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Abstract

In these notes, we summarize some of the most important properties of the matrix
exponential and the matrix logarithm. Nearly all of the results of these notes are well
known and many are treated in textbooks on Lie groups. A few advanced textbooks on
matrix algebra also cover some of the topics of these notes. Some of the results concerning
the matrix logarithm are less well known. These include a series expansion representation
of dln A(t)/dt (where A(t) is a matrix that depends on a parameter t), which is derived
here but does not seem to appear explicitly in the mathematics literature.

1 Properties of the Matrix Exponential

Let A be a real or complex n x n matrix. The exponential of A is defined via its Taylor series,
o An
et =T+ Z o (1)
n=1

where [ is the n x n identity matrix. The radius of convergence of the above series is infinite.
Consequently, eq. (1) converges for all matrices A. In these notes, we discuss a number of
key results involving the matrix exponential and provide proofs of three important theorems.
First, we consider some elementary properties.

Property 1: If [A, B] = AB — BA =0, then
e =e"e” =e"e”. (2)

This result can be proved directly from the definition of the matrix exponential given by eq.(1).
The details are left to the ambitious reader.

Remarkably, the converse of property 1 is FALSE. One counterexample is sufficient. Con-
sider the 2 x 2 complex matrices

A= (g 22@) ’ B= <(1] Q?m) ' (3)

An elementary calculation yields



where [ is the 2 x 2 identity matrix. Hence, eq. (2) is satisfied. Nevertheless, it is a simple
matter to check that AB # BA, i.e., [A, B] #0.

Indeed, one can use the above counterexample to construct a second counterexample that
employs only real matrices. Here, we make use of the well known isomorphism between the
complex numbers and real 2 x 2 matrices, which is given by the mapping

smari — (1), (5)

It is straightforward to check that this isomorphism respects the multiplication law of two
complex numbers. Using eq. (5), we can replace each complex number in eq. (3) with the
corresponding real 2 x 2 matrix,

00 O 0 00 O 0
00 O 0 00 O 0
A= 00 0 2r]”’ b= 10 0 2«
00 =27 0 01 =27 0

One can again check that eq. (4) is satisfied, where [ is now the 4 x 4 identity matrix, whereas
AB # BA as before.

It turns out that a small modification of Property 1 is sufficient to avoid any such coun-
terexamples.

Property 2: If e A8 = etetB = etBetd where t € (a,b) (where a < b) lies within some

open interval of the real line, then it follows that [A, B] = 0.

Property 3: If S is a non-singular matrix, then for any matrix A,
exp{SAS™'} = SetS!. (6)

The above result can be derived simply by making use of the Taylor series definition [cf. eq. (1)]
for the matrix exponential.

Property 4: For all complex n x n matrices A,

lim (I—l—é) =,
m—oo m

Property 4 can be verified by employing the matrix logarithm, which is treated in Sections 4
and 5 of these notes.

Property 5: If [A(t), dA/dt] = 0, then

d QAW) A dA(t) _ dA()

A(t)
dt dt dt '

e



This result is self evident since it replicates the well known result for ordinary (commuting)
functions. Note that Theorem 2 below generalizes this result in the case of [A(t), dA/dt] # 0.

Property 6: If [A, (A, BH =0, then e Be™* = B+ [A, B].

To prove this result, we define B(t) = ¢4 Be ' and compute

%}(ft) _ AetABe_tA _ etABe_tAA — [A, B(t)] , (7)
@B(t) _ A% Be ™ — 24 Be M A + e Be 1 A% = [A A B(t)H (8)
a2 o |

Next, we note that
A, Ble™™ = e (AB — BA)e™™ = A Be™' — 4 Be A
= AB(t) = B()A = [A, B(t)],
since A commutes with e***. By a similar argument, one obtains
AL 1A, Ble = (A, [4, B, 9)

By assumption, [A, [A, B]] = 0. Hence, eq. (9) yields [A, [A, B(t)ﬂ = 0, and it follows from
eq. (8) that d>B(t)/dt* = 0. That is, B(t) is a linear function of ¢, which can be written as

B(t) = B(0) + t (ﬂ’f)) |
at ),_,
Noting that B(0) = B and (dB(t)/dt);—o = [A, B], we end up with
e Be ™ =B +t[A, B]. (10)

By setting t = 1, we arrive at the desired result. If the double commutator does not vanish,
then one obtains a more general result, which is presented in Theorem 1 below.

