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Abstract

An explicit form for the 4-dimensional matrix representation of the most general proper
orthochronous Lorentz transformation matrix A, can be obtained by exponentiating a 4 x 4
matrix that is a general element of the Lie algebra of the Lorentz group. An alternative
method exploits the assertion that the spinor product nfa#y transforms as a Lorentz four-
vector, where xy and 7 are two-component spinors. The latter result yields an expression
for A*, that only requires the exponentiation of 2 x 2 matrices. We provide an explicit
demonstration that both computations yield precisely the same expression for A*,.

1 Proper orthochronous Lorentz transformations

Under an active Lorentz transformation, the spacetime coordinates z# = (ct; &) transform as
x’* = A", z¥. As usual, there is an implied sum over any repeated upper/lower index pair. The
condition that g,,x"z" is invariant under Lorentz transformations implies that!

AL gupNx = G - (1)

The Lie group O(1, 3) is the set of all 4 x 4 matrices A that satisfy eq. (1). Note that det A = £1.
Similarly, the Lie group SO(1,3) is the group of proper Lorentz transformations, which satisfy
det A = +1. The elements of the subgroup of SO(1,3) that additionally satisfy A% > 1 are
continuously connected to the identity element (the 4 x 4 identity matrix, denoted by I,) and
constitute the proper orthochronous Lorentz transformations.

The Lie algebra of the Lorentz group is obtained by considering infinitesimal Lorentz trans-

formations,
A=TI,+A, (2)

where A is a 4 x4 matrix that depends on infinitesimal Lorentz group parameters, and terms that
are quadratic or of higher order in the infinitesimal group parameters are neglected. Inserting
eq. (2) into eq. (1), and denoting G to be the 4 x 4 matrix whose matrix elements are g,,, it
follows that

I+ ANG(I1+ A) =G (3)

Keeping only terms up to linear order in the infinitesimal group parameters, we conclude that

ATG = -GA. (4)

!'We employ the mostly minus convention, g,, = diag(l; —1,—1,—1), where u, v € {0, 1,2, 3}.



Since G is diagonal, eq. (4) implies that GA is a real antisymmetric 4 x 4 matrix. That is, we
have shown that the Lie algebra of the Lorentz group consists of all real 4 x 4 matrices with the
property that GA is antisymmetric.
To construct a general proper orthochronous Lorentz transformation, one can choose any real
4 x 4 matrix A such that GA is antisymmetric, and consider a large positive integer n such that
A/n is an infinitesimal quantity. Then, a general proper orthochronous Lorentz transformation
can be obtained by applying a sequence of n infinitesimal Lorentz transformations in the limit
as n — oo,
. A\"
A = lim <1+E) =expA. (5)

n—o0

Thus, we have demonstrated that the set of proper orthochronous Lorentz transformations con-
sists of matrices of the form exp A, where GA is a real antisymmetric 4 x 4 matrix.

Hence, the most general proper orthochronous Lorentz transformation matrix A, characterized
by a rotation angle 6 about an axis 7 [5 = fn] and a boost vector f = dtanh ' 3 [where
© = ¥/|9| is the unit velocity vector and 3 = |¥]/c],% is a 4 x 4 matrix given by?

A = exp (—%iﬁp,\s”)‘) = exp (—ié-é’— zfﬁ) , (6)
where 0,5 = —0,, and s** = —s*. In particular, 6" = $€7%7% (1 = 60 = —% s' = Lelikgik,
k= s% = —s and

(), = i(g 8} - ). 7
Here, the indices 7,7, k € {1,2,3} and the Levi-Civita symbol €!?* = +1. More explicitly,
o ¢ ¢ ¢
L 0 - e
A=expA, where = —1if,s" = 2B 0 o (8)

CS _92 91 0

As anticipated above, GA is the most general real antisymmetric 4 X 4 matrix.

Note that the s”» = —s* are six independent real antisymmetric 4 x 4 matrices that satisfy
the commutation relations of the real Lie algebra of SO(1,3), henceforth denoted by so(1,3),
[s°7, 7] = i(g"" s — g™ 57 — g™ % 4 g™ $7P). (9)

In particular, A is a real linear combination of the Lie algebra generators is”* and thus constitutes
a general element of the real Lie algebra so(1,3).

