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Abstract

We examine a sequence of rational numbers {r,} that yield approximations of In2
that become more precise as n increases. The approximation improves in accuracy by
roughly an order of magnitude as n increases by one unit.

1. Introduction

There are many ways to obtain rational approximations of irrational numbers. In this short
note, [ will exploit a very clever method that is based on examining a sequence of integrals that
is suitably chosen. The method is probably best known in association with obtaining rational
approximations of 7 [I]. Indeed, the famous approximation that we all learned in high school,
7/ 22/7, is naturally obtained as the first of a sequence of ever improving approximations
derived from examining the sequence of integrals introduced below. After a lightning review
of the method for approximating 7, I then apply the method, following Ref. [2], to obtain
rational approximations of In 2.

Rational approximations of m can be obtained by considering the following sequence of

integrals, ,
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As shown in Ref. [1],

jn =T —Pn, (2)
where p,, is a positive rational number for positive integer values of n. Since 0 < z(1—z) < i

for 0 < z < 1, it follows that

0<(—-1)"T, < = limp,=m. (3)
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Hence for finite values of n, the sequence of rational numbers {p,} provides rational approx-

imations of 7 with improving accuracy as n increases. Indeed, eq. ([B]) guarantees that the

accuracy improves by more than three orders of magnitude as n is increased by one unit.
Remarkably, a closed form expression is given for p, in Ref. [,
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This result is derived by employing an identity given in Ref. [3] with no proof,
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It is not very difficult to provide a derivation of eq. (B). We begin with the identity,
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for some polynomial P(z) and constant R to be determined. To obtain R, we extend the
function z*(1 —x)"/(1 + z?) into the complex plane. We then demand that the residue at the
poles +i are the same on both sides of eq. (@l). This yields R = —4. It then follows that
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We can then use Mathematica to factor the numerator of P(z),
(1 —2) +4=(1+2%4 —42% + 52 — 42° +2°). (8)
Hence,
P(x) = 2° — 42° + 52" — 42® + 4. 9)

Next, we multiply both sides of eq. (@) by z*(1—xz)*. When carrying out the multiplication on
the last term on the right hand side of eq. (@), we shall employ z*(1 —z)* = (1 +2?)P(x) — 4.

The end result is S x (a2
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We again multiply both sides of eq. (I0) by z*(1 — z)* and follow the same strategy as before
to obtain,
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Continuing the process, it should be clear that after n steps we arrive at
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Having identified P(x) in eq. (@), we have indeed established the result quoted in eq. (Hl).

The evaluation of 7, is now straightforward, as the expression for p, is expressed as the
sum of integrals, each of which is recognized as the integral representation of a Beta function.
In light of lim,,_.. J, = 0, it follows that a rational approximation to m that monotonically
improves in accuracy as n increases is given by m ~ p,, where p, consists of the sum of the
first n terms of the series given in eq. (),
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In the next section, we shall use a similar technique to obtain rational approximations of
In 2.
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2. Rational approximations of In 2

Consider the following sequence of integrals [2],

T, = (~1)" /01 1?:5 (I“; x))n . (14)

We will demonstrate below that

Z,=In2—r,, (15)
where r,, is a positive rational number for positive integer values of n. Since 0 < z(1—=z) < §
for 0 <z < 1, it follows that

1
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Hence for finite values of n, the sequence of rational numbers {r,} provides rational approxi-
mations of In2 with improving accuracy as n increases. Indeed, eq. (I6) guarantees that the
accuracy improves by roughly an order of magnitude as n is increased by one unit.
The relevant identity analogous to eq. (fl) is derived using the same technique employed
in Section 1. We first note that
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Multiplying both sides of this equation by z(1 — z) and using (1 —z) = (2 —z)(1 + z) — 2
when multiplying the last term on the right hand side of eq. (7)) yields,
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We again multiply by z(1 — z) and use z(1 — x) = (2 — z)(1 + 2) — 2 when multiplying the
last term on the right hand side of eq. (IT) to obtain
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Is should now be clear that after n steps, the end result is given by

= [2*(1—2)* —22(1—z) + (-2)°] 2 —2) + (-2)° . (19)
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Hence, it follows that
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Using the integral expression of the Beta function,
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it follows that
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which can be simplified to obtain our final result,
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Taking the limit as n — oo and making use of lim,,_,., Z,, = 0, we arrive at an interesting
series expansion for In2 (see Appendix A for an independent derivation),
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It then follows that a good approximation to In2 is given by the first n terms of eq. (25]).
That is, in eq. (I3) r, is given by,
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In Table 1 we list the individual terms, aj, that appear in eq. (25) and the corresponding
values of r, = ZZ;& ay for positive integer values of n < 11. Ten digit accuracy is obtained
for n = 11. Note that the accuracy of the approximation to In 2 improves by roughly an order
of magnitude with each increase of n by one unit, as anticipated.

n Gp—1 Thn numerical value
! i ! 0.75

2| -% n 0.6875

3 7% 1 0.69375

41 —mw 21| (69308035714
5 i 2829 0.69315476190
6 | —tmm 1519 | () 69314630682
7 e | 300268 (69314728241
8 - 878é920 é%gg?iig 0.69314716859
9 1550320 sosiss | 0.69314718198
10 | —tmiomm | sl | (.69314718039
11| s | AS0L2608T | () 69314718058

Table 1: Rational approximations, r, = Zz;é ay, of In2 obtained using Mathematica. The
approximations become more accurate as n increases. With eleven digit accuracy, In2 =~

0.69314718056.



