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Abstract

An explicit form for the 4-dimensional matrix representation of the most general proper
orthochronous Lorentz transformation matrix Λµ

ν can be obtained by exponentiating a 4×4
matrix that is a general element of the Lie algebra of the Lorentz group. An alternative
method exploits the assertion that the spinor product η†σµχ transforms as a Lorentz four-
vector, where χ and η are two-component spinors. The latter result yields an expression
for Λµ

ν that only requires the exponentiation of 2 × 2 matrices. We provide an explicit
demonstration that both computations yield precisely the same expression for Λµ

ν .

1 Proper orthochronous Lorentz transformations

Under an active Lorentz transformation, the spacetime coordinates xµ = (ct ; ~x) transform as
x′µ = Λµ

νx
ν . As usual, there is an implied sum over any repeated upper/lower index pair. The

condition that gµνx
µxν is invariant under Lorentz transformations implies that1

Λµ
νgµρΛ

ρ
λ = gλν . (1)

The Lie group O(1, 3) is the set of all 4×4 matrices Λ that satisfy eq. (1). Note that det Λ = ±1.
Similarly, the Lie group SO(1, 3) is the group of proper Lorentz transformations, which satisfy
det Λ = +1. The elements of the subgroup of SO(1, 3) that additionally satisfy Λ0

0 ≥ 1 are
continuously connected to the identity element (the 4 × 4 identity matrix, denoted by I4) and
constitute the proper orthochronous Lorentz transformations.

The Lie algebra of the Lorentz group is obtained by considering infinitesimal Lorentz trans-
formations,

Λ = I4 + A , (2)

where A is a 4×4 matrix that depends on infinitesimal Lorentz group parameters, and terms that
are quadratic or of higher order in the infinitesimal group parameters are neglected. Inserting
eq. (2) into eq. (1), and denoting G to be the 4 × 4 matrix whose matrix elements are gµν , it
follows that

(

I4 + AT
)

G
(

I4 + A) = G . (3)

Keeping only terms up to linear order in the infinitesimal group parameters, we conclude that

ATG = −GA . (4)

1We employ the mostly minus convention, gµν = diag(1;−1,−1,−1), where µ, ν ∈ {0, 1, 2, 3}.
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Since G is diagonal, eq. (4) implies that GA is a real antisymmetric 4 × 4 matrix. That is, we
have shown that the Lie algebra of the Lorentz group consists of all real 4× 4 matrices with the
property that GA is antisymmetric.

To construct a general proper orthochronous Lorentz transformation, one can choose any real
4× 4 matrix A such that GA is antisymmetric, and consider a large positive integer n such that
A/n is an infinitesimal quantity. Then, a general proper orthochronous Lorentz transformation
can be obtained by applying a sequence of n infinitesimal Lorentz transformations in the limit
as n → ∞,

Λ = lim
n→∞

(

1 +
A

n

)n

= expA . (5)

Thus, we have demonstrated that the set of proper orthochronous Lorentz transformations con-
sists of matrices of the form expA, where GA is a real antisymmetric 4× 4 matrix.

Hence, the most general proper orthochronous Lorentz transformation matrix Λ, characterized
by a rotation angle θ about an axis n̂ [~θ ≡ θn̂] and a boost vector ~ζ ≡ v̂ tanh−1 β [where
v̂ ≡ ~v/|~v| is the unit velocity vector and β ≡ |~v|/c],2 is a 4× 4 matrix given by3

Λ = exp
(

−1

2
iθρλs

ρλ
)

= exp
(

−i~θ ·~s− i~ζ ·~k
)

, (6)

where θρλ = −θλρ and sρλ = −sλρ. In particular, θi ≡ 1

2
ǫijkθjk, ζ i ≡ θi0 = −θ0i, si ≡ 1

2
ǫijksjk,

ki ≡ s0i = −si0, and
(sρλ)µν = i

(

gρµδλν − gλµδρν
)

. (7)

Here, the indices i, j, k ∈ {1, 2, 3} and the Levi-Civita symbol ǫ123 = +1. More explicitly,

Λ = expA , where A ≡ −1

2
iθρλs

ρλ =









0 ζ1 ζ2 ζ3

ζ1 0 −θ3 θ2

ζ2 θ3 0 −θ1

ζ3 −θ2 θ1 0









. (8)

As anticipated above, GA is the most general real antisymmetric 4× 4 matrix.
Note that the sρλ = −sλρ are six independent real antisymmetric 4× 4 matrices that satisfy

the commutation relations of the real Lie algebra of SO(1,3), henceforth denoted by so(1, 3),

[sαβ , sρλ] = i(gβρ sαλ − gαρ sβλ − gβλ sαρ + gαλ sβρ). (9)

In particular, A is a real linear combination of the Lie algebra generators isρλ and thus constitutes
a general element of the real Lie algebra so(1, 3).