The spin-1/2 representation of the Lorentz group is a two dimensional matrix representation
of SL(2, C) represented by the complex 2 x 2 matrices of unit determinant,?

M = exp (—%z’@&' — %5&’) . (10)

2Tt is convenient to employ units where we set the speed of light ¢ = 1.

3We follow the conventions of Ref. [1]. Note that in the notation of Ref. [2], k = iK and & = iS, where the
4 x 4 matrix representations of K and § are given in eq. (11.91) of Jackson, which yields A = exp(§-§+ fI_f)
The argument of exp differs by an overall sign with Jackson’s eq. (11.93) where a passive Lorentz transformation
is employed, which amounts to replacing {é: ¢ } with {—8, e }.

“The matrices M defined in eq. (10) constitutes the (3,0) representation of SL(2,C). There is a second
inequivalent two dimensional representation of SL(2,C) represented by the matrices (M ~1)t, which constitutes
the (0, 3) representation of SL(2,C). For further details, see Ref. [1].
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It is convenient to introduce the Pauli matrices, o', 02, 03, using the notation of Ref. [1],

O-“:(I2;6=)7 Eu:(I2; _6:)7 (11)

where p € {0,1,2,3} and I is the 2 x 2 identity matrix. Note that these sigma matrices have
been defined with an upper (contravariant) index. They are related to sigma matrices with a
lower (covariant) index in the usual way:

oy = guo’ = Iy; —0), Ty = guwo = Iy;d). (12)

However, the use of the spacetime indices p and v is slightly deceptive since the sigma matrices
defined above are fized matrices that do not change under Lorentz transformations. If we also
introduce six independent 2 x 2 matrices o* = —o"*, where

o = Li(ot5 — o¥5") (13)
then eq. (10) can be rewritten in the following form that is reminiscent of eq. (6),
M = exp (—1i0,,0") . (14)

That is, the six independent io#” matrices are generators of the Lie algebra of SL(2, C), henceforth
denoted by sl(2,C). It is straightforward to check that the 2 x 2 matrices o*” possess the same
commutation relations as the 4 x 4 matrices s* [cf. eq. (9)], which establishes the isomorphism
s0(1,3) ~sl(2,C).

Under an active Lorentz transformation, a two-component spinor x, (where a € {1,2})
transforms as,

Xo =M x5, a,Be{l,2}. (15)

Suppose that y and 7 are two-component spinors and consider the spinor product n'*y. Under
a Lorentz transformation,

o'y — (Mn)'a" (Mx) = ' (M'5"M)x . (16)
We assert that the quantity nfa*y transforms as a Lorentz four vector,’
oty — AT (17)
which implies that the following identity must be satisfied:
MM = A*,5" . (18)
If we multiply eq. (18) on the right by o, and use Tr("0,) = 24}, it follows that
A, = 1Te (M5 Mo,) . (19)

The goal of these notes is to show that the two expressions for A given by egs. (8) and (19)
coincide.
A more formal writeup of these notes can be found in Ref. [3].

A similar technique can be employed to show that Wy*W¥ transforms as a four vector under a Lorentz trans-
formation, where W is a four-component spinor. For details, see Appendix A.



Tr(M'e"Mo,)

2 An explicit evaluation of A#, = %

It is convenient to introduce

z=C+i0. (20)
Then, using a well-known result (e.g., see pp. 383-384 of Ref. [4]),
inh(1A
M = exp (—32-F) = I, cosh(3A) — Z-&'W, (21)
where s e
A= (22)"7 = (I 16> +2i6-C) (22)

Since the Pauli matrices are hermitian,

sinh(%A*)
A* '

We shall evaluate A*, in four separate cases depending whether the spacetime index is 0 or

i € {1,2,3}. In particular, eq. (19) yields

MT = exp (—32*-&) = Iycosh(3A%) — Z2*.& (23)

A% = %Tr(MTM) : Ay = —% Te(MTo' M), (24)
A% = —1Te(Mo'M'),  N'j=1Te(Mio'Mo?). (25)
Note that in obtaining eq. (25), we used 0; = —o’. It is simply more convenient to express

quantities whose indices run over the indices ¢ = 1,2,3 in terms of tensors that contain only
upper (contravariant) indices, even though we are evaluating A% and A’; which possess one
lower (covariant) index.

