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Abstract

We examine a sequence of rational numbers {rn} that yield approximations of ln 2

that become more precise as n increases. The approximation improves in accuracy by

roughly an order of magnitude as n increases by one unit.

1. Introduction

There are many ways to obtain rational approximations of irrational numbers. In this short
note, I will exploit a very clever method that is based on examining a sequence of integrals that
is suitably chosen. The method is probably best known in association with obtaining rational
approximations of π [1]. Indeed, the famous approximation that we all learned in high school,
π ≈ 22/7, is naturally obtained as the first of a sequence of ever improving approximations
derived from examining the sequence of integrals introduced below. After a lightning review
of the method for approximating π, I then apply the method, following Ref. [2], to obtain
rational approximations of ln 2.

Rational approximations of π can be obtained by considering the following sequence of
integrals,

Jn ≡ 4(−1)n
∫ 1

0

dx

1 + x2

(

x2(1− x)2

2

)2n

. (1)

As shown in Ref. [1],
Jn = π − pn , (2)

where pn is a positive rational number for positive integer values of n. Since 0 ≤ x(1−x) ≤ 1
4

for 0 ≤ x ≤ 1, it follows that

0 < (−1)nJn <
1

1024n
=⇒ lim

n→∞

pn = π . (3)

Hence for finite values of n, the sequence of rational numbers {pn} provides rational approx-
imations of π with improving accuracy as n increases. Indeed, eq. (3) guarantees that the
accuracy improves by more than three orders of magnitude as n is increased by one unit.

Remarkably, a closed form expression is given for pn in Ref. [1],

pn =

n−1
∑

k=0

(−1)k
24−2k(4k)!(4k + 3)!

(8k + 7)!

(

820k3 + 1533k2 + 902k + 165
)

. (4)
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This result is derived by employing an identity given in Ref. [3] with no proof,

x4n(1− x)4n

1 + x2
=

(

x6 − 4x5 + 5x4 − 4x2 + 4
)

n−1
∑

k=0

(−4)n−1−kx4k(1− x)4k +
(−4)n

1 + x2
. (5)

It is not very difficult to provide a derivation of eq. (5). We begin with the identity,

x4(1− x)4

1 + x2
= P (x) +

R

1 + x2
, (6)

for some polynomial P (x) and constant R to be determined. To obtain R, we extend the
function x4(1−x)n/(1+ x2) into the complex plane. We then demand that the residue at the
poles ±i are the same on both sides of eq. (6). This yields R = −4. It then follows that

P (x) =
x4(1− x)4 + 4

1 + x2
. (7)

We can then use Mathematica to factor the numerator of P (x),

x4(1− x)4 + 4 = (1 + x2)(4− 4x2 + 5x4 − 4x5 + x6) . (8)

Hence,
P (x) = x6 − 4x5 + 5x4 − 4x2 + 4 . (9)

Next, we multiply both sides of eq. (6) by x4(1−x)4. When carrying out the multiplication on
the last term on the right hand side of eq. (6), we shall employ x4(1−x)4 = (1+x2)P (x)− 4.
The end result is

x8(1− x)8

1 + x2
=

[

x4(1− x)4 − 4
]

P (x) +
(−4)2

1 + x2
. (10)

We again multiply both sides of eq. (10) by x4(1− x)4 and follow the same strategy as before
to obtain,

x12(1− x)12

1 + x2
=

[

x8(1− x)8 − 4x4(1− x)4 + (−4)2
]

P (x) +
(−4)3

1 + x2
. (11)

Continuing the process, it should be clear that after n steps we arrive at

x4n(1− x)4n

1 + x2
= P (x)

n−1
∑

k=0

(−4)n−1−kx4k(1− x)4k +
(−4)n

1 + x2
. (12)

Having identified P (x) in eq. (9), we have indeed established the result quoted in eq. (5).
The evaluation of Jn is now straightforward, as the expression for pn is expressed as the

sum of integrals, each of which is recognized as the integral representation of a Beta function.
In light of limn→∞Jn = 0, it follows that a rational approximation to π that monotonically
improves in accuracy as n increases is given by π ≃ pn, where pn consists of the sum of the
first n terms of the series given in eq. (4),

