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A The Jacobian peak in the transverse momentum distribution 1

In the appendix of the original publication of this manuscript, we incorrectly identified

the variable t of the 2 → 2 scattering process with the variable t1 of the 2 → 3 scattering

process. As a result, the formula that was derived for dσ/dpT was incorrect when the

squared matrix element C1(s, t) of the 2 → 2 process depends on t. In the new version of

the appendix, we derive the correct formula for dσ/dpT , which is now a double integral over

the energy and the helicity angle of the outgoing jet. Figure 10 shows the unnormalized

pT distribution obtained with the corrected formula for dσ/dpT . Remarkably, the resulting

figure is almost identical to the one that appears in the original publication. The analytic

formulae of the appendix serve as checks of the numerical results obtained in the body of

this paper; the latter are not affected by these errata.

A The Jacobian peak in the transverse momentum distribution

The Jacobian peak is a well-known feature of the transverse momentum distribution of the

electron in the process A+B → W±+X → e±+ν+X, where A and B are the initial state

hadrons. The resulting peak at pT ≃ 1
2mW is a consequence of the Jacobian that arises from

changing kinematic variables from cos θ (where θ is the center-of-mass scattering angle) to

pT .10 In this paper, we have focused on monojets that arise from q̃χ̃0
1 production, where

q̃ → qχ̃0
1, and the quark is observed as a hadronic jet. The pT distribution of the quark jet

also exhibits a Jacobian peak. In this appendix, we derive an approximate expression for

the location of the peak in the transverse momentum distribution of the jet.

Consider the 2 → 3 scattering process, which schematically is of the form:

a + b → c + 3 , followed by c → 1 + 2 , (A.1)

where the decaying particle c is spinless. Since the particles a, b and 1 represent light

quarks or gluons, we shall set their masses to zero, ma = mb = m1 = 0. We denote the

mass of particle c (identified as the q̃) to be mc ≡ M , and the masses of particles 2 and 3

(which are identified with χ̃0
1) to be m2 = m3 ≡ m.

If the particle c is on-shell, then the corresponding matrix element for the 2 → 2

process, a + b → c + 3 is of the form

M(a + b → c + 3) = C1(s, t) , (A.2)

where C1(s, t) is a dimensionless function of s ≡ (pa + pb)
2, t ≡ (pa − pc)

2 and the particle

masses. The kinematical limits of t are:

− 1

2

[
s − M2 − m2 + λ1/2(s,M2,m2)

]
≤ t≤−1

2

[
s − M2 − m2 − λ1/2(s,M2,m2)

]
, (A.3)

10For a pedagogical treatment, see ref. [103].
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where

λ(a, b, c) ≡ a2 + b2 + c2 − 2ab − 2ac − 2bc (A.4)

is the well-known triangle function of relativistic kinematics. The squared matrix element

for the decay of particle c (which is either q̃L or q̃R), summed over final spins, is given by

|M(c → 1 + 2)|2 = C2(M
2 − m2) , (A.5)

where C2 is a dimensionless (real positive) constant that will eventually cancel out in

our computation. Using, eq. (A.5) it follows that the total width of particle c times the

branching ratio is given by

BΓ =
C2M

16π

(
1 − m2

M2

)2

, (A.6)

where the branching ratio B ≡ B(c → 1 + 2).

To set up our computation, we work in the center-of-mass system. Then, the four-

vectors of the initial states and the observed final state (particle 1) are:

pa =
1

2

√
s(1 ; 0 , 0 , 1) , (A.7)

pb =
1

2

√
s(1 ; 0 , 0 , −1) , (A.8)

p1 = E1(1 ; sin θ , 0 , cos θ) , (A.9)

where θ is the scattering angle in the center-of-mass frame. Following ref. [104], we define

four Lorentz-invariant quantities,

t1 ≡ (pa − p1)
2 = −

√
sE1(1 − cos θ) , (A.10)

t2 ≡ t = (p1 + p2 − pa)
2 , (A.11)

s1 ≡ p2
c = (p1 + p2)

2 , (A.12)

s2 ≡ (pa + pb − p1)
2 = s − 2

√
sE1 . (A.13)

We denote the three-body phase space integral by

R3(s) ≡
∫ 3∏

i=1

d3pi

2Ei
δ(3)(pa + pb − p1 − p2 − p3) δ(

√
s − E1 − E2 − E3) . (A.14)