Plugging egs. (21) and (23) into eq. (19) and evaluating the traces,

Tr(o'o?) = 20, (26)
Tr(o'oio") = 2@e”k (27)
Tr(c'oloro’) = (5”5“ — §R§IE 4 55Tk (28)

we end up with the following expressions:
2

nh(A) (e 4 g1 (29)

A% = |cosh($A) ] + A

o (cosh(%A*)A sinh(1A) chc) N sinhEA) it (30)
A% = (COSh(%A*)ASinh(%A) 2 +c.c> +i SinhEA) :Wzkz*f, (31)
A = {\cosh(%A)F— b2 2 (\C\2+\0|2)}5”+(z“z] + ot | 2008) 2

N (z’sinh(%A)Acosh(%A ) kHC) | )

where c.c. means the complex conjugate of the previous term.
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We can check the results of egs. (29)—(32) in two special cases. First, consider the case of

-

a pure boost, where § = 0. Then Z = Z* = ¢ and A = \C\ = (. Plugging these values into
egs. (29)- (32) yields the following block matrix form,

Cj
cosh ¢ 3 sinh
At =1 o ; (33)
¢ S
= sinh¢ 0V + 2 (cosh¢ —1)
¢ ¢
where the block matrix row and column indices run over p = 0,7 =1,2,3and v =0, j = 1, 2, 3,

respectively.
Recalling that ¢ = dtanh™ 8 [where & = @/|0] = ¢/ is the unit velocity vector and
= |¥]/c], it follows that
gl B
A= 7 (34)
VB 09+ (y = 1)

where v = (1—%)"Y2 = cosh ¢, 78 = sinh ¢, and 3 = 9. Eq. (34) is the well-known expression
for an active Lorentz transformation that is a pure boost.5

Second, consider the case of a pure rotation by an angle of 6 = |§| around an axis that points
in the direction of n where

(35)

n

6
.

=10 and A = if. Plugging these values into

In this case, f = 0, and it follows that 2z’ =

eqs. (29)-(32) yields,
1 0
A=, e (36)
0 RY

RY = §Y cos§ + A'i? (1 — cos0) — €7*Af sing . (37)
Eq. (37) is the well-known Rodrigues’ rotation formula (e.g., see p. 275 of Ref. [5]).

where

3 An explicit evaluation of exp A, where A € so0(1,3)

In this section, we shall explicitly evaluate exp A, where A is given by eq. (8). First, we compute
the characteristic polynomial of A,

—

p(z) = det(A — 2ly) = 2* + (\5\2 — |a2)x2 — (5-()2 = (2? +a?)(2* — b?), (38)

where

-

= (8¢, a* = =16 — |- (39)

6As noted in footnote 3, Jackson employs a passive Lorentz transformation in which the coordinate axes
(reference frame) transform(s) while the four-vectors remains fixed, which corresponds to replacing 8 with —3 in
eq. (34). After making this change, one immediately recovers eq. (11.19) of Ref. [2].



Solving eq. (39) for a? and b? yields,

— 5|18 1 et~ 1)+ 480 (40)

1 e
= g 12 191+ (81~ 10)7+ 480 . (41)
The eigenvalues of A, denoted by \; (i = 1,2,3,4), are the solutions of p(x) = 0, which are:
\i = ta, —ia,b, —Db. (42)

To evaluate exp A, we shall use of the following formula of matrix algebra based on the
Lagrange interpolating polynomial. If an n x n matrix A has only distinct eigenvalues \;, then
any function of A is given by (e.g., see eq. (1.9) of Ref. [6], eq. (5.4.17) of Ref. [7], eqgs. (7.3.6)
and (7.3.11) of Ref. [8], or Chapter V, Section 2.1 of Ref. [9]):

- T A= NI
= ) K h K, = 4
;f()\,) i where i H N (43)

J#Z

and I, is the n x n identify matrix. Applying eq. (43) to f(A) = exp A, it follows that

o A — e A+G,ZI4 A—bI4 A+bI4 4 _ia A—az’I4 A—bI4 A—l—bI4
A= 2ia ia—>b ta+b c —2ia —ia—b —ia+b