π =
22

7
− 19

15015
+

543

594914320
− 77

104187267600
+ · · · . (13)

In the next section, we shall use a similar technique to obtain rational approximations of
ln 2.
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2. Rational approximations of ln 2

Consider the following sequence of integrals [2],

In ≡ (−1)n
∫ 1

0

dx

1 + x

(

x(1− x)

2

)n

. (14)

We will demonstrate below that
In = ln 2− rn , (15)

where rn is a positive rational number for positive integer values of n. Since 0 ≤ x(1−x) ≤ 1
4

for 0 ≤ x ≤ 1, it follows that

0 < (−1)nIn <
1

8n
=⇒ lim

n→∞

rn = ln 2 . (16)

Hence for finite values of n, the sequence of rational numbers {rn} provides rational approxi-
mations of ln 2 with improving accuracy as n increases. Indeed, eq. (16) guarantees that the
accuracy improves by roughly an order of magnitude as n is increased by one unit.

The relevant identity analogous to eq. (5) is derived using the same technique employed
in Section 1. We first note that

x(1− x)

1 + x
= 2− x− 2

1 + x
. (17)

Multiplying both sides of this equation by x(1 − x) and using x(1 − x) = (2 − x)(1 + x)− 2
when multiplying the last term on the right hand side of eq. (17) yields,

x2(1− x)2

1 + x
=

[

x(1− x)− 2
]

(2− x) +
(−2)2

1 + x
. (18)

We again multiply by x(1 − x) and use x(1 − x) = (2 − x)(1 + x) − 2 when multiplying the
last term on the right hand side of eq. (17) to obtain

x3(1− x)3

1 + x
=

[

x2(1− x)2 − 2x(1− x) + (−2)2
]

(2− x) +
(−2)3

1 + x
. (19)

Is should now be clear that after n steps, the end result is given by

xn(1− x)n

1 + x
= (2− x)

n−1
∑

k=0

(−2)n−1−kxk(1− x)k +
(−2)n

1 + x
. (20)

Hence, it follows that

In = ln 2 +
n−1
∑

k=0

(−2)−1−k

∫ 1

0

xk(1− x)k(2− x) dx . (21)

Using the integral expression of the Beta function,

B(r, s) =
Γ(r)Γ(s)

Γ(r + s)
=

(r − 1)!(s− 1)!

(r + s− 1)!
=

∫ 1

0

xr−1(1− x)s−1 dx , (22)

it follows that

In = ln 2 +
n−1
∑

k=0

(−2)−1−k [2B(k + 1, k + 1)−B(k + 2, k + 1)] , (23)
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which can be simplified to obtain our final result,

In = ln 2− 3

4

n−1
∑

k=0

(−1)k[k!]2

2k(2k + 1)!
(24)

Taking the limit as n → ∞ and making use of limn→∞ In = 0, we arrive at an interesting
series expansion for ln 2 (see Appendix A for an independent derivation),

ln 2 =
3

4

∞
∑

k=0

(−1)k[k!]2

2k(2k + 1)!
=

3

4
− 1

16
+

1

160
− 3

4480
+

1

13440
− 1

118272
+ · · · . (25)

It then follows that a good approximation to ln 2 is given by the first n terms of eq. (25).
That is, in eq. (15) rn is given by,

rn =
3

4

n−1
∑

k=0

(−1)k[k!]2

2k(2k + 1)!
. (26)

In Table 1 we list the individual terms, ak, that appear in eq. (25) and the corresponding
values of rn ≡

∑n−1
k=0 ak for positive integer values of n ≤ 11. Ten digit accuracy is obtained

for n = 11. Note that the accuracy of the approximation to ln 2 improves by roughly an order
of magnitude with each increase of n by one unit, as anticipated.