The key formula that we need is given by eq. V-7.8 of ref. [104],

dR3

ds2dt1ds1
=

π

8λ1/2(s,m2
a,m

2
b)λ

1/2(s, s2,m2
1)

Θ{−G(s, t1, s2,m
2
a,m

2
b ,m

2
1)}

×Θ{−G(s1, s2, s,m
2
2,m

2
1,m

2
3)}

∫ 2π

0
dφ , (A.15)

where G is the basic four-particle kinematic function first introduced in ref. [105,106],

G(x, y, z, u, v, w) ≡ −1

2
det




2u x + u − v u + w − y

x + u − v 2x x − z + w

u + w − y x − z + w 2w


 , (A.16)
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and λ is the triangle function defined in eq. (A.4). Expanding out the determinant yields

the unwieldy expression,11

G(x, y, z, u, v, w) = xy(x + y) + zu(z + u) + vw(v + w) + x(zw + uv) + y(zv + uw)

−xy(z + u + v + w) − zu(x + y + v + w) − vw(x + y + z + u) . (A.17)

Finally, φ is the so-called helicity angle [104], which is most conveniently defined in a ref-

erence frame where ~p2 + ~p3 = ~pa + ~pb − ~p1 = 0. In this reference frame, φ is identified

as the azimuthal angle between the production plane spanned by ~pb and ~p1 and the plane

spanned by ~p1 and ~p3, with ~p1 as the axis. The angle φ can be re-expressed in terms

of the Lorentz-invariant variables s1, s2, t1 and t2, as exhibited in eq. V-8.8 of ref. [104].

In particular, it will be convenient to express t2 in terms of s1, s2, t1 and cos φ following

eq. V-8.9 of ref. [104],

m2
b + m2

3 − t2 =
D − 2

[
G(s, t1, s2,m

2
a,m

2
b ,m

2
1)G(s1, s2, s,m

2
2,m

2
1,m

2
3)

]1/2
cos φ

λ(s, s2,m2
1)

, (A.18)

where

D ≡ det




2s s + s2 − m2
1 s − s1 + m2

3

s + s2 − m2
1 2s2 s2 − m2

2 + m2
3

s − m2
a + m2

b s2 − t1 + m2
b 0


 . (A.19)

Note that the phase space distribution in the helicity angle is uniform, as the integration

over φ in eq. (A.15) is trivial. However, because the matrix element given in eq. (A.2)

depends on t ≡ t2, the calculation of the partonic cross section for a + b → 1 + 2 + 3 will

require a nontrivial integration over φ.

The step functions in eq. (A.15) determine the kinematical ranges of the parameters

s1, s2 and t1. Taking ma = mb = m1 = 0 and m2 = m3 = m, it follows that:

dR3

ds2dt1ds1
=

π

8s(s−s2)
Θ{−G(s, t1, s2, 0, 0, 0)}Θ{−G(s1 , s2, s,m

2, 0,m2)}
∫ 2π

0
dφ . (A.20)

The differential cross-section is given by:

dσ =
1

64π5s
dR3(s)|M(a + b → 1 + 2 + 3)|2 , (A.21)

where the squared matrix element is suitably averaged over initial spins and summed over

final spins. The dominant contribution to a + b → 1 + 2 + 3 takes place via a + b → c + 3,

where c is produced approximately on-shell and subsequently decays via c → 1 + 2. In

particular, since c is a spin-zero particle,

|M(a + b → 1 + 2 + 3)|2 ≃ |M(a + b → c + 3)|2 |M(c → 1 + 2)|2
(s1 − M2)2 + M2Γ2

. (A.22)

We now use eqs. (A.2) and (A.5) and employ the narrow width approximation,

1

(s1 − M2)2 + M2Γ2
−→ π

MΓ
δ(s1 − M2) . (A.23)

11Eq. (A.17), which was first defined in ref. [105,106], is also given in eq. IV-5.23 of ref. [104]. We have

noted a typographical error in the latter; in the second line of eq. IV-5.23, the first term yzw should read yzv.

