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Abstract

In these notes, we provide an explicit calculation of the Feynman propagator of scalar
field theory in coordinate space in four spacetime dimensions. Two different methods
of the computation are provided. The methods employed demonstrate that the integral
representation of the Feynman propagator cannot be interpreted as an ordinary function
but rather as a generalized function (or more precisely a tempered distribution).

We begin with the integral representation of the free-field Feynman propagator of scalar
field theory in four spacetime dimensions,
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where p and = are four vectors, pr = p-x and € is a real positive infinitesimal quantity.
Consider the integral
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First, we consider the case of zy > 0. In the limit of € — 0, the integrand has poles at p, = p+,

where
L = j:\/ﬁ2+m2.

To evaluate Z, we shall close the contour in the lower half of the complex p,-plane since e~ Po%o
is exponentially small along the semicircle at infinity when x, > 0. Only the pole p, lies inside
the closed contour. Hence by the residue theorem of complex analysis,
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where the minus sign is due to the fact that the closed contour is clockwise.

Second, we consider the case of o < 0. In this case, we shall evaluate Z by closing the
contour in the upper half of the complex p,-plane so that e~"?o% is exponentially small along

7= for o > 0, (3)
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the semicircle at infinity when z, < 0. Only the pole p_ lies inside the closed contour. Hence
by the residue theorem of complex analysis,

i exp{ixov P>+ m2}
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In this case, the closed contour is counterclockwise and the minus sign arises due to the fact
that p_ — py is negative.
Without loss of generality, we may choose the z-axis to lie along the vector &, in which
case ¢P'® = ¢ es¥ wwhere p = |p] and r = |E|. Hence, it follows that

T=-— for zy < 0. (4)
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Collecting all of our results above, if follows that
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Note that the integral above is not convergent due to the oscillatory behavior of the integrand
as p — 0o. This is not surprising since Ap(z) is not an ordinary function. In fact, Ap(z) is a
tempered distribution, which is an example of a generalized function. Thus, one must regard
the integral representation given in eq. (6) in the same way as the integral representation of
a delta function given in eq. (A.1).

To perform the integral exhibited in eq. (6), we consult I. S. Gradshteyn and 1. M. Ryzhik,
Table of Integrals, Series, and Products [1], henceforth denoted as G&R. We note the following
formula 3.914 no. 9 on p. 495 of G&R which states that!
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Since z = i|xy| in eq. (6), one cannot immediately employ eq. (7) to evaluate the integral
of interest. However, one can define a generalized function that is represented by eq. (6) by
replacing |zg| — |zo| — i€, where € is a positive infinitesimal quantity [which is unrelated to
the € that appears in egs. (1) and (2)]. Hence we set z = i(|xo| — i€) in eq. (7), which satisfies
the condition that Rez > 0. Indeed, this ensures the necessary damping of the integrand as
p — oo in order to guarantee that eq. (7) is convergent. Thus, we shall assign the following
result to the otherwise divergent integral,
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We can identify * — 2} = —a#z, = —z%. Hence, it follows that
1/ yexp(—i|zo|\/p? +m?) m ,
sin(pr) dp = ——— K; (mV —22 + ie€) , 9
) N o)y = e o=t i), 9)

!The constraints on the parameters m and z were omitted by G&R, but they can be found in the corre-
sponding reference cited by G&R. See formula (36) on p. 75 of Ref. [2].
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where the € — 0% limit is henceforth implicitly assumed. Consequently, eq. (6) yields,
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Note that in the case of 22 > 0, one must be careful in interpreting both the square root and
the Bessel function K of an imaginary argument. Here, I shall employ eq. (5.7.6) of Ref. [3],

iAp(x) (10)

K,(z) = —%iﬁe_””ﬂHf)(ze_”ﬂ) : for —3m < argz < . (11)

One can apply eq. (11) to eq. (10) with z = m+/—22 + ie in the cases of 22 > 0 and 22 < 0,
respectively, since in either case the condition on arg z is satisfied.
We now compute,

V=12 fie = Va2eim ie = /(22 —ie)ei™ = ™3 /22 —je. (12)

In the case of 22 < 0, note that 22 — ie lies just below the branch cut that runs along the
1

negative real axis, which implies that argvz? —ie ~ —37. In contrast, —2? + e lies just
above the branch cut in the case of 2 > 0, which implies that arg v/ —x2 + ie ~ %w. Thus, in
both cases, it follows that the last step of eq. (12) is valid.