n an−1 rn numerical value

1 3
4

3
4

0.75

2 − 1
16

11
16

0.6875

3 1
160

111
160

0.69375

4 − 3
4480

621
896

0.69308035714

5 1
13440

2329
3360

0.69315476190

6 − 1
118272

19519
28160

0.69314630682

7 1
1025024

3552463
5125120

0.69314728241

8 − 1
8785920

42629549
61501440

0.69314716859

9 1
74680320

241567449
348508160

0.69314718198

10 − 3
1891901440

834505731
1203937280

0.69314718039

11 1
5297324032

18359126087
26486620160

0.69314718058

Table 1: Rational approximations, rn =
∑n−1

k=0 ak, of ln 2 obtained using Mathematica. The
approximations become more accurate as n increases. With eleven digit accuracy, ln 2 ≃
0.69314718056.
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3. An alternative approach to evaluating the integrals In

We return the sequence of integrals specified in eq. (14). In this section, we shall make use
of the properties of the Gauss hypergeometric function taken from Ref. [5].

Using the integral expression for the Gauss hypergeometric function (cf. eq. (1) on p. 114
of Ref. [5]), it follows that

In =
(−1)n[n!]2

2n(2n+ 1)!
2F1(1, n+ 1; 2n+ 2;−1) . (27)

Next, we use one of the quadratic transformations of the hypergeometric function (cf. eq. (28)
on p. 112 of Ref. [5]), to obtain,

2F1(1, n+ 1; 2n+ 2; z) =
2

2− z
2F1(

1
2
, 1;n+ 3

2
; z2/(2− z)2) . (28)

In light of eq. (24) on p. 102 of Ref. [5]), it follows that

dn

dwn 2F1(
1
2
, 1, 3

2
;w) =

n!

2n+ 1

1

(1− w)n
2F1(

1
2
, 1;n+ 3

2
;w) . (29)

Finally, by employing eq. (16) on p. 102 of Ref. [5], it follows that for w ≥ 0,

2F1(
1
2
, 1, 3

2
;w) =

1

2
√
w
ln

(

1 +
√
w

1−√
w

)

. (30)

Combining eqs. (29) and (30) yields,

2F1(
1
2
, 1;n+3

2
; z2/(2−z)2) =

22n−1(2n+ 1)

n!

(

1− z

(2− z)2

)2
dn

dwn

{

1√
w
ln

(

1 +
√
w

1−√
w

)}
∣

∣

∣

∣

w=z2/(2−z)2
.

(31)
It then follows that

2F1(1, n+1; 2n+2; z) =
22n(2n+ 1)

n!

(1− z)n

(2− z)2n+1

dn

dwn

{

1√
w
ln

(

1 +
√
w

1−√
w

)}
∣

∣

∣

∣

w=z2/(2−z)2
. (32)

Setting z = −1, we arrive at our final expression for In,

In =
(−1)n22nn!

32n+1(2n)!

dn

dwn

{

1√
w
ln

(

1 +
√
w

1−√
w

)}
∣

∣

∣

∣

w=1/9

. (33)

It is immediately clear that
In = an ln 2− rn , (34)

where rn is a rational number and

an =
(−1)n22nn!

32n+1(2n)!

dn

dwn

{

1√
w

}
∣

∣

∣

∣

w=1/9

. (35)
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Using the result
dn

dwn
wp =

Γ(p+ 1)

Γ(p− n + 1)
wp−n , (36)

and inserting p = −1
2
, it follows that

dn

dwn

{

1√
w

}

=

√
π

Γ(1
2
− n)

w−n− 1

2 , (37)

After using the duplication and reflection formulae for the Gamma function,

Γ(1
2
− n) = (−1)n22n

√
π

Γ(n+ 1)

Γ(2n+ 1)
. (38)

Hence,
dn

dwn

{

1√
w

}

=
(−1)n(2n)!

22nn!
w−n− 1

2 . (39)

Plugging this last result into eq. (35) yields an = 1.
Hence, as advertised in eq. (15), we have demonstrated that

In = ln 2− rn , (40)

where

rn =
(−1)n+122nn!

