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Abstract

In these notes, we summarize some of the most important properties of the matrix
exponential and the matrix logarithm. Nearly all of the results of these notes are well
known and many are treated in textbooks on Lie groups. A few advanced textbooks on
matrix algebra also cover some of the topics of these notes. Some of the results concerning
the matrix logarithm are less well known. These include a series expansion representation
of d lnA(t)/dt (where A(t) is a matrix that depends on a parameter t), which is derived
here but does not seem to appear explicitly in the mathematics literature.

1 Properties of the Matrix Exponential

Let A be a real or complex n× n matrix. The exponential of A is defined via its Taylor series,

eA = I +
∞∑

n=1

An

n!
, (1)

where I is the n× n identity matrix. The radius of convergence of the above series is infinite.
Consequently, eq. (1) converges for all matrices A. In these notes, we discuss a number of
key results involving the matrix exponential and provide proofs of three important theorems.
First, we consider some elementary properties.

Property 1: If
[
A , B

]
≡ AB − BA = 0, then

eA+B = eAeB = eBeA . (2)

This result can be proved directly from the definition of the matrix exponential given by eq.(1).
The details are left to the ambitious reader.

Remarkably, the converse of property 1 is FALSE. One counterexample is sufficient. Con-
sider the 2× 2 complex matrices

A =

(
0 0
0 2πi

)

, B =

(
0 0
1 2πi

)

. (3)

An elementary calculation yields

eA = eB = eA+B = I , (4)
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where I is the 2 × 2 identity matrix. Hence, eq. (2) is satisfied. Nevertheless, it is a simple
matter to check that AB 6= BA, i.e., [A , B] 6= 0.

Indeed, one can use the above counterexample to construct a second counterexample that
employs only real matrices. Here, we make use of the well known isomorphism between the
complex numbers and real 2× 2 matrices, which is given by the mapping

z = a+ ib 7−→

(
a b

−b a

)

. (5)

It is straightforward to check that this isomorphism respects the multiplication law of two
complex numbers. Using eq. (5), we can replace each complex number in eq. (3) with the
corresponding real 2× 2 matrix,

A =







0 0 0 0
0 0 0 0
0 0 0 2π
0 0 −2π 0







, B =







0 0 0 0
0 0 0 0
1 0 0 2π
0 1 −2π 0







.

One can again check that eq. (4) is satisfied, where I is now the 4× 4 identity matrix, whereas
AB 6= BA as before.

It turns out that a small modification of Property 1 is sufficient to avoid any such coun-
terexamples.

Property 2: If et(A+B) = etAetB = etBetA, where t ∈ (a, b) (where a < b) lies within some
open interval of the real line, then it follows that [A , B] = 0.

Property 3: If S is a non-singular matrix, then for any matrix A,

exp
{
SAS−1

}
= SeAS−1 . (6)

The above result can be derived simply by making use of the Taylor series definition [cf. eq.(1)]
for the matrix exponential.

Property 4: For all complex n× n matrices A,

lim
m→∞

(

I +
A

m

)m

= eA .

Property 4 can be verified by employing the matrix logarithm, which is treated in Sections 4
and 5 of these notes.

Property 5: If [A(t) , dA/dt] = 0, then

d

dt
eA(t) = eA(t)dA(t)

dt
=

dA(t)

dt
eA(t) .
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This result is self evident since it replicates the well known result for ordinary (commuting)
functions. Note that Theorem 2 below generalizes this result in the case of [A(t) , dA/dt] 6= 0.

Property 6: If
[
A , [A , B]

]
= 0, then eA B e−A = B + [A , B].

To prove this result, we define B(t) ≡ etABe−tA and compute

dB(t)

dt
= AetABe−tA − etABe−tAA = [A , B(t)] , (7)

d2B(t)

dt2
= A2etABe−tA − 2AetABe−tAA+ etABe−tAA2 =

[
A , [A , B(t)]

]
. (8)

Next, we note that

etA[A , B]e−tA = etA(AB −BA)e−tA = AetABe−tA − etABe−tAA

= AB(t)− B(t)A = [A , B(t)] ,

since A commutes with e±tA. By a similar argument, one obtains

etA
[
A , [A , B]

]
e−tA =

[
A , [A , B(t)]

]
. (9)

By assumption,
[
A , [A , B]

]
= 0. Hence, eq. (9) yields

[
A , [A , B(t)]

]
= 0, and it follows from

eq. (8) that d2B(t)/dt2 = 0. That is, B(t) is a linear function of t, which can be written as

B(t) = B(0) + t

(
dB(t)

dt

)

t=0

.

Noting that B(0) = B and (dB(t)/dt)t=0 = [A , B], we end up with

etA B e−tA = B + t[A , B] . (10)

By setting t = 1, we arrive at the desired result. If the double commutator does not vanish,
then one obtains a more general result, which is presented in Theorem 1 below.

If
[
A , B

]
6= 0, the eAeB 6= eA+B. The general result is called the Baker-Campbell-Hausdorff

formula, which will be proved in Theorem 4 below. Here, we shall prove a somewhat simpler
version.

Property 7: If
[
A , [A , B]

]
=

[
B , [A , B]

]
= 0, then

eAeB = exp
{
A+B + 1

2
[A , B]

}
. (11)

To prove eq. (11), we define a function,

F (t) = etAetB .