Hence, independently of the sign of 22,
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It then follows that an equivalent form of eq. (10) is given by,
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iAp(z) = (M HT MV —ie) (14)

-~ 87 Va2 — e

Admittedly, eq. (10) is more convenient in the case of z? < 0, whereas eq. (14) is more
convenient in the case of 2> > 0. Hence, one can replace eqs. (10) and (14) with the more
convenient expression,?
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iAp(x) = O(—2?) + o(z?)| , (15)

where we have employed the step function, ©(z) = 1 for z > 0 and ©(z) = 0 for z < 0, subject
to the condition that ©(2) + ©(—z) = 1.2 Indeed, the form of Ap(z) is consistent with our
previous assertion that Ag(z) is a generalized function.

An alternative derivation of eq. (15) is provided in Appendix A.

2A different technique for evaluating the integrals of this section is presented in Ref. [4]. In this work, the
authors also demonstrate that both eqgs. (10) and (14) are separately valid, independently of the sign of 2.

30ne need not specify the values of ©(0%) and ©(07). Indeed, when O(z) is regarded as a generalized
function, the specification of the value of ©(z) at the origin has no significance (e.g., see p. 63 of Ref. [5]).



It is instructive to examine the leading singularities of the Feynman propagator near the
light cone, This is most easily done by employing the expansions for H (z)) and for K(z)
which are either given or can be deduced from the results on pp. 927-928 of G&R,

L@y = L 1 3
LinH®(2) = Z+2[1n(2)+7 24—2}—1—(’)(2’), (16)

Kl(z)zéjt; [ln<2>+7—%} +O(P). (17)

Since H1(2)(z) and K(z) possess branch cuts along the negative real axis, egs. (16) and (17)
are valid for |argz| < .

To obtain the leading singularities of i{Ag(x), one can either insert the expansion given in
eq. (17) into eq. (10) or the expansion given in eq. (16) into eq. (14) to obtain,
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In light of eq. (12), we see that the two limiting cases above are analytic continuations of each
other. Indeed, it is a simple matter to check that if 22 > 0 then

tir +limIn V#? — ie = L [im + limIn(2? — ie)] = 1 [ir + In|2*| — inO(—2?)]

e—0 e—0
=In+/|2?| + Lir[1 — ©(—2?)] = In+/[2?] + 2in O(z (19)

where we have employed the identity, ©(2?) + ©(—2?) = 1. The same end result is obtained
if 22 < 0, since

lin%ln V—a? 4+ ie = %lin%ln(—:c2 +ie) = 1[In|2?| + inO(z%)] = In/|2?] + 2ir O(z*). (20)
[ d €E—r
Thus, we may combine both limits in eq. (18) into a single equation,
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Finally, we can make use of the Sokhotski-Plemelj formula (see, e.g., p. 27 of Ref. [6]),

=P-Find(z), (22)

where P is the Cauchy principal value prescription, which is employed when evaluating the
integral of the product of a generalized function, P(1/x), and a smooth test function according
to the following rule,

/ J(@) 5—i>0+{ C k) d+/ /(@) } (23)
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Hence, eqs. (21) and (22) yield,

' 1 1 2 2 1
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where the terms of O(m?x?) vanish on the light cone.
The limit of eq. (24) as m — 0 is noteworthy,
- sy Lpd
ggo iAp(z) = gy o(z?) prchil (25)

In obtaining eq. (25), we have used dimensional analysis to conclude that all terms in eq. (24)
that vanish on the light cone must be proportional to a positive power of m?.

To check the result of eq. (25), it is instructive to perform an exact calculation of iAg(x)
in the case of m = 0 by returning to eq. (6)

. - 1
iAF(T0; &) m=o = A2y

/ sin(pr)e~ P17l dp . (26)
0

To evaluate this integral, I will make use of the integral representation of the step function
(see, e.g., p. 151 of Ref. [6]),

Ok) = lim — / R (27)
= lim — x.

=0+ 2m1 f_ o x — i€
Multiplying eq. (27) by 7 and then taking the inverse Fourier transform yields an expression

for the generalized function (x — ie)™!,

L / O(k)e ** dk = i / e~k qf; . (28)
- 0
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Employing eq. (28) in evaluating eq. (26),

2y
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where we have identified 22 = 22 — r2. Thus we have recovered the m — 0 limit of eq. (24).

Equivalently, one can again employ the Sokhotski-Plemelj formula [cf. eq. (22)] to obtain

iAp(2)meo = —4%2 [P % + m&(:f)] =) - P — (30)

thereby confirming the result of eq. (25).



