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Abstract

In these notes, we demonstrate how to compute the eigenvalue of the quadratic
Casimir operator and the second-order index for an irreducible representation of a
simple Lie algebra. Explicit results for the fundamental and adjoint representations
of su(n), so(n) and sp(n) are given. The relation of these results to the dual Coxeter
number is clarified. Finally, the dependence on the normalization of the Lie algebra
generators is discussed.

I. Introduction

The reader is assumed to be familiar with Dynkin’s techniques for analyzing the simple
Lie algebras. These methods will be briefly summarized below. The material in these
notes and further details can be found in refs. [1–18].

The generators of a Lie group G [which constitute a basis for the corresponding Lie
algebra g] satisfy the commutation relations

[Ta , Tb] = f c
ab Tc , a, b, c = 1, 2, . . . , dG , (1)

where dG is the dimension of the Lie group G, and there is an implicit sum over repeated
indices. In eq. (1), we employ the mathematics convention in which the Ta are anti-
hermitian generators and the f c

ab are real structure constants for a compact real Lie
algebra. The Killing form is defined in terms of a symmetric metric tensor,

gab = f d
acf

c
bd . (2)

The inverse of gab will be denoted by gab; that is,

gabg
bc = δca .

The adjoint representation consist of dG × dG matrices that represent the Ta. These
matrices, which we denote henceforth by Fa, are defined by:

(Fa)b
c = −f c

ab , (3)
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where b and c label the row and column indices of the Fa. Eq. (2) can then be rewritten
as:

gab = Tr(FaFb) . (4)

The quadratic Casimir operator, C2, is defined by

C2 ≡ gabTaTb . (5)

It is easy to prove that

[C2 , Ta] = 0 , a = 1, 2, . . . , dG .

For a given representation of the Lie algebra g, the generators are represented by dR× dR
matrices Ra. By Schur’s lemma, any operator that commutes with all the generators of
g in an irreducible representation must be a multiple of the identity operator. Thus, we
shall write:

C2(R) = gabRaRb = cR1 , (6)

where 1 is the dR × dR identity matrix, and cR is a number that depends only on the
representation R. The goal of this note is to compute cR for any irreducible representation
of a simple Lie group. In fact, we can immediately prove the following theorem.

Theorem 1: For the adjoint representation (denoted by R = A) of a simple Lie group,
cA = 1.

Proof: Using the explicit form for the adjoint representation generators given in
eq. (3),

C2(A)c
e ≡ gab(Fa)c

d(Fb)d
e = gabf d

acf
e
bd = cAδ

e
c .

Multiplying both sides of the above equation by δce and summing over c and e,

dGcA = gabf d
acf

c
bd = gabgab = dG ,

and we immediately obtain cA = 1.

II. Root vectors

We choose to work in the Cartan-Weyl basis of g, where the generators consist of
{Hj , Eα}, which satisfy:

[Hj , Hk] = 0 , (7)

[Hj , Eα] = αjEα , (8)

[Eα , E−α] = αjHj , αj ≡ gjkαk , (9)

[Eα , Eβ] =

{

NαβEα+β , if α+ β is a root and α+ β 6= 0 ,

0 , if α+ β is not a root .
(10)
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Here, j = 1, 2, . . . , ℓ defines the rank ℓ of the Lie algebra (and corresponds to the maximal
number of commuting generators), and the root-vectors are real ℓ-dimensional vectors
α = (α1 , α2 , . . . , αℓ) 6= 0 whose components are defined by eq. (8). The set of root
vectors is denoted by ∆. Note that α ∈ ∆ implies that −α ∈ ∆ and kα /∈ ∆ if k 6= ±1.

The ℓ× ℓ block of the positive definite metric tensor is given by:

gij =
∑

α∈∆

αiαj , (11)

and the off-diagonal blocks, gα,j = gj,α = 0. The inverse of gij (denoted below by gij) can
be used to define inner products of two vectors that live in the ℓ-dimensional root vector
space,

(α , β) = gjkαjβk . (12)

Note that eqs. (11) and (12) yield the following general formula,

(β , γ) =
∑

α∈∆

(α,β)(α,γ) , for β, γ ∈ ∆. (13)

It is convenient to choose the normalization of the generators Eα of the Cartan-Weyl
basis1 such that gα,−α = 1. In this convention, one can show that:

|Nαβ|
2 = 1

2
(α , α)q(p+ 1) , N−α,−β = −N∗

α,β ,

where the integers non-negative p and q are determined by the requirement that β + kα
is a root vector for every integer k that satisfies −p ≤ k ≤ q. In particular,

p− q =
2(β , α)

(α , α)
. (14)

Conventionally, one chooses the phases of the Eα such that the Nαβ are real.
One can introduce an ordering of the root vectors by defining α > β if the first non-

zero component of α − β with respect to some fixed basis is positive. The roots can be
divided up into two sets: the set of positive roots, denoted by ∆+, and the set of negative
roots, denoted by ∆−. Note that the quadratic Casimir operator can be written in terms
of the Cartan-Weyl basis as:

C2 =
ℓ
∑

j=1

gijHiHj +
∑

α∈∆+

(EαE−α + E−αEα) . (15)

Finally, we define the simple roots to be a positive root that cannot be expressed as a
sum of two other positive roots. One can prove that there are precisely ℓ positive roots
in a Lie algebra of rank ℓ. The set of simple roots is denoted by Π.

