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In the minimal supersymmetric extension of the standard model (MSSM), if the two-Higgs doublets are
lighter than some subset of the superpartners of the standard model particles, then it is possible to integrate
out the heavy states to obtain an effective broken-supersymmetric low-energy Lagrangian. This
Lagrangian can contain dimension-four gauge-invariant Higgs interactions that violate supersymmetry
(SUSY). The wrong-Higgs Yukawa couplings generated by one-loop radiative corrections are a well-
known example of this phenomenon. In this paper, we examine gauge-invariant gaugino-higgsino-Higgs
boson interactions that violate supersymmetry. Such wrong-Higgs gaugino couplings can be generated in
models of gauge-mediated SUSY-breaking in which some of the messenger fields couple to the MSSM
Higgs bosons. In regions of parameter space where the messenger scale is low and tan� is large, these hard
SUSY-breaking operators yield tan�-enhanced corrections to tree-level supersymmetric relations in the
chargino and neutralino sectors that can be as large as 56%. We demonstrate how physical observables in
the chargino sector can be used to isolate the tan�-enhanced effects derived from the wrong-Higgs
gaugino operators.
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I. INTRODUCTION

The minimal supersymmetric standard model (MSSM)
[1–5] is a supersymmetric extension of the standard model,
augmented by the most general set of dimension-two and
dimension-three supersymmetry (SUSY)-breaking opera-
tors (allowed by the rules of [6]). Without additional
assumptions, the resulting MSSM is governed by 124
independent parameters [7,8]. These parameters are con-
sidered placeholders for the unknown (and simpler) fun-
damental mechanism of spontaneous SUSY-breaking.
Since there are many different models of fundamental
SUSY-breaking [9], determining the relations among these
soft parameters is an important step towards determining
the organizing principle governing the fundamental
mechanism for SUSY-breaking. It is unlikely that all 124
parameters can ever be measured in future experiments.
Furthermore, additional parameters enter that depend on
the mechanism that communicates the fundamental SUSY-
breaking to the visible sector of MSSM fields; this often
involves hidden sector physics out of the reach of direct
detection by colliders because the scale of physics that
governs the communication of the SUSY-breaking from
the hidden sector to the MSSM is of O�100 TeV� or
greater. One way to infer information about the soft-
SUSY-breaking Lagrangian and the mediation of SUSY-
breaking to the MSSM is through the measurement of
radiative corrections to supersymmetric relations that are
imprinted on the parameters of the theory.

Radiative corrections to supersymmetric relations have
been the subject of many studies. It is quite useful to
consider the case in which there is a separation of the
effective low-energy SUSY-breaking scale (MSUSY) and
the scale of electroweak symmetry-breaking (characterized

by the Higgs vacuum expectation value v � 246 GeV). In
this case, one can construct an effective Lagrangian [10,11]
below the scale of SUSY-breaking in which the effects of
the SUSY-breaking one-loop effects appear as corrections
to tree-level relations. For example, one can consider de-
coupling all superpartners, which results in an effective
low-energy two-Higgs-doublet model (2HDM) [12] below
the SUSY-breaking scale. Although the superpartners do
not appear in the effective low-energy 2HDM, their radia-
tive effects do not decouple and yield predictions of modi-
fied relations between the tree-level Yukawa couplings and
the corresponding quark masses. These effects can be
understood as deriving from the radiatively corrected
MSSM Higgs-Yukawa couplings and the effects of radia-
tively generated so-called wrong-Higgs Yukawa couplings
that violate supersymmetry.

Alternatively, one can consider decoupling only a subset
of the superpartner spectrum and looking at the nondecou-
pling effects in both tree-level 2HDM couplings and in the
tree-level relations among the light superpartner couplings.
Such a scenario arises in models of split-supersymmetry
[13]. In these models, the properties of the squarks can be
inferred from deviations of supersymmetric relations be-
tween the gauge couplings and the couplings of the light
higgsinos and gauginos [14]. Although the separation of
scales between decoupled and nondecoupled states is es-
sential for the existence of an effective low-energy local
Lagrangian description, such a separation is not required
for probes of SUSY-breaking via radiative effects. For
example, the deviation of the supersymmetric relations
between the gauge and gaugino couplings were analyzed
in [15,16] even though the squarks were not decoupled
from the low-energy spectrum.
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What is remarkable about the examples cited above is
the role played by dimension-four hard SUSY-breaking
operators. The coefficients of these operators in the effec-
tive low-energy Lagrangian below the scale MSUSY are
suppressed by a coupling constant and a loop factor. In
contrast, the coefficients of dimension-four hard SUSY-
breaking operators of the Lagrangian above MSUSY are
typically suppressed by one or two powers of F=M2 [17],
where F1=2 characterizes the fundamental scale of SUSY-
breaking and M is the scale of the physics that transmits
SUSY-breaking to the sector of MSSM fields. For example,
in cases of gravity-mediated SUSY-breaking where
F=M�MSUSY and M is the Planck scale, dimension-
four hard SUSY-breaking operators are Planck-scale sup-
pressed and hence completely negligible. In models of
gauge-mediated supersymmetry-breaking [18–27],
�g2=16�2�F=M�MSUSY, where g is the relevant gauge
coupling constant andM is a typical mass of the messenger
fields that in some cases can be as low as a few TeV. In the
latter scenario, F=M2 is a rather mild suppression, in which
case the corresponding dimension-four hard SUSY-
breaking operators can be phenomenologically relevant.

This paper is organized as follows. In Sec. II, we review
the radiative generation of the wrong-Higgs-Yukawa cou-
plings of the effective 2HDM Lagrangian after decoupling
the heavy supersymmetric particles. The wrong-Higgs-
Yukawa couplings are hard SUSY-breaking dimension-
four operators that appear in the effective low-energy
theory at the electroweak scale. One notable consequence
of the wrong-Higgs-couplings is an enhanced correction to
the relation between the bottom-quark Yukawa coupling
and the bottom-quark mass in the limit of a large ratio of
Higgs vacuum expectation values, tan�. This enhancement
can yield a radiative correction to the Higgs decay rate to
bottom-quark pairs that is significantly larger than the
expected size of a one-loop radiative effect. Detection of
such a deviation would provide insight into the structure of
SUSY-breaking, even while probing interactions at scales
below the heavy masses of the MSSM spectrum.

In Sec. III, we examine the possibility of analogous
wrong-Higgs interactions that couple gauginos to the higg-
sinos and Higgs bosons. These gaugino-higgsino-Higgs
boson interactions are gauge invariant with respect to the
standard model gauge group but are SUSY-breaking, and
thus are constrained to be zero at tree-level in the MSSM.
Since we are aiming to use an effective Lagrangian de-
scription of the chargino/neutralino sector at a scale below
the SUSY-breaking scale, we look for regions of MSSM
parameter space where threshold corrections from heavy
MSSM particles can generate these effective operators at
one-loop. We show that a consistent effective Lagrangian
treatment of these operators cannot be achieved from
decoupling any subset of MSSM fields at some high
SUSY-breaking scale. Nevertheless, when we parametrize
a simple low-energy gauge-mediated messenger sector

with couplings to the Higgs doublets, integrating out the
messengers does generate the SUSY-breaking wrong-
Higgs operators of interest. Models with such messenger
interactions have been suggested in [28]. For our purposes,
we note that the quantum numbers of the messenger fields
typically allow for supersymmetric and gauge-invariant
interactions with the Higgs doublets. In this paper, we
have explored in detail some of the detectable nondecou-
pling effects of such interactions.

After the messenger sector is integrated out and new
gaugino couplings are present in the effective Lagrangian,
corrections to the off-diagonal elements of the chargino
and neutralino mass matrices are generated. In Sec. IV, we
focus on the impact of the wrong-Higgs gaugino operators
on the chargino mass matrix. These SUSY-breaking inter-
actions will result in deviations in the tree-level super-
symmetric relations between the off-diagonal elements of
the chargino mass matrix, the W-mass, and tan�. We
identify one particular correction that is tan�-enhanced
and dominates over all other one-loop corrections. We
briefly indicate how the effects of the tan�-enhanced cor-
rection can be isolated in precision chargino studies at
future colliders. Finally, in Sec. V, we demonstrate that
the tan�-enhanced effects of the local wrong-Higgs opera-
tors are parametrically larger than any nonlocal effects that
could in principle wash out such effects. Conclusions and
future directions of this work are outlined in Sec. VI.