Appendix A: Alternative methods for evaluating Ap(x)

Our method for identifying the explicit form for the generalized function Ag(x) was to insert
a convergence factor in the integrand of eq. (6), exp [—e\/p2 + m2], and then take e — 07 at
the end of the calculation. Indeed, this method is often employed to interpret the integral
representation of the delta function,

é(z) = %/ e*r dk = el_igl+ %/ giko—ek? dk , (A.1)

—00 —00

. . 1.2
after inserting the convergence factor e=¢*".

An alternative method is to rewrite the integral given in eq. (6) as the derivative of a
conditionally convergent integral, which then can be computed explicitly. We can also employ
this alternative method to identify the integral representation of the delta function as follows.
Consider the generalized function,

J(@—g/ e dk_ﬁ/_ooe dk+%/0 e dk—;/o cos(kz)dk,  (A.2)

—00

after performing a variable change, & — —k, in the second integral above. Note that the
integral representation of J(z) is not convergent due to the oscillatory behavior of the inte-
grand as k — oo [as in the case of eq. (6)]. Nevertheless, one can employ the well known
conditionally convergent integral,

/000 sin;kx) dk = imsgn(z), (A.3)
where sgn(z) is the sign of the real number z.* Noting that
sgn(zr) =20(z) — 1, (A.4)
it follows that * sin(kz)
/0 W) gk = x[0(x) 3], (A5)
Using eq. (A.2), we can identify J(x) as the derivative of a conditionally convergent integral,

in agreement with the well-known integral representation of the delta function.

Let us employ this alternative strategy in evaluating eq. (6). To perform the integral
exhibited in eq. (6), we observe the following two formulae, 3.876 nos. 1 and 2 on p. 486 of
G&R,

* sin(|xo|/p? + m?

/ (o] v/ ) cos(pr) dp = inJo(my/23 — r2)O(xf — r?), (A7)
0 \/p? + m?

4Some books define sgn(0) = 0, in which case, eq. (A.3) would be valid at = = 0. However, when sgn(z) is

regarded as a generalized function, the specification of the value at the origin has no significance (cf. footnote 3).
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/02 2)
/ cos([zo| VP + m?) cos(pr) dp = ——7TYE) (m 13— 7"2)@(:1:3 —7r?)
0 \/p?+ m?
+Ko(my/r2 — 23)O(r* — a7), (A.8)

which satisfy the conditions specified by G&R since m, r and |zg| are all positive. Combining
the two integrals above yields,

/0 exp( % V]:n; cos(pr) dy = —%z’w[Jo(m {t% - 7’2) — z'Y[)(m ZE% - 7’2)}@@(2) - 7'2)

+Ko(my/r? — 23)O(r* — 7). (A.9)

It then follows that

1/°°pexp —i|zo|y/P? + m?) ) 18/°°exp —i|xo|/p? + m?)
- sin(pr)dp = —— —
" Jo VP +m? /P 4+ m?

cos(pr) dp

:%{m(m —x2)@<—x2>—%m<m¢?)@<x2>]—w% [%(mf CIE >]
= 2% [KO (mv=a2) ©(—2?) — Lir 0 (m@)@(:ﬂ)] , (A.10)

after introducing the Hankel function of the second kind, Héz)(z) = J.(z) — 1Y1(2) and iden-
tifying the square of the position four-vector, 2% = z2 — r2.

Thus, we focus on the quantity,
F(2*) = Ko(mV—2?) O(—2*) — —z7rH (m\/_) (z?). (A.11)

In order to compute dF/dx?, we must pay attention to the behavior of F(x?) in the vicinity
of 22 = 0. To facilitate this analysis, we shall employ the small argument expansions of the
Bessel functions, which can be deduced from results given on pp. 927-928 of G&R,

z
Ko(2) = —In (5) —y+O(2), (A.12)
LirHP (2) = -m+1n(2) o+ O, (A.13)
where v is Euler’s constant. It is therefore convenient to define,
~ z
Ko(2) = Ko(2) +In (5) , (A.14)
72— @ 20, (2
H(2) = B (=) + —In (2> , (A.15)

each of which has a finite limit as z — 0. Hence, we can rewrite eq. (A.11) as,
F(2%) = Ko(mv=12) ©(~a?) — Lin H® (mv/2?)6(2?)
—In(Imv=22)0(—2?) — In(tmVa2)0(a?). (A.16)
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Simplifying the second line of eq. (A.16) by employing the relation,

f@)0(a?) + f(—2*)O(=2") = f(l27]), (A.17)
it follows that
F(2?) = K, (mvV—2?) O(—2?) — %iwf[o(m (m\/ﬁ)@(xz) - ln(%m|x2|1/2) : (A.18)