32n+1(2n)!

dn

dwn

{

1√
w
ln

(

1 +
√
w

1−√
w

)

− ln 2√
w

}
∣

∣

∣

∣

w=1/9

. (41)

To evaluate rn, consider

sn(w) ≡
dn

dwn

{

1√
w
ln

(

1 +
√
w

2[1−√
w]

)}

. (42)

Writing D ≡ d/dw and employing eq. (68), it follows that for any nonnegative integer n,

sn+1 = Dn+1

{

1√
w
ln

(

1 +
√
w

2[1−√
w]

)}

= Dn

{

1

w(1− w)
− 1

2w3/2
ln

(

1 +
√
w

2[1−√
w]

)}

= (−1)nn!w−1−n + n! (1− w)−1−n −
n

∑

k=0

(

n

k

)

Dn−k

(

1

2w

)

Dk

{

1√
w
ln

(

1 +
√
w

2[1−√
w]

)}

= (−1)nn!

{

1

wn+1
− 1

(w − 1)n+1
− 1

2

n
∑

k=0

(−1)ksk
k!w1+n−k

}

, (43)

after using the Leibniz rule for the nth derivative of a product of two functions and employing
the relation,

Dn

(

1

w − a

)

=
(−1)nn!

(w − a)n+1
, (44)

for any constant a.
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It is more convenient to replace n+ 1 with n in eq. (43), which yields

sn = (−1)n(n− 1)!

{

1

(w − 1)n
− 1

wn
+

1

2

n−1
∑

k=0

(−1)ksk
k!wn−k

}

, for n = 1, 2, 3, . . . (45)

We now introduce the notation,
sn ≡ sn

∣

∣

w=1/9
. (46)

It then follows that

sn = (−1)n32n(n− 1)!

{

(−2)−3n − 1 +
1

2

n−1
∑

k=0

(−1)k3−2ksk
k!

}

. (47)

Using eq. (41) then yields,

rn =
22n−1[(n− 1)!]2

3(2n− 1)!

[

1− (−2)−3n +
3

2

n−1
∑

k=0

(2k)! rk
22k[k!]2

]

. (48)

We can obtain a useful recursion relation by employing eq. (48) to derive,

rn −
2(n− 1)

2n− 1
rn−1 =

3[(n− 1)!]2

(−2)n+1(2n− 1)!
+

rn−1

2n− 1
. (49)

This result simplifies, and we end up with,

rn − rn−1 = −3(−1)nn! (n− 1)!

2n(2n)!
, where r0 = 0 and n = 1, 2, 3, . . . (50)

Indeed, eq. (50) provides the simplest method for quickly obtaining the results exhibited in
Table 1. It then follows that

rn =
n−1
∑

k=0

(rk+1 − rk) =
3

2

n−1
∑

k=0

(−1)kk!(k + 1)!

2k(2k + 2)!
. (51)

which is equivalent to the result obtained in eq. (26).
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APPENDIX A

In this Appendix, an independent derivation of eq. (25) is provided [4]. We first employ
eq. (16) on p. 102 of Ref. [5],

2F1(
1
2
, 1, 3

2
; z2) =

1

2z
ln

(

1 + z

1− z

)

, (52)

where 2F1 is the Gauss hypergeometric function. We next use eq. (4) on p. 105 of Ref. [5],

2F1(a, b; c; z) = (1− z)−b
2F1

(

c− a, b; c, z/(z − 1)
)

, (53)

to obtain,

ln

(

1 + z

1− z

)

=
2z

1− z2
2F1

(

1, 1; 3
2
, z2/(z2 − 1)

)

. (54)

Setting z = 1
3
yields,

ln 2 = 3
4 2F1

(

1, 1; 3
2
,−1

8
) . (55)

Using the series representation of the Gauss hypergeometric function given by eqs. (1) and (2)
on p. 101 of Ref. [5],

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞
∑

k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)k!
zk , (56)

it follows that

ln 2 = 3
4
Γ
(

3
2

)

∞
∑

k=0

k!

23kΓ
(

3
2
+ k

) . (57)

Finally, using Γ
(

3
2

)

= 1
2

√
π and making use of the duplication formula (see, e.g., eq. (1.2.3)

of Ref. [6]),

Γ(n+ 1
2
) =

√
π Γ(2n+ 1)

22n Γ(n + 1)
=

√
π(2n)!