A—aily A+ ialy A+bly [ A—aily A+ ial, A—1bl,

b b

+e +e .
b—ia b+ 1ia 2b —b—1a —b+1a —2b

(44)
Simplifying the above expression yields,
1 9 19 sina 9 o sinh b
epr:m —(A*=b"1y) | A - + I cosa )+ (A*+a’ly) (A + I,coshb
(45)

Combining terms, we end up with

o ¢ ¢ ¢
1 3 2
b | g "o :%W{fo(a,b)lﬁ £1(a,b)A + fola, b) A2 + fg(a,b)A3}, (46)

C3 _92 91 0
where a and b are defined in eq. (39) and
2 a2
fo(a,b) = b*cosa + a® cosh b, fi(a,b) = ; sina + 7 sinh b, (47)

sinhb sina
b a

fa(a,b) = coshb — cosa, f3(a,b) = (48)



The explicit formula for exp A has also been given in Refs. [10-12]. Egs. (46)—(48) coincide
precisely with the form obtained by Refs. [11,12] using other methods.”
The matrix A and its powers can be conveniently written in block matrix form,

0 ¢ ‘az IRk gl

A= o)=L (49)
¢ —€ikg —eMCket (T 4 0707 — 57716)?

p 0 (IS = 161%) ¢ + (8- 0’

—

(|5|2 - |0|2)<—i + (55)92 (Ejkfgi N Eikfcj)gkef + 6ijk9k|§|2

One can simplify the ij element of A% by noting that the ij element of any 3 x 3 antisymmetric
matrix must be of the form €/*C*. Thus,

(Ejkfé-i o Eikfcj)é-keﬁ — €ijcrk ) (50)
Multiplying the above equation by €/™ and summing over ¢ and j yields
It follows that, L
= (-8)¢ — P (52)

That is, we have derived the identity,
(G — IR = I (F-E)CF — |E12]. (5)

One can therefore rewrite the matrix A® in the following form,

0 C12 — 16]2)¢? + (8-&)6?
45— (11> = 181*)¢7 + (8-¢) | 50

—

(IC? - 1612)¢i+ (8-Q)p" € [(6-O)¢F — (I]* — |6]%) 6]

It is instructive to check the two limiting cases treated previously. First, if =0 thena=0
and b = |¢| = (. It then follows that

0 ¢ IS ) -
A={ . A? = E A% = |F24, 55
(C’ 0”) ( e [q (55)

where 0¥ is a 3 x 3 matrix of zeros, and

Using eq. (55), the above equation reduces to our previous result given in eq. (33).

ol 2

"Since a matrix always satisfies its characteristic equation, we know that p(4) = 0. Employing eq. (38), one
obtains A% = a?b?I, — (a® — b?)A?. Using expA = Y o2  A"/nl, it follows that exp A can be expressed as a
linear combination of I4, A, A2 and A%. Resumming the corresponding coefficients yields eqs. (47) and (48). For
further details of this approach, see Appendix 4.7 of Ref. [13].
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Second, if { = 0, then a = |6] = 0 and b = 0. It then follows that

0 0 0 0 -
A= B ) , A% = <# ) : AP =—|0?A. (57)

O —ciikgh 0 9igi — 5ij|§|2
and
1 — cos@ 1 sin 0
A=T,+A+|—5— | A%+ 5 (1— )A3. 58
' ( 6]2 ) 62 0 o

Using eq. (57) and defining n = _’/ 0, the above equation reduces to Rodrigues’ rotation formula
given in egs. (36) and (37).