We can now differentiate F'(z?) with respect to z2. Noting that,

A Rale) = —Fa() = —Ka(9) + - (419
CHP ) = AP () = —HP () + (A.20)

where we have defined K;(z) and f[1(2)(z) such that the leading singular pieces of K;(z) and
H 1(2)(z) as z — 0 are removed, it follows that,

[} 2 - j'_v[(z) 2 1
iF(gﬂ) _m Ki(mv—a?) irHy” (mv/a?) @] — = d 2|
dx? 2 V—x2 22 2 da?

—[l?o(m z?) + 3 z7rH (m\/_)} (z%), (A.21)

O(—2%) +

after employing 6(z%) = dO(2?)/dx? and noting that §(2?) = 5(—z2) The second line of
eq. (A.21) is evaluated by employing f(x?)d(2?) = f(0)d(x?), where f(2?) is a smooth function.
Hence,

—[Ko(mv=a2) + Lir H® (mva?)]6(a?) = - [Ko(0) + Lin H (0)]6(2?) = —Lind(2?)
(A.22)
in light of egs. (A.12) and (A.13).
Finally, we make use of the following result that is derived in Appendix B,

d 1

where the symbol P stands for the principal value prescription. Hence, after using eqs. (A.21)—
(A.23) the end result is,

d o Ki(myv/—22) 5 z7rH (m\/_) 1 1 9
(A.24)
Consequently, eq. (A.10) yields,
00 / 2
1/ y exp(Zilzo| vp* + m?) sin(py) dp ——Piz—mé(xz) (A.25)
" Jo V/D? 4 m? T
Ky (myv/—=2?2) o imHI (mVa?)




Hence, it follows from egs. (6) and (A.26) that

' m 1(my—2? i 1(2) mv 2
iAp(x) = —ﬁ §(z?) + ) P {% O(—2?) + " 2%\/7) @(932)} | (AL27)

after re-expressing K; and ﬁ1(2) in terms of K; and HI(Q), respectively, and making use of the
identity, ©(2?) + ©(—2?%) = 1. The principal value prescription affects only those terms in
eq. (A.27) inside the braces that behave as 1/z? as 2% — 0.

Inserting the expansions given by egs. (16) and (17) into eq. (A.27) and making use of
eq. (A.17), it follows that

Y

2 3 ~
iAp(z) = ——6(2%) — — P L + = [ln <m 2 |> +v— % + %@(ﬁ) + O(m?*z?)

(A.28)
in agreement with eq. (24). Note that the principal value prescription is not needed for the
logarithmic term in eq. (24), since the integral of In(3m+/|2?|) multiplied by a well behaved test
function, performed over an integration range that includes the point 22 = 0, is convergent.

In particular, egs. (22) and (A.28) imply that the leading singular behavior of iAg(z) is

1 1 1 —1
A =——2*) - —P—=+...=lim ———— + ... A.29
iAr (@) 47 (=) A2 22 * Do A2 (x? — ie) T ( )
where ... represents subleading terms as 2 — 0, and the e — 0 limit is taken only after

integrating the product of Ar(z) and a well-behaved test function. Consequently, eq. (A.27)
is equivalent to

i7TH1(2) (mv/a? — i)

A _
iAr () 2v/ 12 — e

O(—2%) + O(r?)

m , A.30
472 \/ —12 + g€ ( )

in agreement with eq. (15).

m [Kl (m\/ —x2 + ie)

Yet another alternative method for evaluating the integral given by eq. (6)

This method is based on pp. 68-73 of Ref. [7] (see also Section 2.3 of Ref. [8]). Denoting
E, = \/p* + m?, we can rewrite eq. (6) as,

s ) . 4 -1 00 ipr __ ,—ipr )
Ap(og: @) = / psm(pr)e—z\xomp dp = / ple e )6—z|:c0|Ep i
0 0

42y E, 8m2r E,
1 [P D i il J a/oodp' ~ifeo|E
— L etrrg=ilzolEp gy — - L gwpr p—=ilzo| Ep A31
8 /_OO Epe ‘ b= 8r2r or o Epe ‘ (A.31)
Introducing the rapidity ¢,
E, =mcosh(, p=msinh(, (A.32)
it follows that dp = E, d(. Hence,
1 [e.e]
iAp(zo; &) = ~ %2 % /_OO d¢ exp[—im(|zo| cosh ¢ — rsinh ()] . (A.33)

We consider two cases.