– 3 –
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Hence, it follows that:

dσ

ds2dt1ds1
=

B

32π2ξs2(s − s2)
δ(s1 − M2)Θ{−G(s, t1, s2, 0, 0, 0)}

×Θ{−G(s1, s2, s,m
2, 0,m2)}

∫ 2π

0
|C1(s, t2)|2dφ , (A.24)

where t2 should be expressed in terms of s1, s2, t1 and cos φ using eq. (A.18) before

performing the integration over φ, and

ξ ≡ 1 − m2

M2
. (A.25)

Assuming that G(s1, s2, s,m
2, 0,m2) < 0, we can immediately use the δ-function to

integrate over s1. Using eq. (A.17), we obtain:

G(s1, s2, s,m
2, 0,m2) = s2

1s2 − s1s2(s − s2 + 2m2) + m2s(s − s2) + s2m
4

= s2(s1 − s+
1 )(s1 − s−1 ) , (A.26)

where s2 is strictly non-negative and

s±1 = m2 +
1

2
(s − s2)


1 ±

√

1 − 4m2

s2


 . (A.27)

That is, we require that:

s−1 ≤ M2 ≤ s+
1 , (A.28)

otherwise, s1 = M2 can never be satisfied when G(s1, s2, s,m
2, 0,m2) < 0. Note that

eq. (A.28) yields upper and lower limits for s2. One can then use eq. (A.13) to obtain upper

and lower limits for E1. These limits correspond to the roots of the quadratic equation,

4
√

sM2E2
1 − 2(M2 − m2)(s + M2 − m2)E1 +

√
s(M2 − m2)2 = 0 . (A.29)

These roots can be expressed as:12

E±
1 ≡ ξ

4
√

s

[
s + M2 − m2 ± λ1/2(s,M2,m2)

]
, (A.30)

where ξ is defined in eq. (A.25). Likewise, employing eq. (A.13), we define

s±2 = s − 2
√

sE∓
1 . (A.31)

The range of t1 is determined from the inequality:

G(s, t1, s2, 0, 0, 0) ≡ st1(s + t1 − s2) ≤ 0 , (A.32)

12Note that eq. (A.30) is equivalent to E±

1
= 1

2
ξ(Ec ± pc), where Ec and pc are the center-of-mass energy

and momentum of the decaying particle c.
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where we have used eq. (A.17) to evaluate the G-function. That is, as s2 ranges over

s−2 ≤ s2 ≤ s+
2 ,

s2 − s ≤ t1 ≤ 0 . (A.33)

Assuming that s−2 ≤ s2 ≤ s+
2 , the integration of eq. (A.24) over s1 is immediate, and

we obtain:

dσ

ds2dt1
=

B

32π2ξs2(s − s2)
Θ{−G(s, t1, s2, 0, 0, 0)}

∫ 2π

0
|C1(s,A1 + A2 cos φ)|2dφ , (A.34)

where eq. (A.18) has been used to write t2 = A1 + A2 cos φ. Using eqs. (A.26) and (A.32)

with s1 = M2, ma = mb = m1 = 0 and m2 = m3 = m, the coefficients A1 and A2 are

given by

A1 = m2 − s2(s − s2 + t1)(M
2 − m2) − st1(s − s2 − M2 + m2)

(s − s2)2
, (A.35)

A2 =
2
[
st1(s−s2+t1)(M

4s2−M2s2(s−s2+2m2)+m2s(s−s2)+s2m
4)

]1/2

(s − s2)2
. (A.36)

We now introduce the transverse momentum, pT of particle 1, which is defined by

pT = E1 sin θ. Note that

st1(s + t1 − s2) = −s2p2
T , (A.37)

which is strictly non-positive as required by eq. (A.32). In particular,

cos θ = ±
√

1 − p2
T

E2
1

, (A.38)

where the ± indicates that θ and π−θ correspond to the same value of pT . Thus, eq. (A.10)

yields

t1 = −
√

s

(
E1 ∓

√
E2

1 − p2
T

)
. (A.39)

One can now perform a change of variables from {t1 , s2} to {p2
T , E1}. Computing the

Jacobian of the transformation, it follows that:

dt1ds2 =
sdp2

T dE1√
E2

1 − p2
T

. (A.40)

The limits of the kinematic variables pT and E1 are given by:

0 ≤ pT ≤ E1 , E−
1 ≤ E1 ≤ E+

1 , (A.41)

where the range of pT follows from | cos θ| ≤ 1 and E±
1 is defined in eq. (A.30). Since we

aim to compute dσ/dpT , it is more useful to interchange the order of integration. Thus,

equivalent to eq. (A.41) is:

for 0 ≤ pT ≤ E−
1 , E−

1 ≤ E1 ≤ E+
1 , (A.42)

for E−
1 ≤ pT ≤ E+

1 , pT ≤ E1 ≤ E+
1 . (A.43)