In the general case, we shall now demonstrate that eq. (46) is equivalent to the previous
results obtained in egs. (29)—(32). First, it is convenient to rewrite eqgs. (40) and (41) as follows:

o> = 3(107° - [P+ 1AP) v = 3(1C1° - 16 + |AP), (59)
where A is defined in eq. (22). In particular, a® 4+ b* = |A[%. Thus, egs. (46), (49) and (54) yield:
1 . .
ot [z F2 2 2
AO_|A|2 [(b I¢]?) cosa+ (a® +[C] )coshb}
F12 1 10]2
= (cosh b+ cosa) + % (coshb — cosa), (60)

after making use of eq. (59). Note that

b+ b—i b+
cosh b + cos a = cosh b + cosh(ia) = 2 cosh ( zw) cosh ( 2za) = 2 |cosh zw) , (61)
_ , 2
coshb — cosa = cosh b — cosh(ia) = 2sinh <b j;m) sinh (b 2m) = 2 |sinh <b _;m (62)
Hence, eq. (60) yields
b+ia\|* [CP+1617] ., [b+ia\|?
0 _
A 0= cosh ( B ) + W sinh 5 (63)
Using eq. (39), it follows that
(b+ia)? = b* — a® + 2iab = |C]> — |0)> + 2i6- = A?, (64)
where we have made use of eq. (22) in the final step. Thus, we may put
A=b+ia (65)
in eq. (63) [since any overall sign will cancel out], which yields
2
sinh(A - -
A% = [cosh(3A)[" + % (I + 161%) (66)

in agreement with eq. (29).



Next, eqgs. (46), (49) and (54) yield:

1 b? a’ i ikt ke
AO_W —sma—i—zsmhb (" — (cosh b — cosa)e™¢"0

N (sinbhb B sina) {Gaz B |5|2)Ci + (8- ")el] } (67)

a

In light of eq. (39), it follows that |C]2 —|0]2 = b2 — a® and 8- = ab. Inserting these results into
the above equation, we end up with

Ao = ﬁ {(b sinh b + asina)(’ + (asinh b — bsina)f* — (cosh b — cos a)eikégkeé} : (68)

We can rewrite this result with the help of some identities. First,
bsinhb + asina = Re{(b — ia)(sinh b + isina)} = Re{(b — ia)[sinh b + isinh(ia)]}
= Re{(b — ia)(sinh [$(b + ia) + $(b — ia)] + sinh[1(b+ ia) — (b —ia)])}
= 2Re{ (b — ia)sinh[1(b+ ia)] cosh[3(b —ia)] }
= (b—ia)sinh[L(b+ ia)] cosh[1(b —ia)] + c.c.
= A*sinh(1A) cosh(3A*) + c.c., (69)
after using eq. (65). A similar computation yields
asinhb — bsina = — Im{(b — ia)(sinh b + isina) }
= —2Im{ (b — ia)sinh [ (b + ia)] cosh[1(b —ia)] }
= iA*sinh(3A) cosh(3A%) + c.c. (70)

Moreover, we can employ egs. (62) and (65) to obtain

T
(cosh b — cos a)e™¢*9* = 2 |sinh (b ;za) ‘ MRt = —i|sinh(JA)| e*221 (71)

after making use of eq. (20). Collecting the results obtained above, we end up with

A (sinh(%A) cosh(%A*) smh( A) ?
0= o\

A

Eikfz*sz 7 (72)

A (¢ 4i0") + c.c.) + i

in agreement with the result of eq. (30). The computation of AY; is nearly identical. The only
change is due to the change in the sign multiplying the term proportional to the Levi-Civita
tensor. Consequently, it is convenient to replace eq. (71) with

(cosh b — cos a)e?* k9t = 2

. 2
sinh (b J;m) ) eM(R0" = i [sinh(1A) ] MR (73)




Hence, we end up with

1 , , .
A = e {(bsinhb +asina)¢? + (asinh b — bsina)6’ + (cosh b — cos a)e?™¢*o°

. 1 L A*
_ <smh(2A)203h(2A ) (¢7 4 i07) +c.c.> +1

2

sinh( A) Ikl k5t (74)

1
2

A

in agreement with the result of eq. (31).
Finally, we use eqs. (46), (49) and (54) to obtain:

- 1
A

B b2 a? .
2 2 1 . : Zk k
j :W{(b cosa + a” cosh b)d" — (ESIHCL_‘_?Slnhb)E] 0

+(coshb — cosa)(C¢7 + 0°67 — 5716]?)