If [A , B] # 0, the eAe? # eATB. The general result is called the Baker-Campbell-Hausdorff
formula, which will be proved in Theorem 4 below. Here, we shall prove a somewhat simpler
version.

Property 7: If [A, [A, BH B, [A, BH =0, then

ete? = exp{A+ B+1[A, B]}. (11)
To prove eq. (11), we define a function,
F(t) = et

We shall now derive a differential equation for F'(t). Taking the derivative of F'(t) with respect
to t yields
dF

= AeeP + el B = AF(t) + e Be " F(t) = {A+ B +t[A, B|}F(t), (12)
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after noting that B commutes with e?* and employing eq. (10). By assumption, both A and B,
and hence their sum, commutes with [A, B]. Thus, in light of Property 5 above, it follows
that the solution to eq. (12) is

F(t) = exp{t(A+ B) + it*[A, B]} F(0).

Setting ¢ = 0, we identify F'(0) = I, where [ is the identity matrix. Finally, setting ¢t = 1
yields eq. (11).

Property 8: For any matrix A,
detexp A = exp{Tr A} . (13)

If A is diagonalizable, then one can use Property 3, where S is chosen to diagonalize A. In
this case, D = SAS™! = diag(A\1, A2, ..., \n), where the \; are the eigenvalues of A (allowing
for degeneracies among the eigenvalues if present). It then follows that

dete? = H et = MRt t A — exp{Tr A}

However, not all matrices are diagonalizable. One can modify the above derivation by
employing the Jordan canonical form. But, here I prefer another technique that is applicable
to all matrices whether or not they are diagonalizable. The idea is to define a function

f(t) = det e,
and then derive a differential equation for f(¢). If [§t/t| < 1, then
det e = det(eMe!) = det e det e = det e det(I + Adt), (14)

after expanding out e4% to linear order in dt.
We now consider

1+ Allét A125t e Alnét
Apbt 14 At ... Agdt
det(I + Ast) =det |~ e

Apiot Apodt .14+ Apd
= (1+ Ap10t)(1 + Agbt) - - (1 + A,,0t) + O((6¢)%)
=1+ 6t(A + A+ -+ Ap) + O((01)%) = 1+ 6t Tr A+ O((61)?) .

Inserting this result back into eq. (14) yields

det At _ Jet At
ot

= Tr A det e 4+ O(6t) .



Taking the limit as 6t — 0 yields the differential equation,

% det e = Tr A det e . (15)

The solution to this equation is
Indete =t Tr A, (16)

where the constant of integration has been determined by noting that (det e),—o = det I = 1.
Exponentiating eq. (16), we end up with

det et = exp{t Tr A} )

Finally, setting ¢t = 1 yields eq. (13).
Note that this last derivation holds for any matrix A (including matrices that are singular
and/or are not diagonalizable).

Remark: For any invertible matrix function A(t), Jacobi’s formula is

d B 1, dA()
p det A(t) = det A(t) Tr (A (t)w) . (17)
Note that for A(t) = e eq. (17) reduces to eq. (15) derived above. Another result related to
eq. (17) is

<i det(A+tB)) =det A Tr(A™'B).
dt -0

2 Theorems Involving the Matrix Exponential

In this section, we state and prove some important theorems concerning the matrix exponential.
The proofs of Theorems 1, 2 and 4 can be found in section 5.1 of Ref. [1]' The proof of Theorem 3
is based on results given in section 6.5 of Ref. [4], where the author also notes that eq. (40)
has been attributed variously to Duhamel, Dyson, Feynman and Schwinger. Theorem 3 is also
quoted in eq. (5.75) of Ref. [5], although the proof of this result is relegated to an exercise.
Finally, we note that a number of additional results involving the matrix exponential that
make use of parameter differentiation techniques (similar to ones employed in this Section)
with applications in mathematical physics problems have been treated in Ref. [6].