We shall now derive a differential equation for F (t). Taking the derivative of F (t) with respect
to t yields

dF

dt
= AetAetB + etAetB B = AF (t) + etABe−tAF (t) =

{
A+B + t[A , B]

}
F (t) , (12)
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after noting that B commutes with eBt and employing eq.(10). By assumption, both A and B,
and hence their sum, commutes with [A , B]. Thus, in light of Property 5 above, it follows
that the solution to eq. (12) is

F (t) = exp
{
t(A+B) + 1

2
t2[A , B]

}
F (0) .

Setting t = 0, we identify F (0) = I, where I is the identity matrix. Finally, setting t = 1
yields eq. (11).

Property 8: For any matrix A,

det expA = exp
{
TrA

}
. (13)

If A is diagonalizable, then one can use Property 3, where S is chosen to diagonalize A. In
this case, D = SAS−1 = diag(λ1 , λ2 , . . . , λn), where the λi are the eigenvalues of A (allowing
for degeneracies among the eigenvalues if present). It then follows that

det eA =
∏

i

eλi = eλ1+λ2+...+λn = exp
{
TrA

}
.

However, not all matrices are diagonalizable. One can modify the above derivation by
employing the Jordan canonical form. But, here I prefer another technique that is applicable
to all matrices whether or not they are diagonalizable. The idea is to define a function

f(t) = det eAt ,

and then derive a differential equation for f(t). If |δt/t| ≪ 1, then

det eA(t+δt) = det(eAteAδt) = det eAt det eAδt = det eAt det(I + Aδt) , (14)

after expanding out eAδt to linear order in δt.
We now consider

det(I + Aδt) = det








1 + A11δt A12δt . . . A1nδt
A21δt 1 + A22δt . . . A2nδt

...
...

. . .
...

An1δt An2δt . . . 1 + Annδ








= (1 + A11δt)(1 + A22δt) · · · (1 + Annδt) +O
(
(δt)2

)

= 1 + δt(A11 + A22 + · · ·+ Ann) +O
(
(δt)2

)
= 1 + δt TrA+O

(
(δt)2

)
.

Inserting this result back into eq. (14) yields

det eA(t+δt) − det eAt

δt
= TrA det eAt +O(δt) .
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Taking the limit as δt → 0 yields the differential equation,

d

dt
det eAt = TrA det eAt . (15)

The solution to this equation is
ln det eAt = t TrA , (16)

where the constant of integration has been determined by noting that (det eAt)t=0 = det I = 1.
Exponentiating eq. (16), we end up with

det eAt = exp
{
t TrA

}
.

Finally, setting t = 1 yields eq. (13).
Note that this last derivation holds for any matrix A (including matrices that are singular

and/or are not diagonalizable).

Remark: For any invertible matrix function A(t), Jacobi’s formula is

d

dt
detA(t) = detA(t) Tr

(

A−1(t)
dA(t)

dt

)

. (17)

Note that for A(t) = eAt, eq. (17) reduces to eq. (15) derived above. Another result related to
eq. (17) is

(
d

dt
det(A+ tB)

)

t=0

= detA Tr(A−1B) .

2 Theorems Involving the Matrix Exponential

In this section, we state and prove some important theorems concerning the matrix exponential.
The proofs of Theorems 1, 2 and 4 can be found in section 5.1 of Ref. [1]1 The proof of Theorem 3
is based on results given in section 6.5 of Ref. [4], where the author also notes that eq. (40)
has been attributed variously to Duhamel, Dyson, Feynman and Schwinger. Theorem 3 is also
quoted in eq. (5.75) of Ref. [5], although the proof of this result is relegated to an exercise.
Finally, we note that a number of additional results involving the matrix exponential that
make use of parameter differentiation techniques (similar to ones employed in this Section)
with applications in mathematical physics problems have been treated in Ref. [6].

The adjoint operator adA, which is a linear operator acting on the vector space of n × n
matrices, is defined by

adA(B) = [A,B] ≡ AB − BA . (18)

Note that
(adA)

n(B) =
[
A, · · · [A, [A,B]] · · ·

]

︸ ︷︷ ︸

n

(19)

involves n nested commutators. We also introduce two auxiliary functions f(z) and g(z) that

1See also Chapters 2 and 5 of Ref. [2] and Chapter 3 of Ref. [3].
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are defined by their power series:

f(z) =
ez − 1

z
=

∞∑

n=0

zn

(n+ 1)!
, |z| < ∞ , (20)

g(z) =
ln z

z − 1
=

∞∑

n=0

(1− z)n

n + 1
, |1− z| < 1 . (21)

These functions satisfy:

f(ln z) g(z) = 1 , for |1− z| < 1 , (22)

f(z) g(ez) = 1 , for|z| < ∞ . (23)

Theorem 1:

eABe−A = exp(adA)(B) ≡
∞∑

n=0

1

n!
(adA)

n(B) = B + [A,B] + 1
2
[A, [A,B]] + · · · . (24)

Proof: Define
B(t) ≡ etABe−tA , (25)

and compute the Taylor series of B(t) around the point t = 0. A simple computation yields
B(0) = B and

dB(t)

dt
= AetABe−tA − etABe−tAA = [A,B(t)] = adA(B(t)) . (26)

Higher derivatives can also be computed. It is a simple exercise to show that:

dnB(t)

dtn
= (adA)

n(B(t)) . (27)

Theorem 1 then follows by substituting t = 1 in the resulting Taylor series expansion of B(t).