II. WRONG-HIGGS INTERACTIONS AND THE
BOTTOM-QUARK MASS

The tree-level MSSM Lagrangian consists of SUSY-
conserving mass and interaction terms, supplemented by
soft-SUSY-breaking operators. Following the rules of
Ref. [6], the soft-SUSY-breaking operators include arbi-
trary dimension-two mass terms and holomorphic cubic
scalar interactions, consistent with the gauge symmetry of
the model.1 In particular, all tree-level dimension-four
gauge-invariant interactions must respect supersymmetry.

When supersymmetry is broken, in principle all SUSY-
breaking operators consistent with gauge invariance can be
generated in the effective low-energy theory (below the
scale of SUSY-breaking). The MSSM Higgs sector pro-
vides an especially illuminating example of this phenome-
non. The MSSM contains two complex Higgs doublet
fields Hu and Hd of hypercharge �1, respectively. The

1Supersymmetry-breaking mass terms for the fermionic super-
partners of scalar fields and nonholomorphic trilinear scalar
interactions can potentially destabilize the gauge hierarchy [6]
in models with a gauge-singlet superfield. The latter is not
present in the MSSM; hence as noted in [29,30], these so-called
nonstandard soft-supersymmetry-breaking terms are benign.
However, the coefficients of these terms (which have dimensions
of mass) are expected to be significantly suppressed compared
to the TeV-scale in a fundamental theory of high-scale
supersymmetry-breaking.
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tree-level Higgs-quark Yukawa Lagrangian is given by:

 L tree
yuk � ��ijhbH

i
d 

j
Q D � �ijhtH

i
u 

j
Q U � H:c:; (1)

where we use two-component notation for the quark
fields.2 Note that the supersymmetry restricts the form of
the tree-level Yukawa Lagrangian to the so-called Type-II
Yukawa interactions [31,32] of the two-Higgs doublet
model, in which the neutral component ofHd (Hu) couples
exclusively to down-type (up-type) quarks. Two other pos-
sible dimension-four gauge-invariant nonholomorphic
Higgs-quark interactions terms, the so-called wrong-
Higgs interactions Hk�

u  d 
k
Q and Hk�

d  u 
k
Q, are not super-

symmetric (since the dimension-four supersymmetric
Yukawa interactions must be holomorphic), and hence
are absent from the tree-level Yukawa Lagrangian.

Nevertheless, the wrong-Higgs interactions can be gen-
erated in the effective low-energy theory below the scale of
SUSY-breaking. In particular, one-loop radiative correc-
tions, in which supersymmetric particles (squarks, higgsi-
nos and gauginos) propagate inside the loop [33–41], can
generate the wrong-Higgs interactions as shown in Fig. 1.
In constructing the one-loop diagrams that produce the
wrong-Higgs interactions, the relevant vertices derive
from the following terms of the MSSM Lagrangian. First,
we have the three-scalar interactions:

 

Lint � �htH
i
d

~Qi� ~U� ��hbH
i
u

~Qi� ~D�

� �ij	hbAbH
i
d

~Qj ~D� htAtH
i
u

~Qj ~U
 � H:c:; (2)

which derive from the�-term of the superpotential and the
soft-SUSY-breaking trilinear scalar interactions (the so-
called A-terms). Second, we have the gaugino-quark-
squark interactions:

 

Lint � �i
���
2
p
gs� �~ga � iQkT

a
kl

~Qi
l � ~ga UkTak‘ ~U�‘

� ~ga DkT
a
k‘

~D�‘ � H:c:�

� i
���
2
p
g
�

��a � iQ
1

2
�aij ~Qj � H:c:

�
� i

���
2
p
g0	yQ ��0 � iQ ~Qi � yU ��0 � U ~U� yD ��0 � D ~D

� H:c:
; (3)

which derive from the Kähler term (cf. Eq. (13)). In Eq. (3),
gs, g and g0 are the SU�3� � SU�2� � U�1�Y gauge cou-
plings, k and ‘ are SU(3) color indices and Ta are the
SU(3) generators, i and j are the SU(2) gauge indices and
�a are the Pauli matrices, and yQ � 1=3, yU � �4=3 and
yD � 2=3 are the corresponding hypercharges. Finally, the
higgsino-quark-squark interactions are the supersymmetric
analogs of the Higgs-quark Yukawa couplings:

 

Lint � �ij	hb iHd
� jQ ~D�  D ~Qj�

� ht iHu
� jQ ~U�  U ~Qj� � H:c:
: (4)

If the squarks are heavy, then one can derive an effective
field theory description of the Higgs-quark Yukawa cou-
plings below the scale of the heavy squarks, where one has
integrated out the heavy squarks propagating in the loops.
The resulting effective Lagrangian is [12,42]:

 L eff
yuk � ��ij�hb � �hb� bH

i
d 

j
Q ��hb bHk�

u  kQ

� �ij�ht � �ht� tH
i
u 

j
Q ��ht tH

k�
d  

k
Q: (5)

Note that in addition to �ht and �hb (which renormalize
the Type-II Higgs-quark Yukawa interactions), wrong-
Higgs-Yukawa interactions, with coefficients denoted by
�hb and �ht, have been generated by the finite loop
corrections depicted in Fig. 1. Explicitly, in the limit where
the squarks are significantly heavier than the electroweak
symmetry-breaking scale [37,42– 45],3

 �hb � hb

�
2�s
3�

�M3I�M~b1
;M~b2

;Mg�

�
ht

16�2 �AtI�M~t1 ;M~t2 ; ��
�
; (6)

and

FIG. 1. One-loop diagrams contributing to the wrong-Higgs-
Yukawa effective operators. In (a), the cross (� ) corresponds to
a factor of the gluino mass M3. In (b), the cross corresponds to a
factor of the higgsino Majorana mass parameter �. Field labels
correspond to annihilation of the corresponding particle at each
vertex of the triangle.

2Under SU�3� � SU�2� � U�1�, the quantum numbers of the
two-component quark fields and Higgs fields are given by:
 Q�3; 2; 1=3�,  U�3�; 1;�4=3�,  D�3�; 1; 2=3�, Hd�1; 2;�1�
and Hu�1; 2; 1�, where the electric charge Q (in units of e) of
the fields are related to the corresponding isospin T3 and U(1)-
hypercharge (Y) by Q � T3 �

1
2Y. The two-component spinor

product is defined by  	 �  �	� � ��� �	� (�, � � 1, 2),
and ��� is antisymmetric with �12 � 1. The antisymmetric
tensor �ij (with �12 � 1) contracts the gauge SU(2) indices.
We denote the Yukawa couplings by hb and ht (instead of hU
and hD) to emphasize that the third-generation Yukawa cou-
plings dominate those of the lighter two generations.

3We neglect the contribution of the SU�2� � U�1� gauginos to
the one-loop graphs of Fig. 1 as these effects are subdominant to
the gluino contribution.
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 I �a; b; c� �
a2b2 ln�a2=b2� � b2c2 ln�b2=c2� � c2a2 ln�c2=a2�

�a2 � b2��b2 � c2��a2 � c2�
: (7)

In Eq. (6), M3 is the Majorana gluino mass, � is the
supersymmetric Higgs-mass parameter, and ~b1;2 and ~t1;2
are the mass-eigenstate bottom squarks and top squarks,
respectively, (our notation follows that of Ref. [46]). Note
that I�a; b; c� � 1=max�a2; b2; c2� in the limit where at
least one of the arguments of I�a; b; c� is large. If a � b �
c, then I�a; a; a� � 1=�2a2�.

As expected, the coefficients of the nonholomorphic
dimension-four operators in Eq. (5) vanish in the super-
symmetric limit (i.e., when the SUSY-breaking parameters
Ab, At, and M3 vanish). Moreover, it is useful to keep track
of the U�1�R-charges of the various operators appearing in
the effective Lagrangian [47]. All supersymmetric terms
must have total R-charge equal to zero.4 If we assign the R-
charges of the Higgs and quark fields such that R�Hu� �
R�Hd� � 1 and R� Q� � R� U� � R� D� � �

1
2 then, all

dimension-four Yukawa interactions of the tree-level
Lagrangian have R-charge zero. In contrast, the wrong-
Higgs-Yukawa interactions are operators with R-charge 2.

We now demonstrate that the effect of the wrong-Higgs
couplings is a tan�-enhanced modification of a physical
observable. The Higgs fields in Eq. (5) can be rewritten in
terms of the physical mass-eigenstate neutral and charged
Higgs fields and the Goldstone boson fields [48,49]:

 H1
d �

1���
2
p �v cos��H0 cos�� h0 sin�� iA0 sin�

� iG0 cos��; (8)

 H2
u �

1���
2
p �v sin��H0 sin�� h0 cos�� iA0 cos�

� iG0 sin��; (9)

 H2
d � H� sin��G� cos�; (10)

 H1
u � H� cos��G� sin�; (11)

where v2 � v2
u � v

2
d � �246 GeV�2 and tan� � vu=vd.