1More generally, eq. (9) is given by [Eα , E
−α] = gα,−α gijαjHi. Since the normalization of the Eα

is not fixed by eq. (8), we are free to rescale the Eα and E
−α separately such that gα,−α = 1.
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Theorem 2: If α, β ∈ Π and α 6= β, then α− β is not a root, and

(α , β) ≤ 0 . (16)

Proof: If α−β ∈ ∆+, then α = (α−β)+β shows that α is the sum of two positive
roots, which is impossible as α ∈ Π. Likewise, if β − α ∈ ∆+, then β = (β − α) + α

shows that β is the sum of two positive roots, which is impossible as β ∈ Π. Since α 6= β,
it follows that α−β is not a root. This implies that p = 0 in eq. (14), and it follows that
(α , β) ≤ 0.

It is convenient to introduce the ℓ× ℓ Cartan matrix Aij , which is defined by,2

Aij ≡
2(αi , αj)

(αi , αi)
, (17)

where i and j label the simple roots. Note that Aii = 2 and Aij ≤ 0 for i 6= j. There
is a one-to-one correspondence between the possible Cartan matrices and the Dynkin
diagrams that characterize the possible simple Lie groups.

Given the Cartan matrix, one can compute the inner product of any two simple roots
as follows. First we note the following result obtained in refs. [4, 9],

(αi , αi) =





1

2

∑

β∈∆+

{

ℓ
∑

j=1

kβ
j Aij

}

2





−1

, αi ∈ Π . (18)

where Aij [defined in eq. (17)] depends on αi, the positive root β has been expressed in

terms of the simple roots via β =
∑ℓ

j=1
kβ
j αj and the kβ

j are nonnegative integers. It then

follows from eq. (17) that (αi , αj) =
1

2
Aij(αi , αi) .

We next introduce the Weyl reflection, which acts on a root vector as follows:

Si(α) ≡ α−
2(α , αi)

(αi , αi)
αi , α ∈ ∆ and αi ∈ Π .

Three immediate properties of Si are:

Si(αi) = −αi , (19)
(

Si(α) , β
)

=
(

α , Si(β)
)

, (20)
(

Si(α) , Si(α)
)

= (α,α) . (21)

Additional properties of the Weyl reflection are summarized by the following theorem.

Theorem 3: If α ∈ ∆+ and α 6= αi (for some simple root αi ∈ Π), then Si(α) > 0.
Moreover, if Si(α) = Si(β), then α = β.

Proof: [6] Any positive root α ∈ ∆+ can be written as

α = kiαi +
∑

j 6=i

kjαj , ki and kj are nonnegative integers.

2Some books define the expression given in eq. (17) to be the transpose of the Cartan matrix.
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Then,

Si(α) = α−
2(α , αi)

(αi , αi)
αi = −αi

[

ki +
∑

j 6=i

kjAij

]

+
∑

j 6=i

kjαj .

Since Si(α) ∈ ∆, it follows that Si(α) is either positive or negative. If Si(α) < 0, then
we must have kj = 0 for j 6= i, in which case α = αi (i.e. ki = 1) and we recover eq. (19).
Hence if α 6= αi, it then follows that Si(α) > 0. If Si(α) = Si(β), then α − β = καi,
where

κ =
2(α− β , αi)

(αi , αi)
.

Inserting α − β = καi into the expression above yields καi = 2καi, and we conclude
that κ = 0 or α = β.

One consequence of Theorem 3 is that Si maps the set of positive roots excluding αi

into itself, where the map is one-to-one and onto. Thus, if we define the Weyl vector δ to
be half the sum of the positive roots,

δ ≡ 1

2

∑

α∈∆+

α , (22)

then using eq. (19),

Si(δ) =
1

2
Si

(

αi +
∑

j 6=i

αj

)

= 1

2

(

−αi +
∑

j 6=i

αj

)

= δ −αi . (23)

Hence, eq. (20) yields,
(Si(δ) , αi) = (δ , Si(αi)) .

Using eqs. (19) and (23), it follows that

(δ −αi , αi) = −(δ , αi) .