3. An alternative approach to evaluating the integrals Z,,

We return the sequence of integrals specified in eq. (I4]). In this section, we shall make use
of the properties of the Gauss hypergeometric function taken from Ref. [5].

Using the integral expression for the Gauss hypergeometric function (cf. eq. (1) on p. 114
of Ref. [5]), it follows that
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Next, we use one of the quadratic transformations of the hypergeometric function (cf. eq. (28)
on p. 112 of Ref. [5]), to obtain,
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In light of eq. (24) on p. 102 of Ref. [5]), it follows that
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Finally, by employing eq. (16) on p. 102 of Ref. [5], it follows that for w > 0,

Ak i) = 5o (V2. (30)

Combining eqgs. (29) and (B30) yields,
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Setting z = —1, we arrive at our final expression for Z,,
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It is immediately clear that
Z,=a,In2—r,, (34)
where r,, is a rational number and
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Using the result
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and inserting p = —%, it follows that
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After using the duplication and reflection formulae for the Gamma function,

In+1)
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Hence,
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Plugging this last result into eq. (B8] yields a,, = 1.
Hence, as advertised in eq. (IH), we have demonstrated that

Z,=In2—r,, (40)
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To evaluate r,,, consider

where
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Writing D = d/dw and employing eq. (68)), it follows that for any nonnegative integer n,
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after using the Leibniz rule for the nth derivative of a product of two functions and employing

the relation,
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for any constant a.



It is more convenient to replace n + 1 with n in eq. ([A3]), which yields
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We now introduce the notation,
Sn = S"}w—l/Q (46)

It then follows that

Using eq. (1)) then yields,
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We can obtain a useful recursion relation by employing eq. (48] to derive,
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This result simplifies, and we end up with,
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Indeed, eq. (B0) provides the simplest method for quickly obtaining the results exhibited in
Table 1. It then follows that
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which is equivalent to the result obtained in eq. (20).
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APPENDIX A

In this Appendix, an independent derivation of eq. (25]) is provided [4]. We first employ
eq. (16) on p. 102 of Ref. [5],

1 1+2
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where o F} is the Gauss hypergeometric function. We next use eq. (4) on p. 105 of Ref. [5],

2Fi(a,b;c;2) = (1—2)"2Fi(c—a,b;e,2/(z — 1)), (53)
to obtain,
1+z 2z
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Setting z = % yields,
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Using the series representation of the Gauss hypergeometric function given by egs. (1) and (2)
on p. 101 of Ref. [5],

~D(a+k)b+k) ,
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it follows that
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Finally, using F(%) = %\/7? and making use of the duplication formula (see, e.g., eq. (1.2.3)
of Ref. [0]),
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we arrive at our final result,
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in agreement with eq. (20)).

APPENDIX B

It is instructive to use the method presented in Section 3 to explicitly work out the cases
of n=0and n=1. For n =0, eq. (15) on p. 102 of Ref. [5]) yields,

2 F1(1,1;2;2) = —lln(l—z). (60)
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Setting n = 0 in eq. (28)), we obtain
2F1(1,1;2;2) = 9 F(3, 135 2°/ (2 — 2)7).. (61)

In light of eq. ([B0), for values of 0 < z < 2 we can identify v/w = z/(2 — z), and it follows

that 5
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and hence
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in agreement with eq. (60). Likewise, if z < 0 or z > 2 then can identify v = z/(z — 2),

and we again obtain eq. (63)) in agreement with eq. (60). Finally, setting z = —1 yields
9F1(1,1;2;—1) = In2. Hence, eq. ([21) yields

Zo=1In2, (64)

This result is consistent with eqs. ([0) and (41]) given that ro = 0.
Next, we use eq. (28] to obtain

2
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and eq. (29) to obtain
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Making use of eq. (30),
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Using the chain rule,
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Setting w = 22/(2 — 2)? in eqs. (67) and (68) yields
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It then follows that
32—2)[1—2)In(1—2) 2—=2
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Using eq. (65), we end up with
6(1—2)In(l—2) 3(2-2)
2F1(172a47 Z) = >3 + 2 . (71)
Setting z = —1 yields,
oy (1,2:45—1) = —12In2+ 9. (72)
Hence, by using eq. (27) we end up with
Zi=In2-3. (73)

Compare this result with eqs. ([@0) and (AI]). In particular, after employing eq. (68), we obtain
2d {1 (1+yu) 2
r = —— n J—
F2Tdw (Ve \1-vw) vl

2 1 Lo (1Y, o
=— — n
27 |w(l —w) 2w3/? 1—Vw TS B
2 81 3
21 8 47
in agreement with eq. ({73).
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