Inserting these expressions into Eq. (1), we can identify
the bottom-quark mass as

 mb �
hbv���

2
p cos�

�
1�

�hb
hb
�

�hb tan�
hb

�
�
hbv���

2
p cos��1� �b�; (12)

which defines the quantity �b. Note that the correction �b
is tan�-enhanced if tan�
 1. Typically in the limit of
large tan� the term proportional to �hb can be neglected,
in which case, �b ’ ��hb=hb� tan�.

It is especially noteworthy that the contributions of
heavy supersymmetric particles propagating in the loops
of Fig. 1 do not decouple in the limit of very heavy super-
symmetric particle masses when the quantities �M3=M

2
~q

and�At=M2
~q (q � t or b) that appear in Eq. (6) are of O�1�.

Thus, �b can in principle provide information about the
heavy supersymmetric sector even if the supersymmetric
particles are too heavy to be directly produced at the LHC.
As �b is tan�-enhanced, one has the possibility of extract-
ing this quantity from data by measuring the values of the
bottom-quark Yukawa coupling, the bottom mass, and
tan� at future colliders in a precision Higgs program [50].

We now investigate whether it is possible to implement a
similar strategy of probing the heavy sector of supersym-
metric models in studies of the gaugino sector.

III. WRONG-HIGGS INTERACTIONS
IN THE GAUGINO SECTOR

In the MSSM, the supersymmetric partners of the gauge
interactions of charged matter fields (either scalars or
fermions) are dimension-four interactions that couple gau-
ginos to fermions and the scalar superpartners (the sfer-
mions). As in the case of the Yukawa Higgs-fermion
interactions, only a subset of all possible dimension-four
gauge-invariant gaugino-fermion-sfermion interactions are
supersymmetric. Thus, we address the following question:
in the low-energy effective theory below the scale that
characterizes SUSY-breaking, are nonsupersymmetric
dimension-four gauge-invariant gaugino-fermion-sfermion
interactions generated with appreciable coefficients that
can be probed by precision measurements of low-energy
observables?

A. SUSY-violating dimension-four gauge-invariant
gaugino-higgsino-Higgs boson interactions

In a supersymmetric field theory, the tree-level super-
symmetric gaugino-fermion-sfermion interactions origi-
nate from the Kähler term [51,52]:

 L K �
Z
d4
�yi �e

2gV�ij�j

3 �i
���
2
p
ga� ��a � iT

a
ijAj � A

�
i T

a
ij j�

a�; (13)

where the �i are chiral superfields (with physical scalar
and two-component fermion components Ai and  i) and V
is the gauge vector superfield (with gaugino component �).
We denote the gauge group generators by Ta and allow for

4Note that the dimension-four terms of the tree-level
Lagrangian of a spontaneously broken supersymmetric model
respect the supersymmetry, and consequently these terms must
have zero R-charge.
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a product group structure for the gauge group by labeling
the gauge coupling with the index a such that ga is constant
within each simple or U(1) factor of the full gauge group.

The tree-level MSSM chargino and neutralino mass
matrices derive from three sources: (1) a supersymmetric
higgsino Majorana mass term that is proportional to the �
term,

 L � � �
Z
d2
�ijĤ

i
uĤ

j
d � H:c:; (14)

where Ĥu and Ĥd are the Higgs superfields whose scalar
and fermionic components are �Hu;  Hu

� and �Hd;  Hd
�,

respectively; (2) soft SUSY-breaking Majorana gaugino
masses:

 L soft � �M�a�a �M0�0�0 � H:c:; (15)

and (3) the gaugino-higgsino-Higgs boson interactions that
arise from Eq. (13). Contributions to the chargino and
neutralino masses are generated from the latter when the
neutral Higgs fields acquire vacuum expectation values.

Summarizing, after including soft-SUSY-breaking
terms, the gaugino-higgsino-Higgs boson sector of the
MSSM Lagrangian (including mass terms) is given by
 

Lgaugino �
igu���

2
p �a�aij 

j
Hu
H�iu �

igd���
2
p �a�aij 

j
Hd
H�id

�
ig0u���

2
p �0 iHu

H�iu �
ig0d���

2
p �0 iHd

H�id �M�
a�a

�M0�0�0 ���ij 
i
Hu
 jHd
� H:c: (16)

where

 gu � gd � g; g0u � g0d � g0: (17)

Following the strategy of Sec. II, we catalog all possible
dimension-four gauge-invariant operators in the gaugino-
higgsino-Higgs boson sector that violate supersymmetry.
One class of operators of this type are given by
 

igu���
2
p �a�aij 

j
Hu
H�iu �

igd���
2
p �a�aij 

j
Hd
H�id �

ig0u���
2
p �0 iHu

H�iu

�
ig0d���

2
p �0 iHd

H�id � H:c:; (18)

where the coupling gu, gd, g0u and g0d deviate from their
supersymmetric values given in Eq. (17). Such effects are
generated in the one-loop corrections to these interactions.
They have been studied in detail in Refs. [15,16]. In this
paper, we focus on the following gauge-invariant four-
dimensional operators that are not present in the super-
symmetric Lagrangian:

 ik1�a�aij 
j
Hu
�kiHk

d; (19)

 ik2�0 kHu
�kiHi

d; (20)

 ik3�a�aij 
j
Hd
�kiHk

u; (21)

 ik4�
0 iHd

�kiH
k
u: (22)

It is straightforward to verify that these are SUSY-breaking
operators. For example, if we assign R-charges to the
Higgs superfields so that R�Ĥu� � R�Ĥd� � 1 as before,
then the component Higgs fields possess the same R-
charges as their superfield parents, whereas corresponding
higgsino fields have R-charges R� Hu

� � R� Hd
� � 0. The

vector superfield V has R-charge equal to zero, which
implies that R-charges of the gaugino fields are given by
R��� � R��0� � 1. Consequently, the operators in Eq. (18)
all have total R-charge equal to zero, whereas the operators
listed in Eqs. (19)–(22) have R-charge equal to 2. Hence,
these hard-breaking operators do not appear in the tree-
level MSSM. Nevertheless, these operators could be gen-
erated radiatively by the threshold effects of integrating out
heavy fields just as the wrong-Higgs-Yukawa couplings to
the quarks were generated after integrating out the super-
partners. We now investigate whether these operators are
generated in the low-energy effective theory at energies
below the scale of SUSY-breaking.

B. Generating wrong-Higgs gaugino operators from a
partially decoupled MSSM

In the case of the radiative corrections to the bottom-
quark-Higgs-Yukawa interactions, the effective
Lagrangian description was successful because the one-
loop Feynman graphs with heavy supersymmetric particles
propagating in the loops yielded effective local operators
after integrating out the heavy states. Because of SUSY-
breaking effects that generate large mass splitting between
particles and their superpartners, the resulting dimension-
four local operators that survive in the effective low-energy
theory can violate supersymmetry; hence the origin of the
wrong-Higgs-Yukawa couplings. In the case of gaugino
interactions, one cannot usefully integrate out all the super-
partners (in the limit where all superpartners are heavy), as
this would remove the gaugino interaction terms of interest
from the effective low-energy theory. Instead, one must
consider a different limit where a subset of superpartners
(not including the Higgs doublets, the gauginos, and the
higgsinos) are integrated out. In this limit, we take �, M,
and M0 in Eq. (16) small compared to squark and slepton
masses. In particular, we assume that the soft-SUSY-
breaking scalar mass parameters and A-terms (that govern
the holomorphic trilinear scalar couplings) are of
O�MSUSY�, which we shall take to be significantly larger
than the scale of electroweak symmetry-breaking.

In constructing the one-loop diagrams that produce the
wrong-Higgs gaugino operators, the relevant vertices again
derive from the interaction terms of the MSSM Lagrangian
exhibited in Eqs. (2)–(4). We first attempt to construct
graphs analogous to those of Fig. 1. Two possible graphs
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that contribute to the wrong-Higgs gaugino operator that is
proportional to k3 (Eq. (21)) are exhibited in Figs. 2(a) and
2(b). However, these graphs must contain an insertion of a
Higgs vacuum expectation value at the location of the solid
dot on the squark lines (corresponding to ~qL–~qR mixing).
Thus, simple power counting, under the assumption that
the squark masses and A-terms are of order MSUSY 
 v,
implies that the contributions of Figs. 2(a) and 2(b) are
of O�mbmt=M2

SUSY� and O�m2
b=M

2
SUSY�, respectively.

Hence, these contributions decouple in the limit of
MSUSY 
 v.