The adjoint operator ad4, which is a linear operator acting on the vector space of n x n
matrices, is defined by

ads(B) = [A,B] = AB — BA. (18)
Note that
(adA)n(B) = [A>"'[A’ [A’ BH l (19)

involves n nested commutators. We also introduce two auxiliary functions f(z) and g(z) that

1See also Chapters 2 and 5 of Ref. [2] and Chapter 3 of Ref. [3].
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are defined by their power series:

e —1 = 2"
= prm— 2
f(z)=— ;(HH)!, 2] < o0, (20)
Inz (1 —2)"
= = 1— 1 21
e R e RLEE L 21)
These functions satisfy:
f(nz)g(z) =1, for [1—2| <1, (22)
f(z)ge®) =1, for|z| < oo (23)
Theorem 1:
= 1
e’ Be " = exp(ada)(B) = > —(ada)"(B) = B +[A, B] + LA [A,B]) +-- . (24)
n=0
Proof: Define
B(t) = e Be 4, (25)

and compute the Taylor series of B(t) around the point t = 0. A simple computation yields
B(0) = B and

dB(t
% = Ae"Be " — e BeT 4 A = [A, B(t)] = ada(B(t)). (26)
Higher derivatives can also be computed. It is a simple exercise to show that:
d"B(t) n
) — (ada)(B(1)). (27)

Theorem 1 then follows by substituting ¢ = 1 in the resulting Taylor series expansion of B(t).

Theorem 2:

d dA dA 1], dA] 1 dA
Alt) 2 —A®) — ) T A A A 2
T f(ad"‘)<dt) dt 2!{ ’dt] 3!{ { ’dt”+ &)

where f(z) is defined via its Taylor series in eq. (20). Note that in general, A(t) does not
commute with dA/dt. A simple example, A(t) = A+ tB where A and B are independent of
t and [A, B] # 0, illustrates this point. In the special case where [A(t),dA/dt] = 0, eq. (28)
reduces to

d dA dA
At 2 —AR) 24 if |A(t). =—=1| =0. 2
< a a [ (®); dt} 0 (29)
Proof: Define d
B(S, t) = €SA(t)%€_SA(t) 5 (30)



and compute the Taylor series of B(s,t) around the point s = 0. It is straightforward to verify
that B(0,t) = 0 and
d"B(s,t) 4 [dA
—_— = —(ad )" — 31
dsn I (a A(t)) (dt) ? ( )
for all positive integers n. Assembling the Taylor series for B(s,t) and inserting s = 1 then

yields Theorem 2. Note that if [A(t),dA/dt] = 0, then (d"B(s,t)/ds")s—o = 0 for all n > 2,
and we recover the result of eq. (29).

There are two additional forms of Theorem 2, which we now state for completeness.

Theorem 2(a):

d awy _ aw dA
940 — A0 faa) (A1) (32)
where f(z) is defined via its Taylor series,
< l—e? X (—1)
= = " . 33
fo) ===y <o (33)
Eq. (32) is an immediate consequence of eq. (28) since,
d dA 1 dA 1 dA = dA
—AM) Z A — 20— A A = == - .
T dt 2![ ’dt}+3![ [ ’dt” f(ad"‘)<dt>
Theorem 2(b):
d ~
(%eAHB) = ¢ f(ady)(B), (34)
t=0

where f(z) is defined via its Taylor series in eq. (33) and A and B are independent of t.
Eq. (34) defines that Gateau derivative of e (also called the directional derivative of e? along
the direction of B).2

Proof: Define A(t) = A+ ¢B, and use eq. (32).