Theorem 2:

eA(t) d

dt
e−A(t) = −f(adA)

(
dA

dt

)

= −
dA

dt
−

1

2!

[

A,
dA

dt

]

−
1

3!

[

A,

[

A,
dA

dt

]]

+ · · · , (28)

where f(z) is defined via its Taylor series in eq. (20). Note that in general, A(t) does not
commute with dA/dt. A simple example, A(t) = A + tB where A and B are independent of
t and [A,B] 6= 0, illustrates this point. In the special case where [A(t), dA/dt] = 0, eq. (28)
reduces to

eA(t) d

dt
e−A(t) = −

dA

dt
, if

[

A(t),
dA

dt

]

= 0 . (29)

Proof: Define

B(s, t) ≡ esA(t) d

dt
e−sA(t) , (30)

6



and compute the Taylor series of B(s, t) around the point s = 0. It is straightforward to verify
that B(0, t) = 0 and

dnB(s, t)

dsn

∣
∣
∣
∣
s=0

= −(adA(t))
n−1

(
dA

dt

)

, (31)

for all positive integers n. Assembling the Taylor series for B(s, t) and inserting s = 1 then
yields Theorem 2. Note that if [A(t), dA/dt] = 0, then (dnB(s, t)/dsn)s=0 = 0 for all n ≥ 2,
and we recover the result of eq. (29).

There are two additional forms of Theorem 2, which we now state for completeness.

Theorem 2(a):

d

dt
eA(t) = eA(t) f̃(adA)

(
dA

dt

)

, (32)

where f̃(z) is defined via its Taylor series,

f̃(z) =
1− e−z

z
=

∞∑

n=0

(−1)n

(n+ 1)!
zn , |z| < ∞. (33)

Eq. (32) is an immediate consequence of eq. (28) since,

e−A(t) d

dt
eA(t) =

dA

dt
−

1

2!

[

A,
dA

dt

]

+
1

3!

[

A,

[

A,
dA

dt

]]

− · · · = f̃(adA)

(
dA

dt

)

.

Theorem 2(b):
(

d

dt
eA+tB

)

t=0

= eA f̃(adA)(B) , (34)

where f̃(z) is defined via its Taylor series in eq. (33) and A and B are independent of t.
Eq. (34) defines that Gâteau derivative of eA (also called the directional derivative of eA along
the direction of B).2

Proof: Define A(t) ≡ A + tB, and use eq. (32).

Corollary:

exp(A+ ǫB) = eA
[
1 + ǫ f̃(adA)(B) +O(ǫ2)

]
. (35)

Proof: Starting from Theorem 2(b), let us denote the right hand side of eq. (34) by

F (A,B) ≡ eA f(adA)(B) . (36)

Then, using the definition of the derivative, it follows that
(

d

dt
eA+tB

)

t=0

=

(

lim
ǫ→0

eA+(t+ǫ)B − eA+tB

ǫ

)

t=0

= lim
ǫ→0

eA+ǫB − eA

ǫ
= F (A,B) . (37)

2In the present application, the Gâteau derivative exists, is a linear function of B, and is continuous in A,
in which case it coincides with the Fréchet derivative[11].

7



In particular, eq. (37) implies that,

eA+ǫB = eA + ǫF (A,B) +O(ǫ2) . (38)

Employing the definition of F (A,B) yields eq. (35).

The relation between Theorems 2(a) and 2(b) can be seen more clearly as follows. The
proof of Theorem 2(b) shows that it follows directly from Theorem 2(a). One can also show
that Theorem 2(a) is a consequence of Theorem 2(b) as follows. Working consistently to first
order in ǫ and employing eq. (38) in the final step,

d

dt
eA(t) = lim

ǫ→0

eA(t+ǫ) − eA(t)

ǫ
= lim

ǫ→0

eA(t)+ǫA′(t) − eA(t)

ǫ
= F

(
A(t), A′(t)

)
, (39)

where A′(t) ≡ dA/dt. Finally, multiplying eq. (39) by e−A(t) yields eq. (32). That is, eqs. (32)
and (34) are equivalent forms of the same theorem.

Theorem 3:
d

dt
e−A(t) = −

∫ 1

0

e−sA dA

dt
e−(1−s)A ds . (40)

This integral representation is an alternative version of Theorem 2.

Proof: Consider

d

ds

(
e−sA e−(1−s)B

)
= −Ae−sA e−(1−s)B + e−sA e−(1−s)BB

= e−sA(B − A)e−(1−s)B . (41)

Integrate eq. (41) from s = 0 to s = 1.