There is another vertex correction with an internal
squark line, shown in Fig. 2(c) that can potentially con-
tribute to the wrong-Higgs gaugino operators. Simple
power counting again implies that the contribution of
Fig. 2(c) is of O�mbmt=M

2
SUSY� and hence decouples.

The decoupling properties of Fig. 2 could have been an-
ticipated due to the insertion of two vacuum expectation
values in each diagram (either via the Dirac mass for the
bottom and/or top quark or the ~Q– ~U and/or ~Q– ~D squark
mixing). Hence, replacing the vacuum expectation value
by the appropriate Higgs field, we see that the contributions
of Fig. 2 actually correspond to dimension-six operators
with the expected decoupling behavior.

Similar conclusions also apply to the contributions to the
three other wrong-Higgs gaugino operators (Eqs. (19),
(20), and (22)) introduced above. Consequently, we con-
clude that there are no nondecoupling one-loop contribu-
tions to the effective operators in Eqs. (19)–(22) from
heavy MSSM fields.

C. Generating wrong-Higgs gaugino operators in a
model of gauge-mediated supersymmetry-breaking

The MSSM is an effective low-energy theory of broken
supersymmetry. One expects that the soft-SUSY-breaking
dimension-two and dimension-three terms of the MSSM
Lagrangian are generated by a new sector of heavy states.
In models of gauge-mediated supersymmetry-breaking
(GMSB), supersymmetry-breaking is transmitted to the
MSSM via gauge forces [18–27]. A typical structure of
such models involves a hidden sector where supersymme-
try is broken, a messenger sector consisting of particles
(messengers) with SU�3� � SU�2� � U�1� quantum num-

bers, and the visible sector consisting of the fields of the
MSSM. The direct coupling of the messengers to the
hidden sector generates a SUSY-breaking spectrum in the
messenger sector. Finally, supersymmetry-breaking is
transmitted to the MSSM via the virtual exchange of the
messenger fields.

In order to maintain the unification of gauge coupling
constants the messengers and the Higgs doublets are taken
to be members of complete irreducible representations of
SU(5). Moreover, for appropriate choices of gauge quan-
tum numbers for the messenger fields, it is possible to
construct gauge-invariant supersymmetric direct Yukawa
couplings between the Higgs and messenger fields. Here
we consider a model of such interactions and show that
one-loop corrections involving messenger fields in the loop
can generate the wrong-Higgs gaugino operators that sur-
vive in the low-energy theory below the scale of SUSY-
breaking.

We begin by parametrizing a simple hidden and mes-
senger sector that couples to the Higgs doublet. All the
hidden sector dynamics will be described by a chiral super-
field Ẑwhose scalar component (Z) and F-term component
(FZ) acquire vacuum expectation values. Ẑ couples to four
messenger superfields, M̂1, �̂M1, M̂2, and �̂M2, whose quan-
tum numbers under SU�3� � SU�2� � U�1�Y are listed in
Table I.

In GMSB models, it is typically difficult to generate a �
and B term of the same order of magnitude at the scale of
low-energy SUSY-breaking. Addressing this problem is
beyond the scope of this paper. Here we simply note that
messenger loops will generate both� and B parameters, as

TABLE I. Gauge quantum numbers of the Higgs and messen-
ger superfields.

Superfield SU(3) SU(2) U�1�Y

Ĥd 1 2 �1
Ĥu 1 2 1
M̂1 1 2 1
�̂M1 1 2 �1
M̂2 1 1 �2
�̂M2 1 1 2

FIG. 2. One-loop diagrams contributing to the wrong-Higgs gaugino effective operators. The cross (� ) indicates the two-
component fermion propagator that is proportional to the corresponding Dirac mass. In (a) and (b) the solid dot indicates an insertion
of the Higgs vacuum expectation value. Field labels correspond to annihilation at each vertex of the triangle.
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explained in [28] and such messenger loops might play a
role in a solution to the � and B problem as recently
discussed in [53,54]. Here, we shall focus on the interac-
tions of the messenger sector and determine the phenome-
nological implications of messenger interactions with the
Higgs fields. A simple superpotential that communicates
SUSY-breaking through gauge mediation with Higgs in-
teractions and is consistent with the symmetries exhibited
in Table I is given by5:

 W � �1�ij bZ bMi
1
bMj

1 � �2
bZ bM2

bM2 � ��ij bHi
u
bMj

1
bM2

� ��ij bHi
d
bMj

1
bM2: (23)

After taking into account the vacuum expectation values of
the superfield Ẑ, this superpotential yields masses and
interaction terms for the messenger scalar and fermionic
component fields. For the computations presented in this
section, we record the relevant mass and interaction terms:

 �Lmass � j�1hZij
2jM1j

2 � j�1hZij
2j �M1j

2

� j�2hZij2jM2j
2 � j�2hZij2j �M2j

2

� �1FZ�ijM
i
1

�Mj
1 � �2FZM2

�M2

� �1hZi�ij 
i
M1
 j�M1
� �2hZi M2

 �M2
� H:c:;

(24)

and

 

Lint � ��ij	��H
i
u 

j
M1
 M2
�Mj

1 
i
Hu
 M2
�M2 

i
Hu
 jM1
�

� ��Hi
d 

j
�M1
 �M2
� �Mj

1 
i
Hd
 �M2
� �M2 

i
Hd
 j�M1
�


� �2�ijhZi	�H
i
uM

j
1

�M�2 � �H
i
d

�Mj
1M
�
2


� �1hZi	�H
i
u

�Mi�
1 M2 � �H

i
dM

i�
1

�M2
 � H:c: (25)

We also record the relevant gaugino-particle-sparticle in-
teractions involving the messenger scalars and their fermi-
onic superpartners. From Eq. (13), we obtain

 

Lint �
ig���

2
p �a�aij	 

j
M1
Mi�

1 �  
j
�M1

�Mi�
1 
 �

ig0���
2
p �0	 iM1

Mi�
1

�  i�M1

�Mi�
1 � 2 M2

M�2 � 2 �M2
�M2
 � H:c: (26)

In typical GMSB models, soft-SUSY-breaking masses
for the gauginos are generated at one-loop and soft-SUSY-
breaking squared-masses for the scalars (squarks, sleptons,
and Higgs bosons) are generated at two-loops. Con-
sequently, the soft-SUSY-breaking masses of the gauginos
and scalars are of the same order of magnitude. For ex-
ample, in order to ensure that M�M0 ���
100–500 GeV, one must choose FZ=hZi � 100 TeV.
However, if the Higgs bosons couple directly to the mes-
sengers as in Eq. (23), soft-SUSY-breaking masses for the
Higgs fields and a B-term will be generated at one loop
order. In this case, an unnatural fine-tuning is required to
keep these Higgs soft-masses & O�MSUSY�. In order to
reduce the amount of fine-tuning,6 we shall take FZ=hZi �
20 TeV. In such a model, the contributions of the messen-
ger superfields M̂1 and M̂2 to slepton and gaugino masses
are phenomenologically too small. One must then add an
additional source of SUSY-breaking to the theory. An extra
pair of weak doublet messenger fields (and corresponding
color-triplet messenger fields) coupling to a different spu-
rion X̂, where X̂ � hXi � 
2FX and FX=hXi � 100 TeV is
sufficient to raise the masses of the sleptons, squarks, and
gauginos above the current experimental bounds.
Henceforth, we shall focus exclusively on the radiative
effects of the messenger fields that couple to the spurion
Ẑ (and in what follows, the term ‘‘messengers’’ will always
refer to these fields).

Since hZi sets the scale for the average messenger
masses, the consistency of the model7 requires that FZ &

hZi2. Under our model assumption, FZ=hZi � 20 TeV, we
can write hZi � 20 TeV=�FZ=hZi2�. There are then two
regimes of possible interest. If FZ � hZi2, then the mes-
sengers are rather ‘‘light,’’ with an average mass of order
20 TeV. In contrast, if FZ � hZi2, then the messenger
masses are significantly heavier.

Consider first the case of FZ � hZi2. In this case, the
mass splittings of M1, �M1, M2, and �M2 can be treated as
perturbations about the average mass hZi. Let us examine
the contributions to the SUSY-breaking wrong-Higgs gau-
gino interactions generated by integrating out the messen-
ger fields. In this case we can evaluate the diagrams of
Fig. 3 in the mass-insertion approximation, with messen-
gers running in the loops and mass insertions of FZ on the
scalar propagator lines.