Rearranging the above result then yields:

2(δ , αi)

(αi , αi)
= 1 , for αi ∈ Π. (24)

Finally, we introduce the dual root or co-root of α ∈ ∆,

α∨ ≡
2α

(α , α)
. (25)

In terms of the dual root, the Cartan matrix can be defined as

Aij = (α∨
i , αj) ,

and the Weyl reflection acts on a root vector as follows:

Si(α) = α− (α , α∨
i )αi .

Eq. (24) then can be rewritten as:

(δ , α∨
i ) = 1 , for αi ∈ Π. (26)
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III. Irreducible representations and weights

In a unitary representation of a simple Lie algebra, the representation matrices of
the Cartan-Weyl generators satisfy H†

j = Hj and E†
α = E−α. To construct a particular

representation of g, one determines the basis vectors of the representation space, denoted
collectively by |m〉. These vectors are chosen to be the simultaneous eigenvectors of the
commuting Hermitian generators Hj,

Hj |m〉 = mj |m〉 .

The components of the real ℓ-dimensional vector m = (m1 , m2 , . . . , mℓ) are the cor-
responding eigenvalues of Hj . The ℓ-dimensional vector space in which the m reside is
called the vector space of weight vectors. One can formulate a ordering of vectors of the
weight space by introducing the rule that m > n if the first non-zero component of m−n

is positive. An important theorem in Lie algebra representation theory states that for a
given irreducible representation, the highest weight |M〉 is non-degenerate and uniquely
fixes the representation. Moreover,

Eα |M 〉 = 0 , for all α ∈ ∆+ . (27)

Given a conventional ordered list, {α1 , α2 , . . . , αℓ}, of the simple roots of g, one
can define the following quantities,

ni ≡
2(M , αi)

(αi , αi)
= (M , α∨

i ) , i = 1, 2, . . . , ℓ . (28)

One can then prove that the ni are non-negative integers. Thus, an irreducible repre-
sentation can be identified by the ordered list (n1 , n2 , . . . , nℓ), where the ni are called
the Dynkin labels of the irreducible representation. Since M is a vector that lives in an
ℓ-dimensional space, it can be expanded in terms of the root vectors,

M =

ℓ
∑

k=1

pkαk . (29)

Inserting this expansion into eq. (28) and using eq. (17) yields

nj =
ℓ
∑

k=1

Ajkpk , (30)

where the pk are real and rational. Inverting this result gives:

pk =

ℓ
∑

j=1

(A−1)kjnj . (31)
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IV. A general formula for cR and the second-order index I2(R)

In a representation R,
C2(R) |M〉 = cR |M〉 .

To compute cR, we employ eq. (15) to obtain:

C2(R) |M 〉 = (M ,M) |M〉+
∑

α∈∆+

(EαE−α + E−αEα) |M〉

= (M ,M) |M〉+
∑

α∈∆+

[Eα , E−α] |M〉

= (M ,M) |M〉+
∑

α∈∆+

(α,M) |M 〉 .

In terms of δ ≡ 1

2

∑

α∈∆+
α, which is defined in eq. (22), we can write:

C2(R) |M〉 = (M , M + 2δ) |M〉 (32)

That is,
cR = (M , M + 2δ) . (33)

Using eq. (29),

(M , M + 2δ) |M 〉) =

(

ℓ
∑

k=1

pkαk , M + 2δ

)

= 1

2

ℓ
∑

k=1

pk [(αk , αk) (nk + 2)] .

after making use of eq. (24). Finally, inserting eq. (31) for pk,

cR = 1

2

ℓ
∑

j=1

ℓ
∑

k=1

(αk , αk)(nk + 2)(A−1)kjnj (34)

Eq. (34) is our basic result, which has also been obtained in ref. [17]. This is sometimes
rewritten in terms of the symmetrized Cartan matrix, which is defined by [7]:

Gij ≡
2

(αj , αj)
Aij =

4(αi , αj)

(αi , αi)(αj , αj)
= (α∨

i , α
∨
j ) . (35)

The inverse of the symmetrized Cartan matrix, which we shall denote by Gij is therefore
given by:

Gij = 1

2
(αi , αi)A

−1
ij . (36)
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One can immediately check that GijG
jk = δki as required. Hence, eq. (34) can be rewritten

as [19]:

cR =

ℓ
∑

j=1

ℓ
∑

k=1

(nk + 2)Gkjnj . (37)

For any irreducible representation,

Tr(RaRb) = I2(R)gab , (38)

where I2(R) is called the second-order index of the representation R. By virtue of eq. (4),
the second-order index of the adjoint representation is I2(A) = 1. For an arbitrary
irreducible representation R, taking the trace of eq. (6) yields:

cR =
I2(R)dG

dR
(39)

where dG is the dimension of the Lie algebra (which is also equal to the number of
generators) and dR is the dimension of the representation. For the adjoint representation
(R = A), we have dR = dG, in which case we obtain the expected result,

cA = I2(A) = 1 . (40)