The spin-1/2 representation of the Lorentz group is a two dimensional matrix representation
of SL(2,C) represented by the complex 2× 2 matrices of unit determinant,4

M = exp
(

−1

2
i~θ ·~σ − 1

2

~ζ ·~σ
)

. (10)

2It is convenient to employ units where we set the speed of light c = 1.
3We follow the conventions of Ref. [1]. Note that in the notation of Ref. [2], ~k = i ~K and ~s = i~S, where the

4× 4 matrix representations of ~K and ~S are given in eq. (11.91) of Jackson, which yields Λ = exp(~θ·~S + ~ζ · ~K).
The argument of exp differs by an overall sign with Jackson’s eq. (11.93) where a passive Lorentz transformation

is employed, which amounts to replacing {~θ, ~ζ} with {−~θ,−~ζ}.
4The matrices M defined in eq. (10) constitutes the

(

1

2
, 0
)

representation of SL(2,C). There is a second
inequivalent two dimensional representation of SL(2,C) represented by the matrices (M−1)†, which constitutes
the

(

0, 1
2

)

representation of SL(2,C). For further details, see Ref. [1].
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It is convenient to introduce the Pauli matrices, σ1, σ2, σ3, using the notation of Ref. [1],

σµ = (I2 ; ~σ) , σµ = (I2 ; −~σ) , (11)

where µ ∈ {0, 1, 2, 3} and I2 is the 2 × 2 identity matrix. Note that these sigma matrices have
been defined with an upper (contravariant) index. They are related to sigma matrices with a
lower (covariant) index in the usual way:

σµ = gµνσ
ν = (I2 ; −~σ) , σµ = gµνσ

ν = (I2 ; ~σ) . (12)

However, the use of the spacetime indices µ and ν is slightly deceptive since the sigma matrices
defined above are fixed matrices that do not change under Lorentz transformations. If we also
introduce six independent 2× 2 matrices σµν = −σνµ, where

σµν ≡ 1

4
i
(

σµσν − σνσµ
)

, (13)

then eq. (10) can be rewritten in the following form that is reminiscent of eq. (6),

M = exp
(

−1

2
iθµνσ

µν
)

. (14)

That is, the six independent iσµν matrices are generators of the Lie algebra of SL(2,C), henceforth
denoted by sl(2,C). It is straightforward to check that the 2 × 2 matrices σµν possess the same
commutation relations as the 4× 4 matrices sµν [cf. eq. (9)], which establishes the isomorphism
so(1, 3) ≃ sl(2,C).

Under an active Lorentz transformation, a two-component spinor χα (where α ∈ {1, 2})
transforms as,

χ′
α = Mα

βχβ, α, β ∈ {1, 2}. (15)

Suppose that χ and η are two-component spinors and consider the spinor product η†σµχ. Under
a Lorentz transformation,

η†σµχ −→ (Mη)†σµ(Mχ) = η†(M †σµM)χ . (16)

We assert that the quantity η†σµχ transforms as a Lorentz four vector,5

η†σµχ −→ Λµ
ν η

†σνχ , (17)

which implies that the following identity must be satisfied:

M †σµM = Λµ
νσ

ν . (18)

If we multiply eq. (18) on the right by σρ and use Tr(σνσρ) = 2δνρ , it follows that

Λµ
ν = 1

2
Tr
(

M †σµMσν

)

. (19)

The goal of these notes is to show that the two expressions for Λ given by eqs. (8) and (19)
coincide.

A more formal writeup of these notes can be found in Ref. [3].

5A similar technique can be employed to show that ΨγµΨ transforms as a four vector under a Lorentz trans-
formation, where Ψ is a four-component spinor. For details, see Appendix A.
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2 An explicit evaluation of Λµ
ν = 1

2
Tr
(

M †σµMσν

)

It is convenient to introduce
~z ≡ ~ζ + i~θ . (20)

Then, using a well-known result (e.g., see pp. 383–384 of Ref. [4]),

M = exp
(

−1

2
~z ·~σ

)

= I2 cosh
(

1

2
∆
)

− ~z ·~σ
sinh

(

1

2
∆
)

∆
, (21)

where
∆ ≡

(

~z ·~z
)1/2

=
(

|~ζ|2 − |~θ|2 + 2i~θ·~ζ
)1/2

. (22)

Since the Pauli matrices are hermitian,

M † = exp
(

−1

2
~z ∗ ·~σ

)

= I2 cosh
(

1

2
∆∗
)

− ~z ∗·~σ
sinh

(

1

2
∆∗
)

∆∗
. (23)