Case 1: 22 =22 — 2 > 0 (or equivalently, |zo| > r)

It is convenient to define a new variable 7 such that the condition 2 = x3 —r? is satisfied,

|zo| = Va2 coshy, r =22 sinhy). (A.34)
It then follows that |zo| cosh ¢ — rsinh ¢ = V22 cosh(¢ — n). Hence,
iAp(x) = _87r127“ % /_Z d¢ exp[—z'm\/ﬁ cosh(¢ — n)]
= — 12 ﬁ /00 d¢ exp[—z’m\/ﬁ cosh C]
8m2r or J_o
1 d

— d¢ [cos(m\/ﬁ cosh ¢) — isin(mVvz2 cosh Q)] (A.35)
T or2 da? 0
after making use of the symmetry of the integrand under ( — —( to express the final result
as an integral from 0 to co.
We now make use of G&R, formulae 3.714 nos. 2 and 3:

/ sin(z cosh)dz = 3w Jo(z) / cos(zcosha)dr = —3mYy(z), for Rez > 0.
0 0
(A.36)
Introducing H( (2) = Jo(z) — z'Yb(z), we end up with
- — d @ 2
iAp(x) = 47r dl’2H (mVa?), for z > 0. (A.37)

Case 2: 22 = 22 — 72 < 0 (or equivalently, |zo| < r)

It is again convenient to define a variable 1 such that the condition z? = x2 —r? is satisfied,
|xo| = V=22 sinhn, r =+ —x? coshn. (A.38)
It then follows that |xg|cosh ( — rsinh ( = —v/—22 sinh(¢ — 7). Hence,
iAp(x) = L 9 / d¢ exp[imV/—a? sinh(¢ — )]
&2 or ~
1
=55 887"/ d¢ exp [zm —x? sinh C]

L4/ d¢ cos(mv —z?sinh () (A.39)

2% a2 ), x? s : :

Note that in the second line of eq. (A.39), after expressing the exponential function in the
integrand as a linear combination of a sine and cosine function, the integrand of the term
proportional to the sine function, which is an odd function of (, integrates to zero. Thus, we
can again make use of the symmetry of the remaining term of integrand under ¢ — —( to
express the final result as an integral from 0 to oc.
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Employing G&R, formulae 3.714 no. 1:

/Oo cos(zsinh x)dr = Koy(z), for Rez >0, (A.40)
it then follows that :
iAp(x) = # %Ko(m —2), fora® <0, (A.41)
Combining the results of egs. (A.37) and (A.41),
iNp(z) = 212 dd2 [Ko(m —12) O(—2?) — LimHE (mV/2?) @(:ﬂ)] , (A.42)

which reproduces eq. (A.10). The computation of the derivative with respect to z* then follows
the same steps previously employed in deriving the final result given in eq. (A.27).

Appendix B: Proof of d1n |z|/dx = P(1/x)

This proof is taken from pp. 25-26 of Ref. [9] (see also p. 83 of Ref. [6]). Consider In|z| as a
generalized function. Noting that

d 1
—In|z| ==, forx #£0, (B.1)
dx x

one can extend this result to z = 0 by treating d1In|z|/dx as a generalized function. For any
well-behaved test function f(x) that vanishes sufficiently fast as © — +o0, it follows from an
integration by parts that

/ f(z —ln|:L'|d:17— /_ In|z|f(z)de = — lim In |z|f'(z) dx . (B.2)

6—0+ |z|>6

where f'(x) = df /dx, and the boundary terms vanish due to the behavior of f(x) at too.
Note that the limiting process above is smooth, since the integral above exists for all values
of § > 0. To complete the calculation, we integrate by parts once more to obtain,

/ f(x —ln\:c|dx = 515& [ | >6@dx— [f(6) = f(=0)] 1115] . (B.3)

i

However, [f(6) — f(—6)] Inéd = O(§1nd) which vanishes as § — 0. Thus, we end up with
/ f(z —ln|:17|dx—hm Md

6—0t |z|>6 T

(B.4)

We recognize the right hand side of eq. (B.4) as the Cauchy principal value prescription

[cf. eq. (23)]. Hence, we can identify the generalized function,
d 1
—1 =P - B.5
Lnje) =p 1 (B5)

which is meaningful at x = 0 via eq. (B.4).
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