The graphs with two scalar propagators enter with the
opposite sign compared to the graph with the two fermion
propagators. We find the following leading contribution to
k3 in the mass-insertion approximation:

5Note that this superpotential could in principle be embedded
in a grand unified theory, where the various superfields live
within the following SU(5) multiplets: M̂1 � 5, �̂M1 � 5�, M̂2 �
10�, �̂M2 � 10, Ĥu � 5, and Ĥd � 5�. In this case, the Higgs/
messenger couplings would originate as subsets of the 5� � 5� �
10 and 5� 5� 10� couplings.

6In this context, we accept the order 1–10% fine-tuning
associated with the so-called little hierarchy problem [55–57].

7For FZ * hZi2, large splittings of squared-masses in the
messenger sector would drive some scalar squared-masses nega-
tive. In practice, one requires the masses of all messengers to lie
above the masses of the superpartners of the standard model
particles. This sets an upper bound on FZ=hZi2 of O�1�.
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 k3 �
g

16�2

�
FZ
hZi2

�
2
; (27)

where we have suppressed an overall numerical coefficient
of O�1�. The contribution to k3 (and similarly for the other
ki) decouples in the limit of FZ � hZi2, in agreement with
the expectations of [17]. In Sec. IV, we will exhibit a
correction to a physical quantity that is proportional to
k3 tan�. However, even with a tan�-enhancement as large
as 50, the ultimate effect of such corrections is too small to
be observed.

If FZ � hZi2, the mass-insertion approximation em-
ployed above is no longer valid. The results of Eq. (27)
are suggestive of the possibility that the effect of integrat-
ing out the messenger fields could produce nondecoupling
contributions to the ki in the low-energy effective theory
below the messenger scale. In order to evaluate the one-
loop contributions to ki for FZ � hZi2, we must employ
mass-eigenstates for the scalar messengers that appear in
the loops of Fig. 3. Scalar messengers must be reexpressed
in terms of their mass-eigenstates, and the diagrams must
be evaluated with internal line mass-eigenstates. In this
paper, we present the explicit computation for k3, as this
coefficient is the only one that governs unsuppressed cor-
rections to the chargino mass matrix and interactions.

From Eq. (24), it follows that the fermionic messenger
fields organize themselves into two Dirac fermions �1 �

� M1
; � �M1

� and �2 � � M2
; � �M2

� with corresponding
Dirac masses m1 � �1hZi and m2 � �2hZi. Moreover,
we can express the mass-eigenstate scalar messengers in
terms of the corresponding interaction-eigenstate fields.
We work in the limit of exact SU�2� � U�1� and ignore
small corrections to the messenger masses of order the
electroweak scale that are generated by the neutral Higgs
vacuum expectation values. It is convenient to rewrite the
complex scalar messenger fields in terms of their real and
imaginary parts:

 Mi
1 �

1���
2
p �Mi

1R �M
i
1I�; M2 �

1���
2
p �M2R �Mi

2I�;

(28)

and similarly for the barred fields �Mi
1 and �M2. From

Eq. (24), the scalar messenger mass-eigenstates are deter-
mined from:

 

�Lmass �
1

2
�Mi

1R�ij �Mj
1R��

�1�
�

Mi
1R

�ik �Mk
1R

 !

�
1

2
�Mi

1I�ij �Mj
1I��

�1�
�

Mi
1I

�ik �Mk
1I

 !

�
1

2
�M2R

�M2R��
�2�
�

M2R

�M2R

 !

�
1

2
�M2I

�M2I���2��
M2I

�M2I

 !
; (29)

where

 � �n�� �
�2
nhZi2 ��nFZ
��nFZ �2

nhZi2

� �
; �n � 1; 2�: (30)

The scalar messenger mass-eigenstates are

 Mi
�1R;I �

1���
2
p �Mi

1R;I � �ij �Mj
1R;I�;

M�2R;I �
1���
2
p �M2R;I � �M2R;I�;

(31)

with corresponding masses m�nR;I given by (for n � 1, 2)

 �m�1I�
2 � �m�1R�

2 � �2
1hZi � �1FZ;

�m�2I�
2 � �m�2R�

2 � �2
2hZi � �2FZ;

(32)

 �m�1I�
2 � �m�1R�

2 � �2
1hZi � �1FZ;

�m�2I�
2 � �m�2R�

2 � �2
2hZi � �2FZ:

(33)

We can then evaluate the exact one-loop threshold cor-
rections contributing to k3 by employing Feynman rules
with messenger mass-eigenstates. In the limit where the
internal particle masses are much greater than the external
momenta,

FIG. 3. One-loop diagrams with internal lines consisting of scalar and fermionic messenger fields. The cross (� ) indicates the two-
component fermion propagator that is proportional to the corresponding Dirac mass. The solid dot indicates an FZ mass-insertion on
the scalar messenger line.
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k3

g
�
����2 � �1�

128
���
2
p
�2

m1hZi	I�m1; m�1R;m
�
2R� � I�m1; m�1I; m

�
2I� � I�m1; m�1R;m

�
2I� � I�m1; m�1I; m

�
2R� � I�m1; m�1R;m

�
2R�

� I�m1; m
�
1I; m

�
2I� � I�m1; m

�
1I; m

�
2R� � I�m1; m

�
1R;m

�
2I�


�
����2 � �1�

128
���
2
p
�2

m1hZi	I�m1; m�1R;m
�
2R� � I�m1; m�1R;m

�
2R� � I�m1; m�1I; m

�
2R� � I�m1; m�1I; m

�
2R�

� I�m1; m
�
1R;m

�
2I� � I�m1; m

�
1R;m

�
2I� � I�m1; m

�
1I; m

�
2I� � I�m1; m

�
1I; m

�
2I�


�
��m1m2

32
���
2
p
�2
	I�m1; m2; m�1R� � I�m1; m2; m�1I� � I�m1; m2; m�1R� � I�m1; m2; m�1I�
 (34)

where the triangle integral I�a; b; c� is defined in Eq. (7).
In the limit of �1 � �2 � �, the above results simplify
significantly, and the messenger masses are given by

 m2
1 � m2

2 � �2hZi2; (35)

 �m�1I�
2 � �m�1R�

2 � �m�2I�
2 � �m�2R�

2 � �2hZi2 � �FZ;

(36)

 �m�1I�
2 � �m�1R�

2 � �m�2R�
2 � �m�2I�

2 � �2hZi2 � �FZ;

(37)

in which case Eq. (34) simplifies to:
 

k3

g
�

���
2
p
���2hZi2

32�2 	I���2hZi2 � �FZ�
1=2; �hZi�

� I���2hZi2 � �FZ�1=2; �hZi�

� I��hZi; ��2hZi2 � �FZ�
1=2�

� I��hZi; ��2hZi2 � �FZ�1=2�
; (38)

where

 I �a; b� � I�a; a; b� � I�b; a; a�

�
a2�a2 � b2� � a2b2 ln�b2=a2�

a2�a2 � b2�2
: (39)

An explicit evaluation of Eq. (38) yields

 

k3

g
�

���
2
p
��

32�2 f�x�; x �
FZ
�hZi2

; (40)

where

 f�x� �
�x� 2� ln�1� x� � �x� 2� ln�1� x�

x2 : (41)

The small x expansion of f�x� gives

 f�x� �
x2

3
�

4x4

15
�O�x6�; (42)

which confirms the behavior of k3 for x� 1 given in
Eq. (27). Note that f�x� ! 1 as x! 1, which reflects

the fact that one of the messenger masses is approaching
zero. Thus, we cannot take x as large as 1.

We shall choose x such that the lightest messenger mass
lies above 1 TeV. With this bound, x can assume values
quite close to 1. As an example, consider the case of � � 1
and Fz=hZi � 20 TeV in order that squark and gaugino
masses lie in the appropriate mass range. If x is close to 1,
then FZ � hZi2, in which case, hZi � 20 TeV. If x ’ 0:98,
then for � � 1 the lightest messenger has a mass of
2.8 TeV. This is as large an x value that one could sensibly
allow. At this particular point in parameter space f�0:98� �
2:0. This yields a value for the effective contribution to
k3=g of

 

k3

g
� 2:0

���
2
p
��

32�2 : (43)

This is roughly a maximum possible value for these thresh-
old effects. Using the formulae given above, we can com-
pute k3=g for a variety of sample points in the parameter
space. In Table II, we provide four representative points.
The conclusion we draw from this small sample is that with
Yukawa couplings of messengers to Higgs boson of O�1�,
and the lightest messenger mass above 2 TeV, it is typical
to find values of k3=g� �0:1–1:4�=�16�2�. Such correc-
tions are of one-loop order in size—small but not too
small.