22n n!
, (58)

we arrive at our final result,

ln 2 =
3

4

∞
∑

k=0

(−1)k[k!]2

2k(2k + 1)!
, (59)

in agreement with eq. (25).

APPENDIX B

It is instructive to use the method presented in Section 3 to explicitly work out the cases
of n = 0 and n = 1. For n = 0, eq. (15) on p. 102 of Ref. [5]) yields,

2F1(1, 1; 2; z) = −1

z
ln(1− z) . (60)
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Setting n = 0 in eq. (28), we obtain

2F1(1, 1; 2; z) = 2F1(
1
2
, 1; 3

2
; z2/(2− z)2) . (61)

In light of eq. (30), for values of 0 < z < 2 we can identify
√
w = z/(2 − z), and it follows

that

2F1(
1
2
, 1; 3

2
; z2/(2− z)2) = −2− z

2z
ln(1− z) . (62)

and hence
2

2− z
2F1(

1
2
, 1; 3

2
; z2/(2− z)2) = −1

z
ln(1− z) , (63)

in agreement with eq. (60). Likewise, if z < 0 or z > 2 then can identify
√
w = z/(z − 2),

and we again obtain eq. (63) in agreement with eq. (60). Finally, setting z = −1 yields

2F1(1, 1; 2;−1) = ln 2. Hence, eq. (27) yields

I0 = ln 2 , (64)

This result is consistent with eqs. (40) and (41) given that r0 = 0.
Next, we use eq. (28) to obtain

2F1(1, 2; 4; z) =
2

2− z
2F1(

1
2
, 1; 5

2
; z2/(2− z)2) , (65)

and eq. (29) to obtain

d

dw
2F1(

1
2
, 1; 3

2
;w) =

1

3(1− w)
2F1(

1
2
, 1; 5

2
;w) . (66)

Making use of eq. (30),

d

dw

{

1√
w
ln

(

1 +
√
w

1−√
w

)}

=
2

3(1− w)
2F1(

1
2
, 1; 5

2
;w) . (67)

Using the chain rule,

d

dw

{

1√
w
ln

(

1 +
√
w

1−√
w

)}

=
d
√
w

dw

d

d
√
w

{

1√
w
ln

(

1 +
√
w

1−√
w

)}

=
1

2
√
w

[

− 1

w
ln

(

1 +
√
w

1−√
w

)

+
1√
w

1−√
w

1 +
√
w

(1−√
w) + (1 +

√
w)

(1−√
w)2

]

=
1

2
√
w

[

− 1

w
ln

(

1 +
√
w

1−√
w

)

+
2√

w(1− w)

]

= − 1

2w3/2
ln

(

1 +
√
w

1−√
w

)

+
1

w(1− w)
. (68)

Setting w = z2/(2− z)2 in eqs. (67) and (68) yields

(2− z)3

2z2

[

ln(1− z)

z
+

2− z

2(1− z)

]

=
(2− z)2

6(1− z)
2F1(

1
2
, 1; 5

2
;w) . (69)
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It then follows that

2F1(
1
2
, 1; 5

2
; z2/(2− z)2) =

3(2− z)

z2

[

(1− z) ln(1− z)

z
+

2− z

2

]

. (70)

Using eq. (65), we end up with

2F1(1, 2; 4; z) =
6(1− z) ln(1− z)

z3
+

3(2− z)

z2
. (71)

Setting z = −1 yields,

2F1(1, 2; 4;−1) = −12 ln 2 + 9 . (72)

Hence, by using eq. (27) we end up with

I1 = ln 2− 3
4
. (73)

Compare this result with eqs. (40) and (41). In particular, after employing eq. (68), we obtain

r1 =
2

27

d

dw

{

1√
w
ln

(

1 +
√
w

1−√
w

)

− ln 2√
w

}
∣

∣

∣

∣

w=1/9

=
2

27

{

1

w(1− w)
− 1

2w3/2
ln

(

1 +
√
w

1−√
w

)

+
ln 2

2w3/2

}
∣

∣

∣

∣

w=1/9

=
2

27
· 81
8

=
3

4
, (74)

in agreement with eq. (73).
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