∫ 1

0

d

ds

(
e−sA e−(1−s)B

)
= e−sA e−(1−s)B

∣
∣
∣
∣

1

0

= e−A − e−B . (42)

Using eq. (41), it follows that:

e−A − e−B =

∫ 1

0

ds e−sA(B − A)e−(1−s)B . (43)

In eq. (43), we can replace B −→ A+ hB, where h is an infinitesimal quantity:

e−A − e−(A+hB) = h

∫ 1

0

ds e−sABe−(1−s)(A+hB) . (44)

Taking the limit as h → 0,

lim
h→0

1

h

[
e−(A+hB) − e−A

]
= −

∫ 1

0

ds e−sABe−(1−s)A . (45)
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Finally, we note that the definition of the derivative can be used to write:

d

dt
e−A(t) = lim

h→0

e−A(t+h) − e−A(t)

h
. (46)

Using

A(t + h) = A(t) + h
dA

dt
+O(h2) , (47)

it follows that:

d

dt
e−A(t) = lim

h→0

exp

[

−

(

A(t) + h
dA

dt

)]

− exp[−A(t)]

h
. (48)

Thus, we can use the result of eq. (45) with B = dA/dt to obtain

d

dt
e−A(t) = −

∫ 1

0

e−sA dA

dt
e−(1−s)A ds , (49)

which is the result quoted in Theorem 3.
As in the case of Theorem 2, there are two additional forms of Theorem 3, which we now

state for completeness.

Theorem 3(a):

d

dt
eA(t) =

∫ 1

0

e(1−s)A dA

dt
esA ds . (50)

This follows immediately from eq. (40) by taking A → −A and s → 1− s. In light of eqs. (37)
and (39), it follows that,

Theorem 3(b):
(

d

dt
eA+tB

)

t=0

=

∫ 1

0

e(1−s)A B esA ds . (51)

Second proof of Theorems 2 and 2(b): One can now derive Theorem 2 directly from
Theorem 3. First, we multiply eq. (40) by eA(t) and change the integration variable, s → 1− s.
Then, we employ eq. (24) to obtain,

eA(t) d

dt
e−A(t) = −

∫ 1

0

esA
dA

dt
e−sA ds = −

∫ 1

0

exp [adsA]

(
dA

dt

)

ds

= −

∫ 1

0

exp
[
s adA

]
(
dA

dt

)

ds = −
∞∑

n=0

1

n!
(adA)

n

(
dA

dt

)∫ 1

0

sn ds

= −

∞∑

n=0

1

(n + 1)!
(adA)

n

(
dA

dt

)

= −f(adA)

(
dA

dt

)

, (52)

which coincides with Theorem 2.
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Likewise, starting from eq. (51) and making use of eq. (24), it follows that,

(
d

dt

)

t=0

eA+tB = eA
∫ 1

0

e−sAB esA ds = eA
∫ 1

0

ds exp
[
ad−sA

]
(B)

= eA
∫ 1

0

ds exp
[
−s adA

]
(B) = eA

∞∑

n=0

(−1)n

n!
(adA)

n(B)

∫ 1

0

sn ds

= eA
∞∑

n=0

(−1)n

(n + 1)!
(adA)

n(B) = eAf̃(adA)(B) , (53)

which coincides with Theorem 2(b).

Theorem 4: The Baker-Campbell-Hausdorff (BCH) formula

ln
(
eAeB

)
= B +

∫ 1

0

g [exp(t adA) exp(adB)] (A) dt , (54)

where g(z) is defined via its Taylor series in eq.(21). Since g(z) is only defined for |1−z| < 1, it
follows that the BCH formula for ln

(
eAeB

)
converges provided that ‖eAeB−I‖ < 1, where I is

the identity matrix and ‖ · · · ‖ is a suitably defined matrix norm. Expanding the BCH formula,
using the Taylor series definition of g(z), yields:

eAeB = exp
(
A+B + 1

2
[A,B] + 1

12
[A, [A,B]] + 1

12
[B, [B,A]] + . . .

)
, (55)

assuming that the resulting series is convergent. An example where the BCH series does not
converge occurs for the following elements of SL(2,R):

M =

(
−e−λ 0
0 −eλ

)

= exp

[

λ

(
1 0
0 −1

)]

exp

[

π

(
0 1

−1 0

)]

, (56)

where λ is any nonzero real number. It is easy to prove3 that no matrix C exists such that
M = expC. Nevertheless, the BCH formula is guaranteed to converge in a neighborhood of
the identity of any Lie group.

3The characteristic equation for any 2× 2 matrix A is given by

λ2 − (Tr A)λ+ det A = 0 .

Hence, the eigenvalues of any 2× 2 traceless matrix A ∈ sl(2,R) [that is, A is an element of the Lie algebra of
SL(2,R)] are given by λ± = ±(−det A)1/2. Then,

Tr eA = exp(λ+) + exp(λ−) =

{

2 cosh |det A|1/2 , if det A ≤ 0 ,

2 cos |det A|1/2 , if det A > 0 .

Thus, if det A ≤ 0, then Tr eA ≥ 2, and if det A > 0, then −2 ≤ Tr eA < 2. It follows that for any A ∈ sl(2,R),
Tr eA ≥ −2. For the matrix M defined in eq. (56), Tr M = −2 coshλ < −2 for any nonzero real λ. Hence,
no matrix C exists such that M = expC. Further details can be found in section 3.4 of Ref. [7] and in section
10.5(b) of Ref. [8].
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Two corollaries of the BCH formula are noteworthy.

Corollary 1: The Trotter Product formula

lim
k→∞

(
eA/keB/k

)k
= eA+B . (57)

Corollary 2: The Commutator formula

lim
k→∞

(
eA/keB/ke−A/ke−B/k

)k2

= exp
(
[A,B]

)
. (58)

The proofs of eqs. (57) and (58) can be found, e.g., in Section 3.4.1 of Ref. [3].