V. The quadratic Casimir operator and second-order index for irreducible
representations of su(n), so(n) and sp(n)

We begin by listing the inverse Cartan matrices for su(ℓ + 1), so(2ℓ), so(2ℓ + 1) and
sp(ℓ), where ℓ is the rank of the corresponding Lie algebras [4].

su(ℓ+ 1) (ℓ ≥ 1) :

A−1 =
1

ℓ+ 1









































ℓ ℓ− 1 ℓ− 2 ℓ− 3 · · · 3 2 1

ℓ− 1 2(ℓ− 1) 2(ℓ− 2) 2(ℓ− 3) · · · 6 4 2

ℓ− 2 2(ℓ− 2) 2(ℓ− 2) 3(ℓ− 3) · · · 9 6 3

ℓ− 3 2(ℓ− 3) 3(ℓ− 3) 4(ℓ− 3) · · · 12 8 4

...
...

...
...

. . .
...

...
...

3 6 9 12 · · · 3(ℓ− 2) 2(ℓ− 2) ℓ− 2

2 4 6 8 · · · 2(ℓ− 2) 2(ℓ− 1) ℓ− 1

1 2 3 4 · · · ℓ− 2 ℓ− 1 ℓ









































,
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so(2ℓ+ 1) (ℓ ≥ 4) : A−1 =









































1 1 1 1 · · · 1 1 1

1 2 2 2 · · · 2 2 2

1 2 3 3 · · · 3 3 3

1 2 3 4 · · · 4 4 4

...
...

...
...

. . .
...

...
...

1 2 3 4 · · · ℓ− 2 ℓ− 2 1

2
(ℓ− 2)

1 2 3 4 · · · ℓ− 2 ℓ− 1 1

2
(ℓ− 1)

1 2 3 4 · · · ℓ− 2 ℓ− 1 1

2
ℓ









































,

so(2ℓ) (ℓ ≥ 4) : A−1 =













































1 1 1 1 · · · 1 1

2

1

2

1 2 2 2 · · · 2 1 1

1 2 3 3 · · · 3 3

2

3

2

1 2 3 4 · · · 4 2 2

...
...

...
...

. . .
...

...
...

1 2 3 4 · · · ℓ− 2 1

2
(ℓ− 2) 1

2
(ℓ− 2)

1

2
1 3

2
2 · · · 1

2
(ℓ− 2) 1

4
ℓ 1

4
(ℓ− 2)

1

2
1 3

2
2 · · · 1

2
(ℓ− 2) 1

4
(ℓ− 2) 1

4
ℓ













































,

sp(ℓ) (ℓ ≥ 4) : A−1 =









































1 1 1 1 · · · 1 1 1

1 2 2 2 · · · 2 2 2

1 2 3 3 · · · 3 3 3

1 2 3 4 · · · 4 4 4

...
...

...
...

. . .
...

...
...

1 2 3 4 · · · ℓ− 2 ℓ− 2 ℓ− 2

1 2 3 4 · · · ℓ− 2 ℓ− 1 ℓ− 1

1

2
1 3

2
2 · · · 1

2
(ℓ− 2) 1

2
(ℓ− 1) 1

2
ℓ









































.
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For the cases of ℓ = 2 and ℓ = 3, we have:

sp(2) : A−1 =

(

1 1

1

2
1

)

, so(4) : A−1 =

(

1

2
0

0 1

2

)

, so(5) : A−1 =

(

1 1

2

1 1

)

,

sp(3) : A−1 =









1 1 1

1 2 2

1

2
1 3

2









, so(6) : A−1 =









1 1

2

1

2

1

2

3

4

1

4

1

2

1

4

3

4









, so(7) : A−1 =









1 1 1

2

1 2 1

1 2 3

2









.

We also need the length of each simple root. In the Cartan-Weyl basis introduced
above, the length of each simple root is fixed according to eq. (18). These can be evaluated
explicitly, and the final results are given by [4]:

su(ℓ+ 1) : (αk , αk) =
1

ℓ+ 1
, k = 1, 2, . . . , ℓ , (41)

so(2ℓ+ 1) : (αk , αk) =















1

2ℓ− 1
, for k = 1, 2, . . . , ℓ− 1 ,

1

2(2ℓ− 1)
, for k = ℓ ,

(42)

so(2ℓ) : (αk , αk) =
1

2(ℓ− 1)
, for k = 1, 2, . . . , ℓ , (ℓ 6= 1) , (43)

sp(ℓ) : (αk , αk) =















1

2(ℓ+ 1)
, for k = 1, 2, . . . , ℓ− 1 ,

1

ℓ+ 1
, for k = ℓ ,

(44)