() o -] L oo

First, we examine the terms in eq. (75) that are proportional to §”. The following identity is
noteworthy:

b? cos a+a® cosh b—(cosh b—cos a)|6]* = 1(a®+b%)(cos a+cosh b) — L (cosh b—cos a) (b* —a2—|—2|§|2) :

(76)
Using eq. (39), b2 —a2+2|0]2 = |C|2+]6]2. Applying egs. (61), (62) and (65) yields the coefficient
of (5@',

sinh (1A) [
A

1 -
s [b2 cosa + a® cosh b — (cosh b — cosa)|0\2} = |cosh(1A)]*—

ar (1¢+161%) . (77)

Next, we note that in light of eq. (20), z*27 + 2%2* = 2(¢*¢/ + 6°47). Thus,

2
o - |sinh(2A
L(COShb— cosa)(CZC] +919]) — (Z*ZZ] +ZZZ*j) %

N (78)

We now examine the terms in eq. (75) that are proportional to ¢“*§*. In light of eq. (39),

1 sinhb sina) , 25 2o b2 a
|A|2{< b a )(‘0| —‘C|)—<;sma+?smhb

1 5 .9\ (sinhb  sina v . a .
= |A|2{(a b)( 2 - ) (asma—i— 2 sinh b

sinh ( % A)
A

= —ﬁ[bsmhb—i—asina} = —{

cosh(3A*) + c.c.} : (79)
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after employing eq. (69). Finally, we examine the terms in eq. (75) that are proportional to
€k ¢k In light of eq. (39),

1 sinhb sina\ = - ab (sinhb sina 1
_ §.5 - _ _ inhb — bsi
ar () 8= e (T = paplesit bl
inh (1A
=1 W cosh(3A%) + c.c. (80)

Note that the terms proportional to €% combine nicely and yield,

7 sinh(%A) cosh(l

547)
A

€Tk 4occ. (81)

after using eq. (20).
Collecting the results of egs. (77), (78) and (81), we end up with

2
, inh(3A inh (1A
A = {|cosh<éA)\2— hGA) | (g + 67 )}6” (0 4 i) | 22)
() ) o
A
in agreement with eq. (32).
We have therefore verified by an explicit computation that
o ¢ ¢ ¢
Lo -6 62 _
M=o |G g o g | =g, (83)

C3 _92 91 0

-

where M = exp {—%(5+ iO)-&’}.

4 A proof using infinitesimal Lorentz transformations

Most textbooks proofs of eq. (83) demonstrate that both sides of eq. (83) agree to first order in
¢ and 6. It is convenient to introduce the six independent 2 x 2 matrices " = —a"*, where

o = ti(o'o” — 7o), (84)

which differ from the o#* matrices introduced in eq. (13).%
It then follows that

M" = exp (3i0,,") = exp (% 0- — %C 0'> . (85)

8The six independent ioc*” matrices are generators in the (1,0) representation of sl(2,C) as noted below
q. (14), whereas the six independent i*” matrices are generators in the (0, 3) representation of s[(2,C) [cf. foot-
note 4].
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Working to first order in the parameters 6** and making use of egs. (7), (14) and (85)

A, = 88+ 2 (00, g™ — 0,,0™) | (86)
M =~ I, — 1if, 50", (87)
M' >~ I, + 3i0,\". (88)
It follows that
MG M o~ (I + 2i0,,5) 5" (I — 3i0,00") =~ " + 3i0,\ (777" — 5"0) . (89)
One can easily derive the following identity [1],
o5t — ot = i(gMo” — g"'T) . (90)

Hence eq. (89) yields,
MIGHM ~ 7 — 1,0 (V0" — g) =[5 — 10, (g%00 — g5))]o"

~ [0 = 3 (0™ = Opg™)]" = [0 + 5(Org™ — bupg™)] 7" (91)
after using the antisymmetry of 6, in the final step. After employing eq. (86) on the right hand
side of eq. (91), we arrive at’

MG'M = A", 5", (92)
thereby confirming the result of eq. (18) to first order in 6.

Of course, the derivation of eq. (92) is much simpler than the explicit proof of eq. (83), which
requires the exact evaluation of all the relevant matrix exponentials. However, we can now assert
that having derived eq. (92) to first order in 6,,, this result must be true for arbitrary 6,). The
reason that a derivation based on the infinitesimal forms of A, M and MT is sufficient is due to
the strong constraints imposed by the group multiplication law of the Lorentz group near the
identity element, which implies via eq. (5) that a proper orthochronous Lorentz transformation
can be expressed as an exponential of an element of the corresponding Lie algebra.