– 5 –
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Combining eqs. (A.34) and (A.40), and adding the contributions from the two possible

values of t1 that yield the same value of pT [cf. eq. (A.39)], one obtains:

dσ

dp2
T dE1

=
B

64π2ξs3/2E1

√
E2

1 − p2
T

∫ 2π

0
dφ

∑

j=±

|C1(s,A
(j)
1 + A2 cos φ)|2 , (A.44)

where A
(±)
1 is defined by eq. (A.35), and the superscript indicates which sign is used in

eq. (A.39) to express t1 in terms of E1 and p2
T . In contrast, A2 [defined in eq. (A.36)] does

not depend on the sign choice in eq. (A.39) as a consequence of eq. (A.37).

We now integrate over E1, employing the limits of integration given in eqs. (A.42)

and (A.43). Writing dp2
T = 2pT dpT , we arrive at our final result,13

dσ

dpT
=

BpT

32π2ξs3/2

∫ Emax

Emin

dE1

E1

√
E2

1 − p2
T

∫ 2π

0
dφ

∑

j=±

|C1(s,A
(j)
1 + A2 cos φ)|2 , (A.45)

where the upper and lower limits of integration are given by Emax ≡ E+
1 and

Emin =

{
E−

1 for 0 ≤ pT ≤ E−
1 ,

pT for E−
1 ≤ pT ≤ E+

1 .
(A.46)

As a warmup, we shall ignore the details of the scattering matrix element for the pro-

cess a+b → c+3 by putting C1 = 1. In this case, the integrals in eq. (A.45) are elementary,

and the end result is:

dσ

dpT
=

B

8πξs3/2


tan−1




√
[E+

1 ]2−p2
T

pT


−Θ(E−

1 −pT ) tan−1




√
[E−

1 ]2−p2
T

pT





 , (A.47)

where 0 ≤ pT ≤ E+
1 , and the step function Θ is defined as usual,

Θ(E−
1 − pT ) =

{
1 for 0 ≤ pT ≤ E−

1 ,

0 for E−
1 ≤ pT ≤ E+

1 .
(A.48)

It is convenient to introduce dimensionless variables,

w ≡ 2E1√
s

, x ≡ 2pT√
s

, y ≡ M2

s
, z ≡ 1 − ξ =

m2

M2
. (A.49)

The kinematics of the scattering process requires that
√

s ≥ M + m, which is equivalent

to the condition, √
y (1 +

√
z) ≤ 1 . (A.50)

The range w is given by w− ≤ w ≤ w+, where

w± =
1

2
(1 − z)

[
1 + y(1 − z) ± λ1/2(1, y, yz)

]
. (A.51)

13There is no singularity in the limit of ξ → 0 since in this limit, E±
→ 0.

– 6 –
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Figure 10. Unnormalized pT distributions for a + b → c + 3 , c → 1 + 2, assuming that the matrix

element for a + b → c + 3 is constant (dashed curve) or is given by eq. (A.54) (solid curve). The

rescaled transverse momentum is defined by x ≡ 2pT /
√

s and can take on values in the range

0 ≤ x ≤ xmax, where xmax ≡ 1

2
(1 − z)

[
1 + y(1 − z) + λ1/2(1, y, yz)

]
. The masses of particles c and

d are fixed by y ≡ M2/s = 0.5 and z ≡ m2/M2 = 0.1. To facilitate the comparison of the two pT

distributions, the relative normalization of the two curves has been fixed such that the height of

the peaks of the distributions coincide. The location of the peak at x = 0.50843, corresponding to

eq. (A.53), is the same for both curves.

Hence, the range of x is

0 ≤ x ≤ w+ < 1 . (A.52)

As an example, take y = 0.5 and z = 0.1, which is consistent with the inequality given

in eq. (A.50). Eq. (A.52) then implies that 0 ≤ x ≤ 0.79657. The transverse momentum

distribution, plotted in figure 10 exhibits a striking Jacobian peak located at x = 0.50843,

which corresponds to

(pT )peak = E−
1 . (A.53)

The origin of the Jacobian peak is a consequence of the change in kinematic variables

given in eq. (A.40), and is rather insensitive to the form of the matrix element. To illustrate

this point, we have numerically evaluated eq. (A.45), where the tree-level form for C1 for

gq → q̃Rχ̃0
1 is employed [11, 35, 36, 62]

|C1(s, t)|2 = N

[
s + t − M2

2s
− M2(m2 − t)