We have established that in a theory with a low SUSY-
breaking scale in a simple gauge-mediated scenario in
which messenger fields couple to the Higgs bosons of the
MSSM, there are dimension-four SUSY-breaking wrong-
Higgs gaugino operators operators (cf. Eqs. (19)–(22))
generated as threshold corrections at one-loop order.
Therefore, one should include these effects in the char-

TABLE II. Sample points in the messenger parameter space.
We have fixed hZi � 20 TeV and � � � � 1. The mass of the
lightest messenger state is denoted by M�.

�1 �2 FZ M� 16�2k3=g

1 1 �19:8 TeV�2 2.8 TeV 1.44
0.9 1 �18:8 TeV�2 2.4 TeV 1.38
1 1 �16:8 TeV�2 10.9 TeV 0.19
0.75 1 �14 TeV�2 8.8 TeV 0.15
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gino/neutralino sector of the effective Lagrangian of the
MSSM below the fundamental SUSY-breaking scale. The
usual supersymmetric relations between the parameters of
the chargino/neutralino sector and the gauge sector of the
MSSM will then be modified. In Sec. IV, we shall demon-
strate that such effects can be considerably enhanced if the
parameter tan� is large.

D. Renormalization group improvement

The effective Lagrangian describing the gaugino sector
for the MSSM just below the scale of fundamental SUSY-
breaking is given by

 

Leff
gaugino �

igu���
2
p �a�aij 

j
Hu
H�iu �

igd���
2
p �a�aij 

j
Hd
H�id �

ig0u���
2
p �0 iHu

H�iu �
ig0d���

2
p �0 iHd

H�id �M�
a�a �M0�0�0 ���ij iHu

 jHd

� ik1�a�aij 
j
Hu
�kiHk

d � ik2�0 kHu
�kiHi

d � ik3�a�aij 
j
Hd
�kiHk

u � ik4�0 iHd
�kiHk

u � H:c:; (44)

where we have added the dimension-four wrong-Higgs
gaugino operators given by Eqs. (19)–(22) to the tree-level
gaugino Lagrangian (Eq. (16)). The effective Lagrangian
displayed in Eq. (44) is defined at the threshold scale of the
messengers. We then use the renormalization group (RG)
to run down to the electroweak scale. In general the mes-
sengers decouple in two stages: once at the scale 	hZi2 �
F
1=2 and once at the scale 	hZi2 � F
1=2. For simplicity,
we will estimate the effects of the RG by decoupling the
messengers at the scale �M � hZi. However, in the limit
where the lightest messenger state is extremely light, two
stages of decoupling must be used. Our goal here is to
estimate the effects of the RG analysis on the results from
the threshold loops obtained in the previous section.

We begin with LMSSM
eff ��M� as given in Eq. (44). The

parameters that appear in this Lagrangian are effective
parameters. For example, gu � g� �gu, gd � g� �gd,
g0u � g0 � �g0u, and g0d � g0 � �g0d, where the �g0s in-
clude threshold and renormalization group effects from
SUSY-breaking below the fundamental SUSY-breaking
scale. For M0, M, and � we simply absorb renormalization
and threshold corrections into these coefficients. In the
previous section, we presented an explicit calculation for
k3=g. The other coefficients k1=g, k2=g0, and k4=g0 are also
generated with the same order of magnitude.8

Because SUSY is broken by dimension-four hard-
breaking operators, the theory below �M is nonsupersym-
metric and the RG for all couplings must be evolved
independently [58–60]. For all supersymmetric tree-level
couplings, it is a very good approximation to neglect the
presence of the new couplings ki, as these new couplings
are one-loop-suppressed. Moreover, the wrong-Higgs gau-

gino operators break the R-symmetry by two units of R-
charge (with the standard R-charge assignments to the
regular MSSM superfields). Therefore, the supersymmetric
RG equations for the MSSM couplings are always modi-
fied by terms proportional to the square of ki (correspond-
ing diagrammatically to a change of R-charge by�2 at the
two wrong-Higgs interaction vertices, respectively).
Therefore the resulting contribution to the effective super-
symmetric coupling is always suppressed by a factor of
O�1=�16�2�3�, which is negligible. The ki also evolve
according to the RG, and the R-charge analysis implies
that they satisfy RG equations that are linear and trilinear
in the ki. The RG equations for the couplings ki (neglecting
the deviation of the couplings gu, gd [and g0u, g0d] from their
supersymmetric values g [and g0], respectively) are given
by

 

16�2 dk1

dt
�

1

2
k1�6h

2
t � 6h2

b � 2h2
l � 11k2

1 � 3k2
2 � 2k2

3�

� �g2 � g02�k3 � g0gk2; (45)

 

16�2 dk2

dt
�

1

2
k2�6h

2
t � 6h2

b � 2h2
l � 2k2

4 � 9k2
1 � 5k2

2�

� 3g2k4 � 3g0gk1 � g
02�k4 � 12k2�; (46)

 

16�2 dk3

dt
�

1

2
k3�6h2

t � 6h2
b � 2h2

l � 11k2
3 � 3k2

4 � 2k2
1�

� �g2 � g02�k1 � g
0gk4; (47)

 

16�2 dk4

dt
�

1

2
k4�6h2

t � 6h2
b � 2h2

l � 2k2
2 � 9k2

3 � 5k2
4�

� 3g2k2 � 3g0gk3 � g02�k2 � 12k4�: (48)

If one keeps only the largest terms in the RG equation
for k3, then Eq. (47) reduces to

8We do not present an explicit calculation of k1, k2, and k4
here. Instead, we narrow our focus to the chargino sector and in
particular the chargino mass matrix. The coefficients k2 and k4
only affect the neutralino mass matrix so for the subsequent
analysis we do not need the coefficients of these operators. In
Sec. IV, we demonstrate that the effects of the wrong-Higgs
gaugino operator proportional to k1 are suppressed at large tan�,
and can likewise be neglected.
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 16�2 dk3

dt
� k3�3h

2
t � 3h2

b�: (49)

As an example, for tan� � 50, we obtain ht � 0:95 and
hb � 1:16. This provides a first estimate of the RG correc-
tion to k3,

 0:86k3��M � 20 TeV� � k3�� � 500 GeV�: (50)

That is, RG-evolution has reduced the size of k3 (obtained
in Sec. III C) by roughly 14%. More generally, we expect
modifications of the threshold values of the ki to be of order
10% by RG running in the parameter regime of interest.

IV. EFFECTS OF WRONG-HIGGS CHARGINO
OPERATORS ON THE CHARGINO MASS MATRIX

A. Dimension-four hard SUSY-breaking corrections to
the chargino mass matrix

After the neutral Higgs bosons acquire their vacuum
expectation values, hH0

ui � vu=
���
2
p

and hH0
di � vd=

���
2
p

,
the quadratic terms of the effective gaugino Lagrangian
(Eq. (44)) are given by

 

Lmass �
iguvu

2
�a�a2j 

j
Hu
�
igdvd

2
�a�a1j 

j
Hd
�
ig0uvu

2
�0 2

Hu

�
ig0dvd

2
�0 1

Hd
�M�a�a�M0�0�0

���ij iHu
 jHd
�
ik1vd���

2
p �a�a2j 

j
Hu
�
ik2vd���

2
p �0 2

Hu

�
ik3vu���

2
p �a�a1j 

j
Hd
�
ik4vu���

2
p �0 1

Hd
�H:c: (51)

Isolating the terms that contribute to the chargino matrix,
we introduce

  �i �
�i��

 1
Hu

 !
;  �i �

�i��

 2
Hd

 !
; (52)

where �� � 1��
2
p ��1 � i�2�. Then, the chargino mass terms

are given by

 L mass � �
1

2
 �  �
� � 0 �Xeff�T

Xeff 0

� �
 �

 �

� �
� H:c:;

(53)

where

 Xeff �
Xeff

11 Xeff
12

Xeff
21 Xeff

22

� �
�

M �g� �gu�
vu��

2
p �1�

��
2
p
k1 cot�
g��gu

�

�g� �gd�
vd��

2
p �1�

��
2
p
k3 tan�
g��gd

� �

0@ 1A (54)

with vu � v sin� and vd � v cos�.
In the limit of large tan�, the correction to the super-

symmetric relation, X21 � gv cos�=
���
2
p

, is significant.
Including effects from the improved renormalization
group running of the parameters of Table II, this correction
can be as large as 7%–56% for tan� � 50 as FZ varies
between 14–19 TeV. In this estimate we have neglected the
effects of �gd as these are one-loop effects with no
tan�-enhancements.