Proof of the BCH formula: Define

C(t) = ln(etAeB) . (59)

or equivalently,
eC(t) = etAeB . (60)

Using Theorem 1, it follows that for any complex n× n matrix H ,

exp
[
adC(t)

]
(H) = eC(t)He−C(t) = etAeBHe−tAe−B

= etA [exp(adB)(H)] e−tA

= exp(adtA) exp(adB)(H) . (61)

Hence, the following operator equation is valid:

exp
[
adC(t)

]
= exp(t adA) exp(adB) , (62)

after noting that exp(adtA) = exp(t adA). Next, we use Theorem 2 to write:

eC(t) d

dt
e−C(t) = −f(adC(t))

(
dC

dt

)

. (63)

However, we can compute the left-hand side of eq. (63) directly:

eC(t) d

dt
e−C(t) = etAeB

d

dt
e−Be−tA = etA

d

dt
e−tA = −A , (64)

since B is independent of t, and tA commutes with d
dt
(tA). Combining the results of eqs. (63)

and (64),

A = f(adC(t))

(
dC

dt

)

. (65)

Multiplying both sides of eq. (65) by g(exp adC(t)) and using eq. (23) yields:

dC

dt
= g(exp adC(t))(A) . (66)
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Employing the operator equation, eq. (62), one may rewrite eq. (66) as:

dC

dt
= g(exp(t adA) exp(adB))(A) , (67)

which is a differential equation for C(t). Integrating from t = 0 to t = T , one easily solves
for C. The end result is

C(T ) = B +

∫ T

0

g(exp(t adA) exp(adB))(A) dt , (68)

where the constant of integration, B, has been obtained by setting T = 0. Finally, setting
T = 1 in eq. (68) yields the BCH formula.

It is instructive to use eq. (54) to obtain the terms exhibited in eq. (55). In light of the
series definition of g(z) given in eq. (21), we need to compute

I − exp(t adA) exp(adB) = I − (I + t adA + 1
2
t2 ad2

A)(I + adB + 1
2
ad2

B)

= −adB − t adA − t adA adB − 1
2
ad2

B − 1
2
t2 ad2

A , (69)

and
[
I − exp(t adA) exp(adB)

]2
= ad2

B + t adAadB + t adBadA + t2 ad2
A , (70)

after dropping cubic terms and higher. Hence, using eq. (21),

g(exp(t adA) exp(adB)) = I− 1
2
adB−

1
2
t adA−

1
6
t adA adB+

1
3
t adB adA+

1
12
ad2

B+
1
12
t2 ad2

A . (71)

Noting that adA(A) = [A,A] = 0, it follows that to cubic order,

B +

∫ 1

0

g(exp(t adA) exp(adB))(A) dt = B + A− 1
2
[B,A]− 1

12

[
A, [B,A]

]
+ 1

12

[
B, [B,A]

]

= A+B + 1
2
[A,B] + 1

12

[
A, [A,B]

]
+ 1

12

[
B, [B,A]

]
,

(72)

which confirms the result of eq. (55).

Theorem 5: The Zassenhaus formula

The Zassenhaus formula for matrix exponentials is sometimes referred to as the dual of the
Baker-Campbell Hausdorff formula. It provides an expression for exp(A + B) as an infinite
produce of matrix exponentials. It is convenient to insert a parameter t into the argument of
the exponential. Then, the Zassenhaus formula is given by

exp
{
t(A +B)

}
= etAetB exp

{
−1

2
t2
[
A,B

]}
exp

{
1
6
t3
(
2
[
B, [A,B]

]
+
[
A, [A,B]

])}
· · · . (73)

More explicitly [9],

exp
{
t(A+B)

}
= etAetBet

2C2et
3C3 . . . , (74)
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where the Cn are defined recursively as

C2 =
1

2

[
∂2

∂t2

(

e−tBe−tAet(A+B)

)]

t=0

= −1
2
[A,B] , (75)

C3 =
1

3!

[
∂3

∂t3

(

e−t2C2e−tBe−tAet(A+B)

)]

t=0

= −1
3
[A+ 2B,C2] , (76)

and in general

Cn =
1

n!

[
∂n

∂tn

(

e−tn−1Cn−1 . . . e−t2C2e−tBe−tAet(A+B)

)]

t=0

. (77)

We can now rederive eq. (35), which we repeat here for the reader’s convenience.

Corollary:

exp(A+ ǫB) = eA
[
1 + ǫ f̃(adA)(B) +O(ǫ2)

]
. (78)

Proof: In eq. (74), replace A → A/t and t → ǫ. Then it follows immediately that

t2C2 = −1
2
ǫ [A,B] +O(ǫ2) , (79)

t3C3 = −1
3
ǫ [A,C2] +O(ǫ2) =

1

3!
ǫ
[
A, [A,B]

]
+O(ǫ2) =

1

3!
ǫ
(
adA)

2(B) +O(ǫ2) , (80)

and in general

tn+1Cn+1 = −
1

n + 1
ǫ [A,Cn] +O(ǫ2) =

(−1)n

(n+ 1)!
ǫ
(
adA)

n(B) +O(ǫ2) . (81)