We shall evaluate Λµ
ν in four separate cases depending whether the spacetime index is 0 or

i ∈ {1, 2, 3}. In particular, eq. (19) yields

Λ0
0 =

1

2
Tr(M †M) , Λi

0 = −1

2
Tr(M †σiM) , (24)

Λ0
i = −1

2
Tr(MσiM †) , Λi

j =
1

2
Tr(M †σiMσj) . (25)

Note that in obtaining eq. (25), we used σi = −σi. It is simply more convenient to express
quantities whose indices run over the indices i = 1, 2, 3 in terms of tensors that contain only
upper (contravariant) indices, even though we are evaluating Λ0

i and Λi
j which possess one

lower (covariant) index.
Plugging eqs. (21) and (23) into eq. (19) and evaluating the traces,

Tr(σiσj) = 2δij , (26)

Tr(σiσjσk) = 2iǫijk , (27)

Tr(σiσjσkσℓ) = 2(δijδkℓ − δikδjℓ + δiℓδjk) , (28)

we end up with the following expressions:

Λ0
0 = | cosh

(

1

2
∆
)

|2 +

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

(

|~ζ|2 + |~θ|2
)

, (29)

Λi
0 =

(

cosh
(

1

2
∆∗
)

sinh
(

1

2
∆
)

∆
zi + c.c.

)

+ i

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

ǫikℓz∗kzℓ , (30)

Λ0
j =

(

cosh
(

1

2
∆∗
)

sinh
(

1

2
∆
)

∆
zj + c.c.

)

+ i

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

ǫjkℓzkz∗ℓ , (31)

Λi
j =

{

| cosh
(

1

2
∆
)

|2 −

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

(

|~ζ|2 + |~θ|2
)

}

δij + (z∗izj + ziz∗j)

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

+

(

i sinh
(

1

2
∆
)

cosh
(

1

2
∆∗
)

∆
ǫijkzk + c.c.

)

, (32)

where c.c. means the complex conjugate of the previous term.
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We can check the results of eqs. (29)–(32) in two special cases. First, consider the case of

a pure boost, where ~θ = 0. Then ~z = ~z ∗ = ~ζ and ∆ = |~ζ| ≡ ζ . Plugging these values into
eqs. (29)–(32) yields the following block matrix form,

Λµ
ν =











cosh ζ
ζj

ζ
sinh ζ

ζ i

ζ
sinh ζ δij +

ζ iζj

ζ2
(

cosh ζ − 1)











, (33)

where the block matrix row and column indices run over µ = 0, i = 1, 2, 3 and ν = 0, j = 1, 2, 3,
respectively.

Recalling that ~ζ ≡ v̂ tanh−1 β [where v̂ ≡ ~v/|~v| = ~ζ/ζ is the unit velocity vector and
β ≡ |~v|/c], it follows that

Λ =





γ γ~β

γ~β δij + (γ − 1)v̂iv̂j



 , (34)

where γ ≡ (1−β2)−1/2 = cosh ζ , γβ = sinh ζ , and ~β = βv̂. Eq. (34) is the well-known expression
for an active Lorentz transformation that is a pure boost.6

Second, consider the case of a pure rotation by an angle of θ ≡ |~θ| around an axis that points
in the direction of n̂ where

n̂ ≡
~θ

θ
. (35)

In this case, ~ζ = 0, and it follows that ~z = −~z ∗ = i~θ and ∆ = iθ. Plugging these values into
eqs. (29)–(32) yields,

Λ =

(

1 ~0

~0 Rij

)

, (36)

where
Rij = δij cos θ + n̂in̂j(1− cos θ)− ǫijkn̂k sin θ . (37)

Eq. (37) is the well-known Rodrigues’ rotation formula (e.g., see p. 275 of Ref. [5]).

3 An explicit evaluation of expA, where A ∈ so(1, 3)

In this section, we shall explicitly evaluate expA, where A is given by eq. (8). First, we compute
the characteristic polynomial of A,

p(x) ≡ det(A− xI4) = x4 +
(

|~θ|2 − |~ζ|2
)

x2 − (~θ ·~ζ)2 ≡ (x2 + a2)(x2 − b2) , (38)

where
a2b2 = (~θ ·~ζ)2 , a2 − b2 = |~θ|2 − |~ζ|2 . (39)

6As noted in footnote 3, Jackson employs a passive Lorentz transformation in which the coordinate axes
(reference frame) transform(s) while the four-vectors remains fixed, which corresponds to replacing ~β with −~β in
eq. (34). After making this change, one immediately recovers eq. (11.19) of Ref. [2].
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Solving eq. (39) for a2 and b2 yields,

a2 =
1

2

[

|~θ|2 − |~ζ|2 +

√

(

|~θ|2 − |~ζ|2
)2

+ 4(~θ·~ζ)2
]

, (40)

b2 =
1

2

[

|~ζ|2 − |~θ|2 +

√

(

|~θ|2 − |~ζ|2
)2

+ 4(~θ·~ζ)2
]

. (41)

The eigenvalues of A, denoted by λi (i = 1, 2, 3, 4), are the solutions of p(x) = 0, which are:

λi = ia,−ia, b,−b . (42)

To evaluate expA, we shall use of the following formula of matrix algebra based on the
Lagrange interpolating polynomial. If an n× n matrix A has only distinct eigenvalues λi, then
any function of A is given by (e.g., see eq. (1.9) of Ref. [6], eq. (5.4.17) of Ref. [7], eqs. (7.3.6)
and (7.3.11) of Ref. [8], or Chapter V, Section 2.1 of Ref. [9]):

f(A) =
n
∑

i=1

f(λi)Ki , where Ki =
n
∏

j=1

j 6=i

A− λjIn

λi − λj

, (43)

and In is the n× n identify matrix. Applying eq. (43) to f(A) = expA, it follows that

expA = eia
(

A + aiI4

2ia

)(

A− bI4

ia− b

)(

A+ bI4

ia+ b

)

+ e−ia

(

A− aiI4

−2ia

)(

A− bI4

−ia− b

)(

A+ bI4

−ia+ b

)

+ eb
(

A− aiI4

b− ia

)(

A+ iaI4

b+ ia

)(

A+ bI4

2b

)

+ e−b

(

A− aiI4

−b− ia

)(

A+ iaI4

−b+ ia

)(

A− bI4

−2b

)

.

(44)

Simplifying the above expression yields,

expA =
1

a2 + b2

{

−(A2 − b2I4)

(

A
sin a

a
+ I4 cos a

)

+ (A2 + a2I4)

(

A
sinh b

b
+ I4 cosh b

)}

.

(45)
Combining terms, we end up with

exp









0 ζ1 ζ2 ζ3

ζ1 0 −θ3 θ2

ζ2 θ3 0 −θ1

ζ3 −θ2 θ1 0









=
1

a2 + b2

{

f0(a, b)I4 + f1(a, b)A + f2(a, b)A
2 + f3(a, b)A

3

}

, (46)

where a and b are defined in eq. (39) and

f0(a, b) = b2 cos a+ a2 cosh b , f1(a, b) =
b2

a
sin a +

a2

b
sinh b , (47)

f2(a, b) = cosh b− cos a , f3(a, b) =
sinh b

b
−

sin a

a
. (48)
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The explicit formula for expA has also been given in Refs. [10–12]. Eqs. (46)–(48) coincide
precisely with the form obtained by Refs. [11, 12] using other methods.7

The matrix A and its powers can be conveniently written in block matrix form,

A =

(

0 ζj

ζ i −ǫijkθk

)

, A2 =

(

|~ζ|2 ǫjkℓζkθℓ

−ǫikℓζkθℓ ζ iζj + θiθj − δij |~θ|2

)

, (49)

A3 =





0
(

|~ζ|2 − |~θ|2
)

ζj + (~θ·~ζ)θj

(

|~ζ|2 − |~θ|2
)

ζ i + (~θ·~ζ)θi (ǫjkℓζ i − ǫikℓζj)ζkθℓ + ǫijkθk|~θ|2



 .

One can simplify the ij element of A3 by noting that the ij element of any 3× 3 antisymmetric
matrix must be of the form ǫijkCk. Thus,

(ǫjkℓζ i − ǫikℓζj)ζkθℓ = ǫijkCk . (50)

Multiplying the above equation by ǫijm and summing over i and j yields

(δiℓδkm − δikδℓm)ζ iζkθℓ − (δjkδℓm − δjℓδkm)ζjζkθℓ = 2δkmCk . (51)

It follows that,
Cm = (~θ·~ζ)ζm − |~ζ|2θm . (52)

That is, we have derived the identity,

(ǫjkℓζ i − ǫikℓζj)ζkθℓ = ǫijk
[

(~θ·~ζ)ζk − |~ζ|2θk
]

. (53)

One can therefore rewrite the matrix A3 in the following form,

A3 =





0
(

|~ζ|2 − |~θ|2
)

ζj + (~θ·~ζ)θj

(

|~ζ|2 − |~θ|2
)

ζ i + (~θ·~ζ)θi ǫijk
[

(~θ·~ζ)ζk −
(

|~ζ|2 − |~θ|2
)

θk
]



 . (54)

It is instructive to check the two limiting cases treated previously. First, if ~θ = ~0 then a = 0
and b = |~ζ| ≡ ζ . It then follows that

A =

(

0 ζj

ζ i 0ij

)

, A2 =

(

|~ζ|2 ~0

~0 ζ iζj

)

, A3 = |~ζ|2A , (55)

where 0ij is a 3× 3 matrix of zeros, and

Λ = I4 + A+

(

cosh ζ − 1

|~ζ|2

)

A2 +
1

|~ζ|2

(

sinh ζ

ζ
− 1

)

A3 . (56)