In [61–64], it was shown in detail how to extract the
parameters of the chargino sector from polarized e�e�

experiments. By employing these techniques, it should be
possible to detect deviations from the standard MSSM
expectations. We have seen above that the effect of the
wrong-Higgs chargino operators is to generate a poten-
tially significant tan�-enhanced correction to the super-
symmetric value of X21. Hence, we focus on the
perturbation of the chargino mass matrix due to a shift in
the value of X21.

B. A perturbative analysis of the contribution of the
wrong-Higgs gaugino couplings to the chargino mass

matrix

Given the effective chargino mass matrix of Eq. (54)
(henceforth denoted as X), we can compute the chargino
eigenvalues and corresponding diagonalization matrices.

Any complex matrix possesses a singular value decompo-
sition [65] of the form

 U�XV�1 � MD � diag�m	�1
; m	�2

�; (55)

for some suitably chosen unitary matrices U and V, where
the elements of the diagonal matrix MD are real and non-
negative. Note that Eq. (55) implies that

 VXyXV�1 � U�XXyUT � M2
D: (56)

Thus, the chargino masses are determined by solving the
eigenvalue problem for either XyX (or equivalently, for
XXy). Moreover, to compute the unitary matrices U and V,
one can first determine the matrix U by diagonalizing XXy

and then compute V from Eq. (55) (or equivalently, one can
first determine the matrix V by diagonalizing XyX and then
compute U from Eq. (17)). In the former procedure, U is
unique up to multiplication on the right by a diagonal
matrix of phases (assuming that the elements of MD are
nondegenerate). We shall use this phase freedom to reduce
the number of parameters of the unitary matrixU from four
to two; that is, we can parametrize U as follows [61–63]:

 U �
cos
L e�i�L sin
L

�ei�L sin
L cos
L

� �
: (57)

Once U has been fixed, then V is uniquely determined by
Eq. (55). The unitary matrix V depends on four parameters,
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which we parametrize as

 V �
ei�1 0
0 ei�2

� �
cos
R e�i�R sin
R

�ei�R sin
R cos
R

� �
: (58)

In the MSSM (with the hard-breaking SUSY contribu-
tions set to zero), the only nontrivial phase is the relative
phase between M and �. One can always absorb the phase
of M by rephasing the SU(2) gaugino field, in which case
the only remaining potentially complex parameter is � �
j�jei�. Thus, without loss of generality, we take M real
and positive. New phases can also enter due to the com-
plexity of the parameters �1, �2, �, and � that parametrize
the messenger superpotential (cf. Eq. (23)). Consequently,
in the chargino mass matrix, two new independent phases
can appear in X12 and X21. For simplicity, we assume in
what follows that these phases are either absent or negli-
gible. We shall address the implication of non-negligible
CP-violating phases in X12 and X21 in a future publication.

For M> 0 and X12 and X21 real, the chargino squared-
masses and mixing angles 
L and 
R are easily obtained:

 m2
	�1;2
�

1

2
�M2 � j�j2 � X2

12 � X
2
21 � ��; (59)

 cos2
R;L �
j�j2 �M2 � �X2

12 � X
2
21�

�
; (60)

where the quantity � is defined by
 

� � 	�M2 � j�j2 � X2
12 � X

2
21�

2 � 4�M2X2
12 � j�j

2X2
21

� 2Mj�jX12X21 cos��
1=2: (61)

The four phase angles �L, �R, �1, and �2 are given by

 tan�L �
�X12j�j sin�

X21M� X12j�j cos�
; (62)

 tan�R �
X21j�j sin�

X12M� X21j�j cos�
; (63)

 tan�1 �
X12X21j�j sin�

X12X21j�j cos��M�m2
	�1
� j�j2�

; (64)

 tan�2 �
��m2

	�2
�M2�j�j sin�

�m2
	�2
�M2�j�j cos�� X12X21M

: (65)

Equations (59)–(65) are a simple extension of the MSSM
results obtained in [61]. It is convenient to define the
following quantities:

 C�RL � ��cos2
R � cos2
L�;

C�RL � cos2
R � cos2
L:
(66)

Then, Eqs. (59) and (60) are equivalent to the following
four relations:

 C�RL�m
2
	�2
�m2

	�1
� � 2�M2 ��2�; (67)

 C�RL�m
2
	�2
�m2

	�1
� � 2�X2

12 � X
2
21�; (68)

 m2
	�2
�m2

	�1
� M2 ��2 � X2

12 � X
2
21; (69)

 � � m2
	�2
�m2

	�1
: (70)

In the absence of dimension-four hard-SUSY-breaking
operators, the tree-level values of the off-diagonal ele-
ments of X are given by X12 �

���
2
p
mW sin� and X21 ����

2
p
mW cos�. Including corrections due to the hard

SUSY-breaking operators, the chargino matrix is modified
by small corrections (of one-loop order), which can be
treated perturbatively. That is, we write:

 X12 �
���
2
p
mW sin��1� �12�; (71)

 X21 �
���
2
p
mW cos��1� �21�; (72)

where �12 and �21 are small, and we work to first order in
these small quantities. Our ultimate goal is to express �12

and �21 in terms of the chargino masses m	�1;2
, the ratio of

Higgs vacuum expectation values, tan�, the mixing angles

L and 
R, and the phase of � (denoted above by �). In
principle, these quantities can be determined by precision
measurements of the chargino system as described in [63].

We first rewrite Eq. (68) as

 s2
��12 � c

2
��21 �

1

2
c2� �

C�RL�m
2
	�2
�m2

	�1
�

8m2
W

; (73)

where s� � sin�, c� � cos�, etc. We next use Eqs. (67)
and (69) to solve forM and j�j. Inserting these results into
Eq. (61) yields a second linear equation for �12 and �21

(after dropping higher-order terms in the �’s) of the fol-
lowing form:

 g�21 � h�12 � 2f1=2��� f1=2�; (74)

where
 

f �
�
1

2
C�RL�� 2m2

Wc2�

�
2
� 4m2

W�m
2
	�2
�m2

	�1
� 2m2

W�

� 2m2
WC

�
RL�c2� � 4m2

W�s2� cos�; (75)

 

g � 2m2
Wc

2
�

�
4�m2

	�2
�m2

	�1
� � 4m2

Wc2� � 16m2
W

� C�RL�� 4� tan� cos�

�
8m2

W

�
�m2

	�2
�m2

	�1
� 2m2

W�s2� cos�
�
; (76)
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h � 2m2
Ws

2
�

�
4�m2

	�2
�m2

	�1
� � 4m2

Wc2� � 16m2
W

� C�RL�� 4� tan� cos�

�
8m2

W

�
�m2

	�2
�m2

	�1
� 2m2

W�s2� cos�
�
; (77)

with

 � �
�
�m2

	�1
�m2

	�2
� 2m2

W�
2 �

1

4
�C�RL��2

�
1=2
: (78)

Equations (73) and (74) provide two equations for the
unknowns �12 and �21. Solving for �21, we find

 �21 �
2s2

�f
1=2��� f1=2� � 1

2 h	c2� �
C�RL�m

2

	�
2

�m2

	�
1

�

4m2
W




hc2
� � gs

2
�

:

(79)

As a check, consider the supersymmetric limit where
X12=X21 � tan� and X12X21 � m2

Ws2�. In this limit, a
straightforward computation yields f � �2 and
C�RL�m

2
	�2
�m2

	�1
� � �4m2

Wc2�. Hence, �21 � 0 in the

limit of exact supersymmetry as expected.
We have achieved our goal of expressing �21 in terms of

the chargino masses, tan�, the mixing angles 
L and 
R,
and � � arg�. In [63], it is shown how to extract the
values of the chargino masses and the mixing angles 
L
and 
R and � from precision chargino data at the
International Linear Collider (ILC) in a model-
independent way, using measurements of the total produc-
tion cross sections for e�e� ! ~	�i ~	�j and asymmetries
with polarized beams. (A similar proposal for measuring
the chargino masses and mixing angles in a CP-conserving
scenario was put forward in [64].) If tan� and � � arg�
are known independently, then Eq. (79) provides a predic-
tion for �21. For example, tan� can be determined from
precision Higgs measurements (if the heavy Higgs states
are observed). An independent determination of � is more
problematical. Within the context of the MSSM chargino
sector, it is shown in [63] that one can also extract values
for tan� and � from the precision chargino data. But, this
determination relies on the standard MSSM chargino mass
matrix where �12 � �21 � 0. This procedure must be gen-
eralized if the �’s are nonzero. In principle, it should be
possible to solve for all the unknown quantities if the
appropriate linear combinations of the phases �L, �R, �1,
and �2 can be determined experimentally.9

Thus, a measurement of the effective chargino mass
matrix in this way can signal an effect of SUSY-breaking
physics beyond the MSSM. These conclusions depend on
the assertion that the tree-level effects of the dimension-

four hard-SUSY-breaking operators dominate the more
generic loop corrections of pole masses and interactions
that cannot be described by terms in a local effective
Lagrangian. We discuss the validity of this assumption in
the next section.