Hence, eq. (74) yields,

exp(A+ ǫB) = eAeǫB
∞∏

n=1

exp

{
(−1)n

(n + 1)!
ǫ (adA)

n(B) +O(ǫ2)

}

= eA
[
1 + ǫB +O(ǫ2)

]
∞∏

n=1

{

1 +
(−1)n

(n + 1)!
ǫ (adA)

n(B) +O(ǫ2)

}

= eA

[

1 + ǫ
∞∑

n=0

(−1)n

(n+ 1)!
(adA)

n(B) +O(ǫ2)

]

= eA
[
1 + ǫ f̃(adA)(B) +O(ǫ2)

]
, (82)

after employing eq. (33). The proof is complete.
Techniques for deriving the expansions exhibited in eqs. (55) and (73) can be found in

Refs. [6].
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3 Properties of the Matrix Logarithm

The matrix logarithm should be an inverse function to the matrix exponential. However, in
light of the fact that the complex logarithm is a multi-valued function, the concept of the
matrix logarithm is not as straightforward as was the case of the matrix exponential. Let A
be a complex n× n matrix with no real negative or zero eigenvalues. Then, there is a unique
logarithm, denoted by lnA, all of whose eigenvalues lie in the strip, −π < Im z < π of the
complex z-plane. We refer to lnA as the principal logarithm of A, which is defined on the cut
complex plane, where the cut runs from the origin along the negative real axis. If A is a real
matrix (subject to the conditions just stated), then its principal logarithm is real.4

For an n × n complex matrix A, we can define lnA via its Taylor series expansion, under
the assumption that the series converges. The matrix logarithms is then defined as,

lnA =

∞∑

m=1

(−1)m+1 (A− I)m

m
, (83)

whenever the series converges, where I is the n × n identity matrix. The series converges
whenever ‖A − I‖ < 1, where ‖ · · · ‖ indicates a suitable matrix norm.5 If the matrix A
satisfies (A − I)m = 0 for all integers m > N (where N is some fixed positive integer), then
A − I is called nilpotent and A is called unipotent. If A is unipotent, then the series given
by eq. (83) terminates, and lnA is well defined independently of the value of ‖A − I‖. For
later use, we also note that if ‖A− I‖ < 1, then I − A is non-singular, and (I − A)−1 can be
expressed as an infinite geometric series,

(I − A)−1 =

∞∑

m=0

Am . (84)

One can also define the matrix logarithm by employing the Gregory series,6

lnA = −2

∞∑

m=1

1

2m+ 1

[
(I −A)(I + A)−1

]2m+1
, (85)

which converges under the assumption that all eigenvalues of A possess a positive real part. In
particular, eq. (85) converges for any Hermitian positive definite matrix A. Hence, the region
of convergence of the series in eq. (85) is considerably larger than the corresponding region of
convergence of eq. (83).

Before discussing a number of key results involving the matrix logarithm, we first list some
elementary properties without proofs. Many of the proofs can be found in Chapter 2.3 of
Ref. [2]. A number of properties of the matrix logarithm not treated in Ref. [2] are discussed
in Ref. [11].

4For further details, see Sections 1.5–1.7 of Ref. [11].
5One possible choice is the Hilbert-Schmidt norm, which is defined as ‖X‖ =

[
Tr(X†X)

]1/2
, where the

positive square root is chosen.
6See, e.g. Section 11.3 of Ref. [11].
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Property 1: For all A with ‖A− I‖ < 1, exp(lnA) = A.

Property 2: For all A with ‖A‖ < ln 2, ln(eA) = A.

Note that although ‖A‖ < ln 2 implies that ‖eA − I‖ < 1, the converse is not necessarily
true. This means that it is possible that ln(eA) 6= A despite the fact that the series that defines
ln(eA) via eq. (83) converges. For example, if A = 2πiI, then eA = e2πiI = I and eA − I = 0,
whereas ‖A‖ = 2π > ln 2. In this case, ln(eA) = 0 6= A.

A slightly stronger version of property 2 quoted in Ref. [11] states that for any n × n
complex matrix, ln(eA) = A if and only if | Imλi| < π for every eigenvalue λi of A.

One can extend the definition of the matrix logarithm given in eq. (83) by adopting the
following integral definition given in Chapter 11 of Ref. [11] and previously derived in Ref. [12].
If A is a complex n× n matrix with no real negative or zero eigenvalues,7 then

lnA = (A− I)

∫ 1

0

[
s(A− I) + I

]−1
ds . (86)

A derivation of eq. (86) can be found on pp. 136–137 of Ref. [13]. It is straightforward to check
that if ‖A − I‖ < 1, then one can expand the integrand of eq. (86) in a Taylor series in s
[cf. eq. (84)]. Integrating over s term by term then yields eq. (83). Of course, eq. (86) applies
to a much broader class of matrices, A.

Property 3: Employing the extended definition of the matrix logarithm given in eq. (86), if
A is a complex n× n matrix with no real negative or zero eigenvalues, then exp(lnA) = A.

To prove Property 3, we follow the suggestion of Problem 9 on pp. 31–32 of Ref. [14] and
define a matrix valued function f of a complex variable z,

f(z) = z(A− I)

∫ 1

0

[
sz(A− I) + I

]−1
ds .