Using eq. (55), the above equation reduces to our previous result given in eq. (33).
7Since a matrix always satisfies its characteristic equation, we know that p(A) = 0. Employing eq. (38), one

obtains A4 = a2b2I4 − (a2 − b2)A2. Using expA =
∑∞

n=0
An/n!, it follows that expA can be expressed as a

linear combination of I4, A, A
2 and A3. Resumming the corresponding coefficients yields eqs. (47) and (48). For

further details of this approach, see Appendix 4.7 of Ref. [13].
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Second, if ~ζ = ~0, then a = |~θ| ≡ θ and b = 0. It then follows that

A =

(

0 ~0

~0 −ǫijkθk

)

, A2 =

(

0 ~0

~0 θiθj − δij |~θ|2

)

, A3 = −|~θ|2A . (57)

and

Λ = I4 + A+

(

1− cos θ

|~θ|2

)

A2 +
1

|~θ|2

(

1−
sin θ

θ

)

A3 . (58)

Using eq. (57) and defining n̂ ≡ ~θ/θ, the above equation reduces to Rodrigues’ rotation formula
given in eqs. (36) and (37).

In the general case, we shall now demonstrate that eq. (46) is equivalent to the previous
results obtained in eqs. (29)–(32). First, it is convenient to rewrite eqs. (40) and (41) as follows:

a2 = 1

2

(

|~θ|2 − |~ζ|2 + |∆|2
)

, b2 = 1

2

(

|~ζ|2 − |~θ|2 + |∆|2
)

, (59)

where ∆ is defined in eq. (22). In particular, a2+ b2 = |∆|2. Thus, eqs. (46), (49) and (54) yield:

Λ0
0 =

1

|∆|2

[

(

b2 − |~ζ|2) cos a+
(

a2 + |~ζ|2
)

cosh b
]

= 1

2
(cosh b+ cos a) +

|~ζ|2 + |~θ|2

2|∆|2
(

cosh b− cos a) , (60)

after making use of eq. (59). Note that

cosh b+ cos a = cosh b+ cosh(ia) = 2 cosh

(

b+ ia

2

)

cosh

(

b− ia

2

)

= 2

∣

∣

∣

∣

cosh

(

b+ ia

2

)∣

∣

∣

∣

2

, (61)

cosh b− cos a = cosh b− cosh(ia) = 2 sinh

(

b+ ia

2

)

sinh

(

b− ia

2

)

= 2

∣

∣

∣

∣

sinh

(

b+ ia

2

)∣

∣

∣

∣

2

. (62)

Hence, eq. (60) yields

Λ0
0 =

∣

∣

∣

∣

cosh

(

b+ ia

2

)∣

∣

∣

∣

2

+
|~ζ|2 + |~θ|2

|∆|2

∣

∣

∣

∣

sinh

(

b+ ia

2

)∣

∣

∣

∣

2

. (63)

Using eq. (39), it follows that

(b+ ia)2 = b2 − a2 + 2iab = |~ζ|2 − |~θ|2 + 2i~θ ·~ζ = ∆2 , (64)

where we have made use of eq. (22) in the final step. Thus, we may put

∆ = b+ ia (65)

in eq. (63) [since any overall sign will cancel out], which yields

Λ0
0 = | cosh

(

1

2
∆
)

|2 +

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

(

|~ζ|2 + |~θ|2
)

, (66)

in agreement with eq. (29).
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Next, eqs. (46), (49) and (54) yield:

Λi
0 =

1

|∆|2

{

(

b2

a
sin a +

a2

b
sinh b

)

ζ i − (cosh b− cos a)ǫikℓζkθℓ

+

(

sinh b

b
−

sin a

a

)[

(

|~ζ|2 − |~θ|2
)

ζ i + (~θ·~ζ)θi
]

}

. (67)

In light of eq. (39), it follows that |~ζ|2− |~θ|2 = b2 − a2 and ~θ·~ζ = ab. Inserting these results into
the above equation, we end up with

Λi
0 =

1

|∆|2

[

(b sinh b+ a sin a)ζ i + (a sinh b− b sin a)θi − (cosh b− cos a)ǫikℓζkθℓ
]

. (68)

We can rewrite this result with the help of some identities. First,

b sinh b+ a sin a = Re
{

(b− ia)(sinh b+ i sin a)
}

= Re
{

(b− ia)[sinh b+ i sinh(ia)]
}

= Re
{

(b− ia)
(

sinh
[

1

2
(b+ ia) + 1

2
(b− ia)

]

+ sinh
[

1

2
(b+ ia)− 1

2
(b− ia)

])}

= 2Re
{

(b− ia) sinh
[

1

2
(b+ ia)

]

cosh
[

1

2
(b− ia)

]}

= (b− ia) sinh
[

1

2
(b+ ia)

]

cosh
[

1

2
(b− ia)

]

+ c.c.