(M2 − t)2
+

sm2 + (m2 − t)(M2 − m2)

s(M2 − t)

]
, (A.54)

where N is an overall dimensionless normalization factor that depends on the relevant

couplings. In terms of the dimensionless variables introduced in eq. (A.49),

dσ

dx
=

Bx

64π2s(1 − z)

∫ wmax

wmin

dw

w

1√
w2 − x2

∫ 2π

0
dφ

∑

j=±

|C1(s,A
(j)
1 + A2 cos φ)|2 , (A.55)

– 7 –
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where

wmax = w+ , wmin =

{
w− , for 0 ≤ x ≤ w− ,

x , for w− ≤ x ≤ w+ ,
(A.56)

and the coefficients A
(±)
1 and A2 are given by:

A
(±)
1 =

1

2
s

{
y(1 + z) − 1 ±

√
w2 − x2 [w + y(1 − z)(w − 2)]

w2

}
, (A.57)

A2 =
sxy1/2

w2

[
w(1 − w − z) − y(1 − w)(1 − z)2

]1/2
. (A.58)

The resulting unnormalized pT distribution is exhibited in figure 10. Note that the

shape of the pT distribution is dominated by the explicit kinematic factors that appear in

eq. (A.45), and depends quite weakly on the actual form of the squared-matrix element

given in eq. (A.54). Moreover, the location of the peak in the pT distribution is unchanged

and given by eq. (A.53), as a consequence of structure of the kinematic limits given in

eqs. (A.42) and (A.43).

In the above analysis, the location of the Jacobian peak given in eq. (A.53) depends

on the partonic center-of-mass energy
√

s. The differential cross section for the hadronic

scattering process, A + B → c + 3 + X → 1 + 2 + 3 + X, is obtained by convoluting the

pT distribution of the partonic subprocess, a + b → c + 3 → 1 + 2 + 3, with the product

of the parton distribution functions fA
a (x1, Q

2)fB
b (x2, Q

2), where the total center-of-mass

squared-energy S is related to the partonic center-of-mass energy via s = x1x2S, and Q

is the factorization scale. In the convolution, partonic center-of-mass energies close to

the energy threshold for the partonic process provide the dominant contribution to the

production of the final state. In this case, one can derive an approximate formula for the

location of the Jacobian peak that does not depend on the partonic center of mass energy.

The threshold for a + b → c + 3 corresponds to the point at which

λ(s,M2,m2) = (s + M2 − m2)2 − 4sM2 = 0 . (A.59)

At this point s + M2 − m2 = 2M
√

s (or equivalently,
√

s = M + m), in which case

E−
1 = E+

1 =
M2 − m2

2M
. (A.60)

Of course, the cross-section given in eq. (A.45) vanishes exactly at threshold where E−
1 =

E+
1 . However, if we are close to threshold, then eq. (A.60) still provides a decent approxi-

mation to E−
1 , in which case the location of the Jacobian peak is:

(pT )peak = E−
1 ≃ M2 − m2

2M
=

1

2
ξM , (A.61)

which is independent of the partonic center-of-mass energy.

In this paper, we have numerically computed the transverse momentum distribution of

the hadronic scattering process, taking into account the partonic scattering process at all

– 8 –
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allowed values of the partonic center-of-mass energy. In particular, as the partonic center-

of-mass energy is increased above the threshold energy for a+b → c+3, the location of the

peak of the partonic transverse momentum distribution, E−
1 [cf. eq. (A.30)] decreases rela-

tive to the estimate given in eq. (A.61). Thus, we expect the actual peak in the transverse

momentum distribution of the hadronic scattering process (or equivalently in the missing

transverse energy distribution) to be somewhat less than the result of eq. (A.61). This is

indeed the case in the /pT
distributions that we exhibit in this paper.

Note that in the approximation that the transverse momentum of particle c is due

entirely from the hard scattering process (i.e. the transverse momentum of the initial par-

tons and the spectators are neglected), the distribution of the missing transverse energy

(i.e. particles 2 and 3 of the hard scattering process) should precisely match that of the

transverse momentum of the monojet (i.e. particle 1 of the hard scattering process). Of

course, the effects of spectators, initial and final state radiation, fragmentation of final

state partons, jet mismeasurements and detector effects will tend to reduce the sharpness

of the peak in the /pT
distributions as compared to that of figure 10.
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