ac.uk, sgrab@scipp.ucsc.edu,
haber@scipp.ucsc.edu

ERRATUM TO: [JHEP01\(2011\)138](#)

ABSTRACT: Supersymmetric monojets may be produced at the Large Hadron Collider by the process $qg \rightarrow \tilde{q}\tilde{\chi}_1^0 \rightarrow q\tilde{\chi}_1^0\tilde{\chi}_1^0$, leading to a jet recoiling against missing transverse momentum. We discuss the feasibility and utility of the supersymmetric monojet signal. In particular, we examine the possible precision with which one can ascertain the $\tilde{\chi}_1^0\tilde{q}q$ coupling via the rate for monojet events. Such a coupling contains information on the composition of the $\tilde{\chi}_1^0$ and helps bound dark matter direct detection cross-sections and the dark matter relic density of the $\tilde{\chi}_1^0$. It also provides a check of the supersymmetric relation between gauge couplings and gaugino-quark-squark couplings.

KEYWORDS: Supersymmetry Phenomenology

The left hand side of eq. (A.47) should be $|C_1(s, t)|^2$ rather than $C_1(s, t)$. Therefore, the correct version of eq. (A.47) is

$$|C_1(s, t)|^2 = N \left[\frac{s+t-M^2}{2s} - \frac{M^2(m^2-t)}{(M^2-t)^2} + \frac{sm^2 + (m^2-t)(M^2-m^2)}{s(M^2-t)} \right]. \quad (\text{A.47})$$