It is straightforward to show that f(z) is analytic in a complex neighborhood of the real interval
between z = 0 and z = 1. In a neighborhood of the origin, one can verify by expanding in z
and dropping terms of O(z2) that

exp f(z) = I + z(A− I) . (87)

Using the analyticity of f(z), we can insert z = 1 in eq. (87) to conclude that

exp(lnA) = exp f(1) = A .

Property 4: If A is a complex n × n matrix with no real negative or zero eigenvalues and

|p| ≤ 1, then ln(Ap) = p lnA. In particular, ln(A−1) = − lnA and ln(A1/2) = 1
2
lnA.

7The absence of zero eigenvalues implies that A is an invertible matrix.
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Property 5: If A(t) is a complex n× n matrix with no real negative or zero eigenvalues that
depends on a parameter t, and A commutes with dA/dt, then

d

dt
lnA(t) = A−1dA

dt
=

dA

dt
A−1 .

Property 6: If A is a complex n× n matrix with no real negative or zero eigenvalues and S
is a non-singular matrix, then

ln(SAS−1) = S(lnA)S−1 . (88)

Property 7: Suppose that X and Y are complex n×n complex matrices such that XY = Y X .
Moreover, if |argλj+argµj| < π, for every eigenvalue λj of X and the corresponding eigenvalue
µj of Y , then ln(XY ) = lnX + lnY .

Note that if X and Y do not commute, then the corresponding formula for ln(XY ) is quite
complicated. Indeed, if the matrices X and Y are sufficiently close to I, so that exp(lnX) = X
and ln(eX) = X (and similarly for Y ), then we can apply eq. (55) with A = lnX and B = lnY
to obtain,

ln(XY ) = lnX + lnY + 1
2

[
lnX, lnY

]
+ · · · .

4 Theorems involving the Matrix Logarithm

Before considering the theorems of interest, we prove the following lemma.

Lemma: If B is a non-singular matrix that depends on a parameter t, then

d

dt
B−1(t) = −B−1dB

dt
B−1 . (89)

Proof: eq. (89) is easily derived by taking the derivative of the equation B−1B = I. It follows
that

0 =
d

dt
(B−1B) =

(
d

dt
B−1

)

B +B−1dB

dt
. (90)

Multiplying on the right of eq. (90) by B−1 yields

d

dt
B−1 +B−1dB

dt
B−1 = 0 ,

which immediately yields eq. (89).
A second form of eq. (89) employs the Gâteau (or equivalently the Fréchet) derivative. In

light of eqs. (37) and (39) it follows that,

(
d

dt
(A+ tB)−1

)

t=0

= −A−1BA−1 .
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Theorem 6:

d

dt
lnA(t) =

∫ 1

0

ds
[
sA + (1− s)I

]−1dA

dt

[
sA+ (1− s)I

]−1
. (91)

We provide here two different proofs of Theorem 6. This first proof was derived by my own
analysis, although I expect that others must have produced a similar derivation. The second
proof was inspired by a memo by Stephen L. Adler, which is given in Ref. [15].

Proof 1: Employing the integral representation of lnA given in eq. (86), it follows that

d

dt
lnA =

dA

dt

∫ 1

0

[
s(A− I) + I

]−1
ds+ (A− I)

∫ 1

0

d

dt

[
s(A− I) + I

]−1
ds . (92)

We now make use of eq. (89) to evaluate the integrand of the second integral on the right hand
side of eq. (92), which yields

d

dt
lnA =

dA

dt

∫ 1

0

[
s(A− I) + I

]−1
ds− (A− I)

∫ 1

0

[s(A− I) + I
]−1

s
dA

dt
[s(A− I) + I

]−1
(93)

We can rewrite eq. (93) as follows,

d

dt
lnA =

∫ 1

0

[
s(A− I) + I

][
s(A− I) + I

]−1dA

dt

[
s(A− I) + I

]−1
ds

−

∫ 1

0

s(A− I)[s(A− I) + I
]−1dA

dt
[s(A− I) + I

]−1
, (94)

which simplifies to

d

dt
lnA =

∫ 1

0

[
s(A− I) + I

]−1dA

dt

[
s(A− I) + I

]−1
ds .

Thus, we have established eq. (91).

Proof 2: Start with the following formula,

ln(A +B)− lnA =

∫
∞

0

du

{
(
A+ uI

)−1
−
(
A+B + uI

)−1
}

, (95)

Using the definition of the derivative,

d

dt
lnA(t) = lim

h→0

ln(A(t + h)− lnA(t)

h
= lim

h→0

ln
[
A(t) + hdA/dt+O(h2)

]
− lnA(t)

h
.

Denoting B = hdA/dt and making use of eq. (95),

d

dt
lnA(t) = lim

h→0

1

h

∫
∞

0

du

{
(
A+ uI

)−1
−
(
A+ hdA/dt+ uI

)−1
}

, (96)
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For infinitesimal h, we have

(
A+ hdA/dt+ uI

)−1
=

[
(A+ uI)(I + h(A+ uI)−1dA/dt)

]−1

= (I + h(A+ uI)−1dA/dt)−1(A + uI)−1

= (I − h(A + uI)−1dA/dt)(A+ uI)−1 +O(h2)

= (A+ uI)−1 − h(A + uI)−1dA/dt(A+ uI)−1 +O(h2) . (97)

Inserting this result into eq. (96) yields

d

dt
lnA(t) =

∫
∞

0

du (A+ uI)−1dA

dt
(A+ uI)−1 . (98)

Finally, if we change variables using u = (1− s)/s, it follows that

d

dt
lnA(t) =

∫ 1

0

ds
[
sA + (1− s)I

]−1dA

dt

[
sA+ (1− s)I

]−1
. (99)

which is the result quoted in eq. (91).
A second form of Theorem 6 employs the Gâteau (or equivalently the Fréchet) derivative.