Having derived egs. (29)—(32), it is quite simple to demonstrate that eq. (83) is true without
an explicit computation of the exponential of the 4 x 4 matrix A, in light of the comments above.
First, we expand A to linear order in the boost and rotation parameters,

0 Cl C2 C3 1 Cl <2 <3

1 3 2 1 3 2

AF, = exp gz 33 61 _zl = 22 913 % _21
¢ -6 6t 0 G- 0 1

(93)

This is to be compared with the evaluation of eqs. (29)~(32) to linear order in ¢ and 8, where
A ~ 0 in light of eq. (22). The end result is

Ay ~1, (94)
Ao~ (¢, (95)
A%~ (7 (96)
Ny~ 59 — hgh (97)

which coincides with the right hand side of eq. (93).

9Eq. (92) is a statement of the well-known isomorphism SO(1,3) 2 SL(2,C)/Zs, since the SL(2,C) matrices M
and —M correspond to the same Lorentz transformation A.
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Appendix A A four-component spinor product that trans-
forms as a four vector

One can construct four-component spinors [1],

U= <;<T> , (A1)

in terms of a pair of two-component spinors x and n. Gamma matrices can be expressed in the
chiral representation in terms of o and *,

i (EOH %“) _ (A.2)

It is convenient to introduce

s = L) - <<fg 52) | (A.3)
where [y#,~"] = y#4¥ — 4¥4#*. The Dirac adjoint spinor is defined by
() =iz = (n x') . (A.4)
The matrix 7" satisfies
P = () (A.5)
VB (%) = (2)T. (A.6)

Four-component spinors transform under an active Lorentz transformation in the (3,0)®(0, 5)
representation of the Lorentz group,

V=MV, (A.7)
where
M 0 e
M = (0 (M—l)T> = exp (—1i0,,2") , (A.8)
and
M = exp (—%iﬁp,\a”)‘) = exp (—%ié-&' — %5-6") , (A.9)
(M) = exp (~ §ibx0™) = exp (~1i6-5 + 1C-5) . (A.10)

To compute matrix inverses, simply change the overall sign of the parameters 6,,,. For example,

M~ = exp (10, 5") . (A.11)
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Note that in light of eq. (A.6),
YT = (T (A.12)
Using eqs. (A.4) and (A.7), it then follows that
U= 00 = UTIMT0 = T(0) " M40, (A.13)

Finally, taking the hermitian conjugate of eq. (A.12) and using eq. (A.5) [which implies that
(7°)T = 4], we end up with
V' ="M, (A.14)

under an active Lorentz transformation. _ _
It immediately follows from eqgs. (A.7) and (A.14) that /U’ = W, which we recognize as a
Lorentz scalar. Next, consider the following two identities,

MM = A", 5, (A.15)
M=o (MY = A", 0¥, (A.16)

Eq. (A.15) has already been established in these notes. Eq. (A.16) implies that

A, =LiTe[M o (M YT, ], (A.17)

which yields
A% = I T[], No=1Tr[M o' (MY, (A.18)
A% = LT [(M YoM ANy =1Te[M o' (M Y)o7] (A.19)

Comparing with the computation of Section 2, we see that M — (M~1)T and MT — M1,
which results in @ — 6 and 5 — —5. Hence, it follows that £ — —Z™ and A — A*. Under
these replacements, the expressions for A¥, obtained in egs. (29)—(32) are unchanged. Hence,
eq. (A.16) is confirmed.

One can also check the validity of eq. (A.16) using the method outlined in Section 4, by using
the first order expressions,

A, = 88+ L (0,,6™ — 0,,9™) (A.20)
(M~ I, — Lig \o7 (A.21)
]\4_1 ~ I2 + %iep,\ap)‘ . (A22)

Using eqs. (A.8), (A.15) and (A.16), it then follows that
M1y M = A* 4. (A.23)

Consequently, in light of egs. (A.7), (A.14) and (A.23), it follows that under an active Lorentz
transformation, _ _ _
Uy — WM™ ME = A, U7 (A.24)

That is, under an active Lorentz transformation, U#W transforms as a four vector.
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