= ∆∗ sinh
(

1

2
∆
)

cosh
(

1

2
∆∗
)

+ c.c. , (69)

after using eq. (65). A similar computation yields

a sinh b− b sin a = − Im{(b− ia)(sinh b+ i sin a)
}

= −2 Im
{

(b− ia) sinh
[

1

2
(b+ ia)

]

cosh
[

1

2
(b− ia)

]}

= i∆∗ sinh
(

1

2
∆
)

cosh
(

1

2
∆∗
)

+ c.c. (70)

Moreover, we can employ eqs. (62) and (65) to obtain

(cosh b− cos a)ǫikℓζkθℓ = 2

∣

∣

∣

∣

sinh

(

b+ ia

2

)∣

∣

∣

∣

2

ǫikℓζkθℓ = −i
∣

∣sinh
(

1

2
∆
)∣

∣ ǫikℓz∗kzℓ , (71)

after making use of eq. (20). Collecting the results obtained above, we end up with

Λi
0 =

(

sinh
(

1

2
∆
)

cosh
(

1

2
∆∗
)

∆
(ζ i + iθi) + c.c.

)

+ i

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

ǫikℓz∗kzℓ , (72)

in agreement with the result of eq. (30). The computation of Λ0
j is nearly identical. The only

change is due to the change in the sign multiplying the term proportional to the Levi-Civita
tensor. Consequently, it is convenient to replace eq. (71) with

(cosh b− cos a)ǫjkℓζkθℓ = 2

∣

∣

∣

∣

sinh

(

b+ ia

2

)∣

∣

∣

∣

2

ǫjkℓζkθℓ = i
∣

∣sinh
(

1

2
∆
)∣

∣ ǫjkℓzkz∗ℓ . (73)
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Hence, we end up with

Λ0
j =

1

|∆|2

[

(b sinh b+ a sin a)ζj + (a sinh b− b sin a)θj + (cosh b− cos a)ǫjkℓζkθℓ
]

=

(

sinh
(

1

2
∆
)

cosh
(

1

2
∆∗
)

∆
(ζj + iθj) + c.c.

)

+ i

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

ǫjkℓzkz∗ℓ , (74)

in agreement with the result of eq. (31).
Finally, we use eqs. (46), (49) and (54) to obtain:

Λi
j =

1

|∆|2

{

(b2 cos a + a2 cosh b)δij −

(

b2

a
sin a +

a2

b
sinh b

)

ǫijkθk

+(cosh b− cos a)(ζ iζj + θiθj − δij|~θ|2)

+

(

sinh b

b
−

sin a

a

)[

ǫijk
[

(~θ·~ζ)ζk +
(

|~θ|2 − |~ζ|2
)

θk
]

]

}

. (75)

First, we examine the terms in eq. (75) that are proportional to δij . The following identity is
noteworthy:

b2 cos a+a2 cosh b−(cosh b−cos a)|~θ|2 = 1

2
(a2+b2)(cos a+cosh b)− 1

2
(cosh b−cos a)

(

b2−a2+2|~θ|2
)

.
(76)

Using eq. (39), b2−a2+2|~θ|2 = |~ζ|2+ |~θ|2. Applying eqs. (61), (62) and (65) yields the coefficient
of δij ,

1

|∆|2

[

b2 cos a + a2 cosh b− (cosh b− cos a)|~θ|2
]

= | cosh
(

1

2
∆
)

|2−

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

(

|~ζ|2+|~θ|2
)

. (77)

Next, we note that in light of eq. (20), z∗izj + ziz∗j = 2(ζ iζj + θiθj). Thus,

1

|∆|2
(cosh b− cos a)(ζ iζj + θiθj) =

(

z∗izj + ziz∗j
)

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

. (78)

We now examine the terms in eq. (75) that are proportional to ǫijkθk. In light of eq. (39),

1

|∆|2

{

(

sinh b

b
−

sin a

a

)

(

|~θ|2 − |~ζ|2
)

−

(

b2

a
sin a +

a2

b
sinh b

)

}

=
1

|∆|2

{

(a2 − b2)

(

sinh b

b
−

sin a

a

)

−

(

b2

a
sin a+

a2

b
sinh b

)

}

= −
1

|∆|2
[

b sinh b+ a sin a
]

= −

{

sinh
(

1

2
∆
)

∆
cosh

(

1

2
∆∗
)

+ c.c.