Finally, we need to identify specific irreducible representations of su(n), so(n) and
sp(n) We define the fundamental (or defining) representation of the corresponding groups
to be the n-dimensional matrix representation that defines the groups SU(n) and SO(n),
respectively, and the 2n-dimensional representation that defines the group Sp(n).3 In
terms of the Dynkin labels, n ≡ (n1, n2, . . . , nℓ), the fundamental representations are
given by:

n = (1, 0, 0, . . . , 0) ,

for su(ℓ + 1) (for ℓ ≥ 1), so(2ℓ + 1) (for ℓ ≥ 2), so(2ℓ) (for ℓ ≥ 3), and sp(ℓ) (for ℓ ≥ 1).
For the case of so(3), n = 2 for the fundamental three-dimensional representation (since
n = 1 is the two-dimensional spinor representation). For the case of so(4), n = (1, 1) for

3The reader is warned that what we call Sp(n) is often called Sp(2n) in the literature.
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the fundamental four-dimensional representation (since n = (1, 0) and n = (0, 1) are two
inequivalent two-dimensional spinor representations).

Eq. (34) then yields:

su(ℓ+ 1) : cF =
1

2(ℓ+ 1)

[

(A−1)11 + 2

ℓ
∑

k=1

(A−1)k1

]

=
ℓ(ℓ+ 2)

2(ℓ+ 1)2
, ℓ ≥ 1 ,

so(2ℓ+ 1) : cF =
1

2(2ℓ− 1)

[

(A−1)11 + 2
ℓ−1
∑

k=1

(A−1)k1 + (A−1)ℓ1

]

=
ℓ

2ℓ− 1
, ℓ ≥ 2 ,

so(2ℓ) : cF =
1

4(ℓ− 1)

[

(A−1)11 + 2

ℓ
∑

k=1

(A−1)k1

]

=
2ℓ− 1

4(ℓ− 1)
, ℓ ≥ 3 ,

sp(ℓ) : cF =
1

4(ℓ+ 1)

[

(A−1)11 + 2

ℓ−1
∑

k=1

(A−1)k1 + 4(A−1)ℓ1

]

=
2ℓ+ 1

4(ℓ+ 1)
, ℓ ≥ 1 .

The above results can be rewritten as:

su(n) : cF =
n2 − 1

2n2
, (n ≥ 2) , (45)

so(n) : cF =
n− 1

2(n− 2)
, (n ≥ 5) , (46)

sp(n) : cF =
2n+ 1

4(n+ 1)
, (n ≥ 5) . (47)

We note that the dimensions of the fundamental representations (dF ) and the adjoint
representations (dG) [the latter is equal to the number of generators] of the simple classical
Lie algebras are given by:

su(n) : dF = n , dG = n2 − 1 , (48)

so(n) : dF = n , dG = 1

2
n(n− 1) , (49)

sp(n) : dF = 2n , dG = n(2n+ 1) . (50)

Using eq. (39), one obtains the second-order index of the fundamental representation:

su(n) : I2(F ) =
1

2n
, (n ≥ 2) , (51)

so(n) : I2(F ) =
1

n− 2
, (n ≥ 5) , (52)

sp(n) : I2(F ) =
1

2(n+ 1)
, (n ≥ 1) . (53)
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We now examine the adjoint representation and check that Theorem 1 is satisfied.
The Dynkin labels of the adjoint representation are given by:

su(n) : n = (1 , 0 , 0 , . . . , 0 , 0 , 1) , (n ≥ 3) , (54)

so(n) : n = (0 , 1 , 0 , 0 , . . . , 0 , 0) , (n ≥ 5) . (55)

sp(n) : n = (2 , 0 , 0 , 0 , . . . , 0 , 0) , (n ≥ 1) . (56)

For su(2), the adjoint representation is given by n = 2. For so(n), the adjoint representa-
tion corresponds to the antisymmetric part of the Kronecker product of n⊗ n. However,
the cases of n ≤ 6 must be treated separately, as n = (0, 1) is a spinor representation of
so(4) and of so(5), whereas n = (0, 1, 0) is a spinor representation of so(6).4 For so(3),
the fundamental and adjoint representations coincide and correspond to n = 2. For so(4),
which is semisimple, the adjoint representation is not irreducible. For so(5), the adjoint
representation is given by n = (0, 2). For so(6), the adjoint representation is given by
n = (0, 1, 1).

We now evaluate the quadratic Casimir operator using eq. (34).

su(ℓ+ 1) : cA =
1

2(ℓ+ 1)

[

(A−1)11 + (A−1)ℓ1 + (A−1)1ℓ + (A−1)ℓℓ + 2
ℓ
∑

k=1

[(A−1)k1 + (A−1)kℓ]

]

= 1 , ℓ ≥ 2 ,

so(2ℓ+ 1) : cA =
1

2(2ℓ− 1)

[

(A−1)22 + 2
ℓ−1
∑

k=1

(A−1)k2 + (A−1)ℓ2

]

= 1 , ℓ ≥ 3 .

so(2ℓ) : cA =
1

4(ℓ− 1)

[

(A−1)22 + 2

ℓ
∑

k=1

(A−1)k2

]

= 1 , ℓ ≥ 4 .

sp(ℓ) : cA =
1

ℓ+ 1

[

(A−1)11 +

ℓ−1
∑

k=1

(A−1)k1 + 2(A−1)ℓ1

]

= 1 , ℓ ≥ 1 .