In light of eqs. (37) and (39) it follows that,

Theorem 6(a):

(
d

dt
ln(A+ tB)

)

t=0

=

∫ 1

0

ds
[
sA+ (1− s)I

]−1
B
[
sA+ (1− s)I

]−1
. (100)

Eq. (100) was obtained previously in eq. (3.13) of Ref. [16].

Theorem 7:8

A(t)
d

dt
lnA(t) =

∞∑

n=0

1

n + 1
(A−1adA)

n

(
dA

dt

)

=
dA

dt
+ 1

2
A−1

[

A,
dA

dt

]

+ 1
3
A−2

[

A,

[

A,
dA

dt

]]

+ · · ·

(101)

Proof: A matrix inverse has the following integral representation,

B−1 =

∫
∞

0

e−sB ds , (102)

if the eigenvalues of B lie in the region, Re z > 0, of the complex z-plane. If we perform a
formal differentiation of eq. (102) with respect to B, it follows that

B−n−1 =
1

n!

∫

sne−sB ds . (103)

8I have not seen Theorem 7 anywhere in the literature, although it is difficult to believe that such an
expression has never been derived elsewhere.
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Thus, starting with eq. (98), we shall employ eq. (102) to write,

(A+ uI)−1 =

∫
∞

0

e−v(A+uI) dv . (104)

Inserting eq. (104) into eq. (98) yields,

d

dt
lnA(t) =

∫
∞

0

du

∫
∞

0

dv

∫
∞

0

dw e−v(A+uI)dA

dt
e−w(A+uI)

=

∫
∞

0

dv

∫
∞

0

dw e−(v+w)A ewAdA

dt
e−wA

∫
∞

0

e−(v+w)u du

=

∫
∞

0

dw

∫
∞

0

dv

v + w
e−(v+w)A ewAdA

dt
e−wA . (105)

Next, we replace v with x = v + w, and then interchange the order of integration,

d

dt
lnA(t) =

∫
∞

0

dw

∫
∞

w

dx

x
e−xA ewAdA

dt
e−wA =

∫
∞

0

dx

x
e−xA

∫ x

0

dw ewAdA

dt
e−wA . (106)

We can now employ the result of Theorem 1 [cf. eq. (24)] to obtain

ewAdA

dt
e−wA =

∞∑

n=0

wn

n!
(adA)

n

(
dA

dt

)

.

Inserting this result into eq. (106), we obtain,

d

dt
lnA(t) =

∞∑

n=0

1

n!

∫
∞

0

dx

x
e−xA(adA)

n

(
dA

dt

)∫ x

0

wn dw

=
∞∑

n=0

1

n!

1

n + 1

{∫
∞

0

xne−xA dx

}

(adA)
n

(
dA

dt

)

. (107)

Finally, using eq. (103), we end up with

d

dt
lnA(t) =

∞∑

n=0

1

n+ 1
A−n−1(adA)

n

(
dA

dt

)

. (108)

A(t)
d

dt
lnA(t) =

dA

dt
+ 1

2
A−1

[

A,
dA

dt

]

+ 1
3
A−2

[

A,

[

A,
dA

dt

]]

+ · · · (109)

Note that if [A, dA/dt] = 0, then eq. (109) yields:

d

dt
lnA(t) = A−1dA

dt

= A−1dA

dt
AA−1 = A−1A

dA

dt
A−1

=
dA

dt
A−1 , (110)

which coincides with Property 5 given in the previous section.
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One can rewrite eq. (108) in a more compact form by defining the function,

h(x) ≡ −x−1 ln(1− x) =

∞∑

n=0

xn

n+ 1
. (111)

It then follows that

A(t)
d

dt
lnA(t) = h

(
A−1adA

)
(
dA

dt

)

. (112)

In obtaining eq. (112), we made use of the fact that A−1 commutes with the operator adA. In
more detail,

A−1adA(B)− adA(A
−1B) = A−1(AB −BA)− (AA−1B − A−1BA) = 0 .

A second form of Theorem 7 employs the Gâteau (or equivalently the Fréchet) derivative.
In light of eqs. (37) and (39) it follows that,

Theorem 7(a):
(

d

dt
ln(A+Bt)

)

t=0

= A−1 h
(
A−1adA

)
(B) , (113)

where the function h is defined by its Taylor series given in eq. (111). In particular,

(
d

dt
ln(A+Bt)

)

t=0

= A−1B + 1
2
A−2 [A,B] + 1

3
A−3 [A, [A,B]] + · · · .

Note that if [A,B] = 0, then
[
d ln(A+Bt)/dt

]

t=0
= A−1B = BA−1, which is also a consequence

of Property 5 given in the previous section in the special case of A(t) ≡ A+Bt for t-independent
commuting matrices A and B.
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