}

, (79)
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after employing eq. (69). Finally, we examine the terms in eq. (75) that are proportional to
ǫijkζk. In light of eq. (39),

1

|∆|2

(

sinh b

b
−

sin a

a

)

~θ·~ζ =
ab

|∆|2

(

sinh b

b
−

sin a

a

)

=
1

|∆|2
[

a sinh b− b sin a
]

= i
sinh

(

1

2
∆
)

∆
cosh

(

1

2
∆∗
)

+ c.c. (80)

Note that the terms proportional to ǫijk combine nicely and yield,

i sinh
(

1

2
∆
)

cosh
(

1

2
∆∗
)

∆
ǫijkzk + c.c. , (81)

after using eq. (20).
Collecting the results of eqs. (77), (78) and (81), we end up with

Λi
j =

{

| cosh
(

1

2
∆
)

|2 −

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

(

|~ζ|2 + |~θ|2
)

}

δij + (z∗izj + ziz∗j)

∣

∣

∣

∣

∣

sinh
(

1

2
∆
)

∆

∣

∣

∣

∣

∣

2

+

(

i sinh
(

1

2
∆
)

cosh
(

1

2
∆∗
)

∆
ǫijkzk + c.c.

)

, (82)

in agreement with eq. (32).
We have therefore verified by an explicit computation that

Λµ
ν = exp









0 ζ1 ζ2 ζ3

ζ1 0 −θ3 θ2

ζ2 θ3 0 −θ1

ζ3 −θ2 θ1 0









= 1

2
Tr
(

M †σµMσν

)

, (83)

where M = exp
{

−1

2
(~ζ + i~θ)·~σ

}

.

4 A proof using infinitesimal Lorentz transformations

Most textbooks proofs of eq. (83) demonstrate that both sides of eq. (83) agree to first order in
~ζ and ~θ. It is convenient to introduce the six independent 2× 2 matrices σµν = −σνµ, where

σµν = 1

4
i(σµσν − σνσµ) , (84)

which differ from the σµν matrices introduced in eq. (13).8

It then follows that

M † = exp
(

1

2
iθρλσ

ρλ
)

= exp
(

1

2
i~θ ·~σ − 1

2

~ζ ·~σ
)

. (85)

8The six independent iσµν matrices are generators in the (1
2
, 0) representation of sl(2,C) as noted below

eq. (14), whereas the six independent iσµν matrices are generators in the (0, 1

2
) representation of sl(2,C) [cf. foot-

note 4].
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Working to first order in the parameters θµν and making use of eqs. (7), (14) and (85)

Λµ
ν ≃ δµν + 1

2

(

θλνg
λµ − θνρg

ρµ
)

, (86)

M ≃ I2 −
1

2
iθρλσ

ρλ , (87)

M † ≃ I2 +
1

2
iθρλσ

ρλ . (88)

It follows that

M †σµM ≃
(

I2 +
1

2
iθρλσ

ρλ
)

σµ
(

I2 −
1

2
iθρλσ

ρλ
)

≃ σµ + 1

2
iθρλ

(

σρλσµ − σµσρλ
)

. (89)

One can easily derive the following identity [1],

σρλσµ − σµσρλ = i
(

gλµσρ − gρµσλ
)

. (90)

Hence eq. (89) yields,

M †σµM ≃ σµ − 1

2
θρλ
(

gλµσρ − gρµσλ
)

≃
[

δµν − 1

2
θρλ
(

gλµδρν − gρµδλν
)]

σν

≃
[

δµν − 1

2

(

θνλg
λµ − θρνg

ρµ
)]

σν ≃
[

δµν + 1

2

(

θλνg
λµ − θνρg

ρµ
)]

σν , (91)

after using the antisymmetry of θνλ in the final step. After employing eq. (86) on the right hand
side of eq. (91), we arrive at9

M †σµM = Λµ
νσ

ν , (92)

thereby confirming the result of eq. (18) to first order in θρλ.
Of course, the derivation of eq. (92) is much simpler than the explicit proof of eq. (83), which

requires the exact evaluation of all the relevant matrix exponentials. However, we can now assert
that having derived eq. (92) to first order in θρλ, this result must be true for arbitrary θρλ. The
reason that a derivation based on the infinitesimal forms of Λ, M and M † is sufficient is due to
the strong constraints imposed by the group multiplication law of the Lorentz group near the
identity element, which implies via eq. (5) that a proper orthochronous Lorentz transformation
can be expressed as an exponential of an element of the corresponding Lie algebra.

Having derived eqs. (29)–(32), it is quite simple to demonstrate that eq. (83) is true without
an explicit computation of the exponential of the 4×4 matrix A, in light of the comments above.
First, we expand Λ to linear order in the boost and rotation parameters,

Λµ
ν = exp









0 ζ1 ζ2 ζ3

ζ1 0 −θ3 θ2

ζ2 θ3 1 −θ1

ζ3 −θ2 θ1 0









≃









1 ζ1 ζ2 ζ3

ζ1 1 −θ3 θ2

ζ2 θ3 0 −θ1

ζ3 −θ2 θ1 1









. (93)

This is to be compared with the evaluation of eqs. (29)–(32) to linear order in ~ζ and ~θ, where
∆ ≃ 0 in light of eq. (22). The end result is

Λ0
0 ≃ 1 , (94)

Λi
0 ≃ ζ i , (95)

Λ0
j ≃ ζj , (96)

Λi
j ≃ δij − ǫijkθk , (97)

which coincides with the right hand side of eq. (93).