I have also checked that the cases of su(2), so(3), so(5) and so(6) yield cA = 1.

VI. The dual Coxeter number

We now introduce the maximal weight of the adjoint representation, denoted by θ,
which also coincides with the highest positive root [7]. It is well known that for a simple
Lie algebra, there are at most two roots of different length, called long roots and short
roots, respectively.5 Furthermore, one can prove that (θ, θ) ≥ (α,α) for all α ∈ ∆,

4In general, for n odd there is one fundamental irreducible spinor representation of so(n) given by
n = (0 , 0 , . . . , 0 , 1). For n even there are two fundamental irreducible spinor representations of so(n)
given by n = (0 , 0 , . . . , 0 , 1 , 0) and n = (0 , 0 , . . . , 0 , 0 , 1).

5Roots are conventionally called long in cases where all roots are of the same length.
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which implies that θ must be a long root. One can expand θ in terms of the simple roots
with positive integer coefficients,

θ =
ℓ
∑

k=1

akαk. (57)

The Coxeter number of a simple Lie algebra is defined as [7]:

h ≡ 1 +

ℓ
∑

k=1

ak .

Likewise, one can expand θ∨ ≡ 2θ/(θ , θ) in terms of the dual roots,

θ∨ =

ℓ
∑

k=1

a∨kα
∨
k , (58)

where

a∨k =
(αk ,αk)

(θ , θ)
ak , (59)

after using eqs. (25) and (57). The dual Coxeter number is then defined as [7]:

g ≡ 1 +

ℓ
∑

k=1

a∨k . (60)

For a simply laced Lie algebra (defined as a simple Lie algebra whose roots are all of equal
length), we have g = h.

The dual Coxeter number can be related to the eigenvalue of the quadratic Casimir
operator in the adjoint representation, cA, as follows. Taking the inner product of the
Weyl vector with θ∨ using eqs. (22) and (58), and employing eq. (26), it follows that

(δ, θ∨) =

ℓ
∑

k=1

a∨k (δ,α
∨
k ) =

ℓ
∑

k=1

a∨k . (61)

Since θ is the maximal weight of the adjoint representation, eqs. (60) and (61) yield,

g = 1 + (δ, θ∨) = 1 +
(δ, 2θ)

(θ, θ)
=

(θ + 2δ, θ)

(θ, θ)
=

cA
(θ, θ)

, (62)

after using eq. (33) and the symmetry property of the inner product. Since cA = 1, we
conclude that:

g =
1

(θ , θ)
=



















n , for su(n) , (n ≥ 2) ,

2 , for so(3) ,

n− 2 , for so(n) , (n ≥ 4) ,

n+ 1 , for sp(n) , (n ≥ 1) ,

(63)

after using eqs. (41)–(44) for the length of the long root.
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It is instructive to rederive eq. (62) as follows. In light of eqs. (59) and (60),

g = 1 +
1

(θ , θ)

ℓ
∑

k=1

(αk , αk)ak . (64)

The Dynkin labels for θ,

nθ
j ≡

2(θ , αj)

(αj , αj)
,

are given explicitly in eqs. (54)–(56) for su(n), so(n) and sp(n), respectively. Following
eqs. (30) and (31), we can write

nθ
k =

ℓ
∑

j=1

Akjaj , ak =

ℓ
∑

j=1

(A−1)kjn
θ
j . (65)

It follows that:

(θ , θ) =
ℓ
∑

j=1

ℓ
∑

k=1

ajak(αk , αj) =
1

2

ℓ
∑

j=1

ℓ
∑

k=1

ajak(αk , αk)Akj

= 1

2

ℓ
∑

k=1

ak(αk , αk)n
θ
k =

1

2

ℓ
∑

j=1

ℓ
∑

k=1

(αk , αk)n
θ
k(A

−1)kjn
θ
j .

Using eqs. (64) and (65), the dual Coxeter number can be rewritten as:

g = 1 +
1

(θ , θ)

ℓ
∑

j=1

ℓ
∑

k=1

(αk , αk)(A
−1)kjn

θ
j .