V. LOCAL VERSUS NON-LOCAL EFFECTS

In this paper, we have analyzed the local effective
Lagrangian generated by including a low-scale messenger
sector that couples via Yukawa interactions to the Higgs
doublets. As a consequence, dimension-four wrong-Higgs
gaugino interactions are generated with a strength propor-
tional to the product of messenger-Higgs-Yukawa cou-
plings, ��. These couplings then enter the chargino mass
matrix, thereby perturbing the standard MSSM relations
satisfied by chargino mass matrix elements. However, the
chargino masses and mixing angles are also modified at
one-loop due to momentum-dependent radiative correc-
tions in which the MSSM fields propagate in the loop.
Such effects have been thoroughly investigated in various
regions of the MSSM parameter space [66–68]. These
‘‘nonlocal’’ effects can compete with the local effects of
the hard-SUSY-breaking operators in certain regimes of
parameter space, and have not been included in Eq. (79).
Here, we shall argue that in our GMSB scenario, it is
possible for the local effects to dominate if the
messenger-Higgs-Yukawa couplings are larger than the
electroweak gauge couplings.

First, consider the one-loop corrections to the off-
diagonal elements of the chargino mass matrix arising
from squark exchange. Examples of such corrections are
depicted in Fig. 2, after the Higgs field acquires a vacuum
expectation value. In Sec. III B, we demonstrated that these
corrections decouple at large squark masses10 and are
additionally suppressed by a factor of the bottom-quark
Yukawa coupling. Indeed, in GMSB scenarios, the squark
masses are expected to be rather large, as one generically
expects mass relations of the form

 

m~e�R

m~q
�
g02

g2
3

: (80)

Using the current lower bound on the selectron mass of
m~e�R

> 73 GeV [69], it follows that squarks should be quite
heavy, m~q > 800 GeV. As a result, we do not expect the
squark-exchange contributions to be significant.

Next, we consider the effects of virtual slepton, char-
gino, and neutralino exchange at one-loop that can con-
tribute competing nonlocal effects to the wrong-Higgs
operators of interest. Here we note that any loop correction

9A similar analysis of the neutralino sector can provide im-
portant cross checks of the SUSY parameter determination. We
will address these points in more detail in a future publication.

10As discussed in Sec. III C, in the limit where squarks de-
couple, the one-loop wrong-Higgs gaugino interaction actually
arises from a local dimension-six operator. The corresponding
local wrong-Higgs gaugino operators are generated when the
neutral Higgs bosons take on their vacuum expectation values.
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to chargino/neutralino masses and interactions with char-
ginos/neutralinos or sleptons/leptons propagating on the
internal lines will enter with at least two factors of the
electroweak couplings g and g0, for the chargino/neutralino
contributions or the lepton Yukawa couplings for the lep-
ton/slepton contributions. As a result, the only important
nonlocal effects are �g02 and �g2 competing against
effects ��� from the messenger sector. As long as ��>
g2, g02, the messenger effects will always be parametrically
larger than the nonlocal corrections. Thus, with the as-
sumption that ��> g2, g02, a measurement of a significant
deviation of �21 from zero means that the measured devia-
tion is coming from effects beyond the MSSM. The gauge-
mediated model with messenger-Higgs-Yukawa couplings
provides a plausible scenario in which non-negligible ef-
fects in the chargino sector due to the messenger sector are
possible.

VI. CONCLUSIONS AND OUTLOOK

In models of low-energy supersymmetry, there is often a
hierarchy of scales that governs the structure of the model.
At scales above 2.5 TeV, messenger fields can provide an
avenue for the communication of the fundamental SUSY-
breaking from the hidden sector to the visible sector of the
MSSM fields. The scale of the superpartner masses of the
MSSM is roughly determined by the scale of low-energy
SUSY-breaking, which we take to be MSUSY �O�1 TeV�.
Finally, the electroweak symmetry-breaking scale v�
246 GeV provides the masses for the electroweak gauge
bosons and one or more of the Higgs bosons. At each of the
two higher scales, one can integrate out the heavy states to
obtain an effective low-energy Lagrangian, valid at the
electroweak scale. Some of the physics of SUSY-breaking
is then encoded in dimension-four hard supersymmetry-
breaking operators that appear in the low-energy effective
Lagrangian.

In this paper, we have focused on the so-called wrong-
Higgs couplings of the MSSM. These are gauge-invariant
dimension-four couplings of the Higgs bosons to other
standard model and/or MSSM fields that violate supersym-
metry. If the low-energy effective Lagrangian describes the
two-Higgs-doublet extension of the standard model, then
the wrong-Higgs couplings are dimension-four Higgs-
fermion Yukawa couplings that violate supersymmetry.
These couplings are generated in one-loop corrections to
the Yukawa interactions due to the exchange of heavy
superpartners in the loops. The effects of the heavy super-
partners do not decouple if all supersymmetry mass pa-
rameters are simultaneously taken large. The implication
of these wrong-Higgs interactions include some
tan�-enhanced corrections to certain tree-level relations
that can be phenomenologically important.

If the low-energy Lagrangian includes the charginos and
neutralinos of the MSSM, then the wrong-Higgs couplings
are dimension-four gaugino-higgsino-Higgs boson cou-

plings that violate supersymmetry. We have demonstrated
that such couplings do not arise from one-loop corrections
with heavy squarks in the loop. The latter effects decouple
as the squark mass is taken heavy, and are derivable from a
dimension-six operator with a coefficient that behaves
inversely with the square of the heavy squark mass. In
models of gauge-mediated supersymmetry-breaking with
a low messenger scale, the messenger fields can have direct
couplings to the Higgs bosons. Consequently, one must
also evaluate one-loop corrections to gaugino-higgsino-
Higgs boson couplings with the messenger fields in the
loop. Integrating out the messenger fields yields an effec-
tive low-energy Lagrangian with wrong-Higgs gaugino
interactions. The wrong-Higgs gaugino interactions mod-
ify the tree-level chargino and neutralino mass matrix.

In this paper, we have focused on the effect of the
wrong-Higgs gaugino operators on the chargino mass ma-
trix. The off-diagonal elements of this mass matrix are
modified from their supersymmetric values. For one of
the two off-diagonal elements, this deviation is enhanced
at large tan�, and can range from a few percent to as much
as 56% for tan� � 50. To detect such a deviation in
experimental data, one would need to initiate a program
of precision chargino measurements in order to reconstruct
the underlying parameters that govern the chargino mass
matrix. Such a program would begin at the LHC, but the
required precision would most likely require chargino
production at the ILC. A strategy for the reconstruction
of the chargino mass matrix at the ILC has been given in
[61–63], in the case where the wrong-Higgs gaugino cou-
plings are absent. We have derived a relation between
observable chargino parameters and the coefficient of the
tan�-enhanced wrong-Higgs coupling. Whether future
ILC chargino data can provide statistically significant evi-
dence for the wrong-Higgs couplings under realistic ex-
perimental conditions requires further study.

In this paper, we have focused on the implications of the
wrong-Higgs gaugino couplings for the chargino sector.
Similar tan�-enhanced effects due to wrong-Higgs gau-
gino couplings also modify the off-diagonal elements of
the neutralino mass matrix. The analysis of these effects
and their phenomenological implications are somewhat
more complicated and will be postponed to a future
investigation.

Finally, we note that the existence of the wrong-Higgs
gaugino couplings derived in this paper was a con-
sequence of a very specific Higgs-messenger interaction
which need not be generic in the class of gauge-mediated
supersymmetry-breaking models. It would be interesting to
classify extensions of the MSSM that yield similar con-
clusions. Such an extension would have to possess a field
that experiences SUSY-breaking, is charged under the
electroweak gauge group, and couples to the Higgs bosons.
On the other hand, one can also take a purely phenomeno-
logical point of view. Having established that the wrong-
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Higgs gaugino couplings do arise in some class of models,
one can simply assume their existence and classify all
possible phenomenological consequences of such opera-
tors for supersymmetric events at future colliders.
Ultimately, if experimental evidence for such wrong-
Higgs operators can be confirmed, such a result would
have a profound impact on the search for the fundamental
principles that govern supersymmetry-breaking.
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