9Eq. (92) is a statement of the well-known isomorphism SO(1,3) ∼= SL(2,C)/Z2, since the SL(2,C) matrices M
and −M correspond to the same Lorentz transformation Λ.
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Appendix A A four-component spinor product that trans-

forms as a four vector

One can construct four-component spinors [1],

Ψ ≡

(

χ

η†

)

, (A.1)

in terms of a pair of two-component spinors χ and η. Gamma matrices can be expressed in the
chiral representation in terms of σµ and σµ,

γµ =

(

0 σµ

σµ 0

)

. (A.2)

It is convenient to introduce

1

2
Σµν ≡

i

4
[γµ, γν ] =

(

σµν 0
0 σµν

)

, (A.3)

where [γµ, γν] ≡ γµγν − γνγµ. The Dirac adjoint spinor is defined by

Ψ(x) ≡ Ψ†(x)γ0 =
(

η χ†
)

. (A.4)

The matrix γ0 satisfies

γ0γµ(γ0)−1 = (γµ)† , (A.5)

γ0Σµν(γ0)−1 = (Σµν)† . (A.6)

Four-component spinors transform under an active Lorentz transformation in the (1
2
, 0)⊕(0, 1

2
)

representation of the Lorentz group,
Ψ′ =MΨ , (A.7)

where

M =

(

M 0
0 (M−1)†

)

= exp
(

−1

4
iθµνΣ

µν
)

, (A.8)

and

M = exp
(

−1

2
iθρλσ

ρλ
)

= exp
(

−1

2
i~θ ·~σ − 1

2

~ζ ·~σ
)

, (A.9)

(M−1)† = exp
(

−1

2
iθρλσ

ρλ
)

= exp
(

−1

2
i~θ ·~σ + 1

2

~ζ ·~σ
)

. (A.10)

To compute matrix inverses, simply change the overall sign of the parameters θµν . For example,

M
−1 = exp

(

1

4
iθµνΣ

µν
)

. (A.11)
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Note that in light of eq. (A.6),

γ0
M(γ0)−1 = (M−1)† . (A.12)

Using eqs. (A.4) and (A.7), it then follows that

Ψ ′ = Ψ′†γ0 = Ψ†
M

†γ0 = Ψ(γ0)−1
M

†γ0 . (A.13)

Finally, taking the hermitian conjugate of eq. (A.12) and using eq. (A.5) [which implies that
(γ0)† = γ0], we end up with

Ψ ′ = ΨM−1 , (A.14)

under an active Lorentz transformation.
It immediately follows from eqs. (A.7) and (A.14) that Ψ ′Ψ′ = ΨΨ, which we recognize as a

Lorentz scalar. Next, consider the following two identities,

M †σµM = Λµ
ν σ

ν , (A.15)

M−1σµ(M−1)† = Λµ
ν σ

ν . (A.16)

Eq. (A.15) has already been established in these notes. Eq. (A.16) implies that

Λµ
ν = 1

2
Tr
[

M−1σµ(M−1)†σν

]

, (A.17)

which yields

Λ0
0 =

1

2
Tr
[

M−1(M−1)†
]

, Λi
0 =

1

2
Tr
[

M−1σi(M−1)†
]

, (A.18)

Λ0
i =

1

2
Tr
[

(M−1)†σiM−1
]

, Λi
j =

1

2
Tr
[

M−1σi(M−1)†σj
]

. (A.19)

Comparing with the computation of Section 2, we see that M → (M−1)† and M † → M−1,

which results in ~θ → ~θ and ~ζ → −~ζ. Hence, it follows that ~z → −~z ∗ and ∆ → ∆∗. Under
these replacements, the expressions for Λµ

ν obtained in eqs. (29)–(32) are unchanged. Hence,
eq. (A.16) is confirmed.

One can also check the validity of eq. (A.16) using the method outlined in Section 4, by using
the first order expressions,

Λµ
ν ≃ δµν + 1

2

(

θλνg
λµ − θνρg

ρµ
)

, (A.20)

(M−1)† ≃ I2 −
1

2
iθρλσ

ρλ , (A.21)

M−1 ≃ I2 +
1

2
iθρλσ

ρλ . (A.22)

Using eqs. (A.8), (A.15) and (A.16), it then follows that

M
−1γµ

M = Λµ
νγ

ν . (A.23)

Consequently, in light of eqs. (A.7), (A.14) and (A.23), it follows that under an active Lorentz
transformation,

ΨγµΨ −→ ΨM−1γµ
MΨ = Λµ

νΨγνΨ . (A.24)

That is, under an active Lorentz transformation, ΨγµΨ transforms as a four vector.
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