Hence, eq. (34) yields,

cA = 1

2

ℓ
∑

j=1

ℓ
∑

k=1

(αk , αk)(n
θ
k + 2)(A−1)kjn

θ
j = (θ , θ) + (g − 1)(θ , θ) = g(θ , θ) ,

in agreement with the result of eq. (62).
The second-order index and the eigenvalue of the Casimir operator in the fundamental

representation are related to the dual Coxeter number by using eqs. (51)–(53),

su(n) : I2(F ) =
1

2g
, (n ≥ 2) , (66)

so(n) : I2(F ) =
1

g
, (n ≥ 5) , (67)

sp(n) : I2(F ) =
1

2g
, (n ≥ 1) , (68)

and eq. (39) then yields,

cF =
gGI2(F )

dF
.
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For completeness, we provide an explicit computation of (θ , θ). Multiplying eq. (11)
by gij and summing over i and j yields [20],

∑

α∈∆

(α , α) = ℓ , (69)

where ℓ is the rank of the group. This result can be used to compute (θ , θ) as follows.
All roots of a simply laced Lie algebra are of equal length. By definition, the maximal
root θ is regarded as a long root. Since there are dG − ℓ non-zero roots, it follows from
eq. (69) that ℓ = (dG − ℓ)(θ , θ), or

(θ , θ) =
ℓ

dG − ℓ
, for g = su(ℓ+ 1) [ℓ ≥ 1] and so(2ℓ) [ℓ ≥ 2] .

For so(2ℓ + 1) [ℓ ≥ 2], there are ℓ − 1 long roots and one short root. We use Weyl
reflections to generate the remaining roots, which results in (ℓ− 1)(dG − ℓ)/ℓ long roots
and (dG − ℓ)/ℓ short roots. For sp(ℓ) [ℓ ≥ 1], there is one long root and ℓ− 1 short roots.
We use Weyl reflections to generate the remaining roots, which results in (dG − ℓ)/ℓ long
roots and (ℓ− 1)(dG − ℓ)/ℓ short roots. Hence, for so(2ℓ+ 1) [ℓ ≥ 2], eq. (69) yields:

ℓ =

[

(ℓ− 1)(dG − ℓ)

ℓ
+

dG − ℓ

2ℓ

]

(θ , θ) =
(2ℓ− 1)(dG − ℓ)

2ℓ
(θ , θ) ,

and for sp(ℓ) [ℓ ≥ 1], eq. (69) yields:

ℓ =

[

dG − ℓ

ℓ
+

(ℓ− 1)(dG − ℓ)

2ℓ

]

(θ , θ) =
(ℓ+ 1)(dG − ℓ)

2ℓ
(θ , θ) ,

after using the known fact that for so(2ℓ+ 1) [ℓ ≥ 2] and sp(ℓ) [ℓ ≥ 1], the length of the
short roots is half of the length of the long roots (the latter includes the θ). Therefore,

(θ , θ) =
2ℓ2

dG − ℓ
×















1

2ℓ− 1
, for g = so(2ℓ+ 1) , (ℓ ≥ 2) ,

1

ℓ+ 1
, for g = sp(ℓ) , (ℓ ≥ 1) .

Using eqs. (48)–(50), we end up with:

(θ , θ) =



























































1

n
, for su(n) , (n ≥ 2) ,

1

2
, for so(3) ,

1

n− 2
, for so(n) , (n ≥ 4) ,

1

n+ 1
, for sp(n) , (n ≥ 1) ,

in agreement with eq. (63).
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Additional properties of the Coxeter number and the dual Coxeter number can be
found in ref. [21].

VII. The Strange Formula

For completeness, I shall record a formula first obtained by Freudenthal and de
Vries [22]. This is a formula for the length of the Weyl vector [cf. eq. (22)],

(δ, δ) = 1

24
dG , (70)

where dG is the dimension of the Lie algebra. This remarkable formula can be verified
explicitly for all the simple Lie algebras. Elementary proofs of eq. (70), known as the
strange formula, can be found in refs. [23–25].

VIII. An alternative normalization convention

We highlight two implicit normalization conditions employed in this note. First, gab =
Tr(FaFb) defines the Killing metric, which is normalized by a coefficient of 1. Second,
the roots are normalized by

∑

α

αiαj = gij .

It is convenient to alter these conventions as follows. First, we redefine [7, 16]

gab =
1

gη
Tr(FaFb) , (71)

where g is the dual Coxeter number and η is an additional rescaling factor. In order to
be consistent with eq. (11), we shall simultaneously rescale the roots so that

1

gη

∑

α

αiαj = gij . (72)

Multiplying by gij and summing over i and j yields:

∑

α∈∆

(α , α) = gηℓ ,

which replaces eq. (69) and fixes the length of the root vectors. We can identify:

η = (θ , θ) ,

since gη = g(θ , θ) = 1 returns us to our previous conventions [cf. eq. (63)].
This rescaling can be viewed in two equivalent ways. As presented above, it can be

viewed simply as a rescaling of the definition of the Killing metric. Note that in this
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interpretation, the eigenvalue of the Casimir operator and the second-order index are in-
dependent of the choice of basis for the generators, since the definitions given by eqs. (5)
and (38) are covariant with respect to their indices. That is, rescaling the Lie algebra
generators automatically rescales the Killing metric, leaving the eigenvalue of the Casimir
operator and the second-order index invariant. However, we can also view eq. (71) as a
rescaling of the definition of the Lie algebra generators, with gab held fixed. In practice,
one typically chooses the basis for the Lie algebra generators such that gab = δab, where
the coefficient in front of the Kronecker delta is held fixed at 1. In this interpretation,
the eigenvalue of the Casimir operator and the second-order index depend on the nor-
malization of the Lie algebra generators.6 Of course, both interpretations are equally
valid.

The symmetrized Cartan matrix defined in eq. (35) also depends on the overall scale
of the roots. However, we shall simply redefine it as:

Gij =
(θ , θ)

(αj , αj)
Aij . (73)

Note that eq. (73) is independent of the convention for the normalization of the length of
the roots. The inverse of the redefined symmetrized Cartan matrix is given by

Gij =
(αi , αi)

(θ , θ)
A−1

ij .

This matrix is called the quadratic form matrix in ref. [7]. The explicit forms of the Gij

for the simple Lie groups are given in refs. [3, 7].
As noted above, the eigenvalue of the quadratic Casimir operator and the second-order

index are rescaled by ηg, and we shall denote the corresponding rescaled quantities by
capital letters,

CR ≡ ηgcR , TR ≡ ηgI2(R) . (74)

In particular, eq. (40) implies that:

CA = TA = ηg . (75)

If we multiply eq. (37) by ηg, and rescale G−1 as indicated above, we obtain [16]:

CR = ηgcR = 1

2
η

ℓ
∑

j=1

ℓ
∑

k=1

(ai + 2)Gijaj , (76)

where eq. (63) has been used to convert to the new definition of G−1.

6In ref. [17], this viewpoint is described on the top of p. 302 as follows. “If all generators in a given
simple Lie algebra are multiplied with a common factor λ, the structure constants f c

ab are multiplied
with λ and the Killing form is multiplied with λ2. For convenience, the inner product in the root space
[cf. eq. (12)] is redefined to be Euclidean again, namely, the metric tensor in the root space is δij instead
of gij .”
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Finally, we note that the strange formula of Freudenthal and de Vries [cf. eq. (70)] is
also rescaled by ηg,

(δ, δ) = 1

24
ηgdG . (77)

It is often convenient to choose the squared-length of the longest root to be equal to 2
(see, e.g., Ref. [16]). That is,7

η ≡ (θ , θ) = 2 . (78)

In this convention, our original definition of the symmetrized Cartan matrix defined in
eq. (35) and the rescaled version defined in eq. (73) are of the same form. Consequently,
when η = 2, the form of eqs. (37) and (76) coincide since both cR and Gij scale in the
same way.

As a consequence of eqs. (39), (74) and (75),

CF =
TFdG
dF

, CA = TA =
TF

I2(F )
.

It then follows that:

su(n) : CF = TF

(

n2 − 1

n

)

, CA = TA = 2nTF , (n ≥ 2) , (79)

so(n) : CF = 1

2
TF (n− 1) , CA = TA = TF (n− 2) , (n ≥ 5) . (80)

sp(n) : CF = 1

2
TF (2n+ 1) , CA = TA = 2TF (n+ 1) , (n ≥ 1) . (81)

Comparing the above results with eqs. (63) and (75), it follows that the normalization of
the Lie algebra generators are fixed according to [19]:

su(n) : TF = 1

2
η , (n ≥ 2) ,

so(n) : TF = η , (n ≥ 5) ,

sp(n) : TF = 1

2
η , (n ≥ 1) .

Of course, the above results are consistent with eqs. (66)–(68), in light of eq. (74).
As noted in eq. (78) and in footnote 7, η = 2 is the common choice in the mathematics

literature. In contrast, η = 1 is more typically employed in the physics literature, espe-
cially in the case of the su(n) Lie algebra. Although a universal choice for η is desirable, it
is not required. As a result, it is not uncommon to see different conventions for η applied
to different simple Lie algebras [19]. For example, the results of eqs. (79)–(81) agree with
Table 3 of ref. [5], where TF = 1 has been taken for all su(n), so(n) and sp(n) generators.
This choice requires a different choice of η for so(n) as compared to su(n) and sp(n). It
is also common for physicists to choose TF = 1

2
for su(n) and sp(n) and TF = 2 for so(n),

which again requires a different choice of η for so(n) as compared to su(n) and sp(n).

7This convention is common in the mathematics literature. It is motivated by the observation that in
this convention, I2(R) is always an integer.
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