Corollary:
exp(A + €B) = ¢ [1+ e f(ada)(B) + O(e”)] . (35)
Proof: Starting from Theorem 2(b), let us denote the right hand side of eq. (34) by
F(A,B) = e f(ady)(B). (36)

Then, using the definition of the derivative, it follows that

d A+(t+€)B _ ,A+tB A+eB _ A
(—eA“B) - (lim ‘ < ) —lim S % —F(A,B). (37
t=0 t=0

dt e—0 € e—0 €

’In the present application, the Gateau derivative exists, is a linear function of B, and is continuous in A,
in which case it coincides with the Fréchet derivative[11].
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In particular, eq. (37) implies that,
B = e L eF(A, B) + O(). (38)

Employing the definition of F'(A, B) yields eq. (35).

The relation between Theorems 2(a) and 2(b) can be seen more clearly as follows. The
proof of Theorem 2(b) shows that it follows directly from Theorem 2(a). One can also show
that Theorem 2(a) is a consequence of Theorem 2(b) as follows. Working consistently to first
order in € and employing eq. (38) in the final step,

A(t)+eA'(t) _ LA(D)
A oaw gy T T g€ = F(A(t), A'(t)), (39)

dt e—0 € e—0 €

where A'(t) = dA/dt. Finally, multiplying eq. (39) by e~4® yields eq. (32). That is, eqs. (32)
and (34) are equivalent forms of the same theorem.

Theorem 3:

d —A(t) /1 —sA dA —(1-s)A
_ J— saA "~ s . 4
n i e ik ds (40)

This integral representation is an alternative version of Theorem 2.

Proof: Consider

i (€_SA 6_(1_S)B) — _Ae—sA e—(l—s)B + e—sA 6_(1_S)BB

ds
— e A (B — A)e (1798 (41)

Integrate eq. (41) from s =0 to s = 1.

1 1
/ i (6—3A e—(l—s)B) — e—sA 6_(1_S)B —e A e B (42)
0 ds 0
Using eq. (41), it follows that:
1
e —e = / dse™ (B — A)e" 1798 (43)
0

In eq. (43), we can replace B — A + hB, where h is an infinitesimal quantity:
1
€_A . 6_(A+hB) — h/ ds 6—SAB€—(1—S)(A+hB) ) (44)
0
Taking the limit as h — 0,

1 1
}lLiII%) 5 [e_(A+hB) —e ] = —/ dse *ABe~ (1794 (45)
- 0



Finally, we note that the definition of the derivative can be used to write:

d a0 e~ Alt+h) _ ,—A(t)
at T I ‘ (46)
Using
dA 9

it follows that:

exp [— <A( ) + h%)] — exp[—A(t)] |

4 aw

T I (48)
Thus, we can use the result of eq. (45) with B = dA/dt to obtain
d _aw /1 —aa A 1 ga
L emaw — s4 82 (194 g 4
P i e —re s, (49)

which is the result quoted in Theorem 3.
As in the case of Theorem 2, there are two additional forms of Theorem 3, which we now
state for completeness.

Theorem 3(a):

d AW _ /1 aoga dA 4
S - S d .
pr i e e ds (50)

This follows immediately from eq. (40) by taking A — —A and s — 1 — s. In light of egs. (37)
and (39), it follows that,

Theorem 3(b):

1
( a A+tB) = / !4 Betds. (51)
dt o Jo

Second proof of Theorems 2 and 2(b): One can now derive Theorem 2 directly from
Theorem 3. First, we multiply eq. (40) by eA®) and change the integration variable, s — 1 — s.
Then, we employ eq. (24) to obtain,

d b oadA ! dA
A(t) ¥ —A(t) _ sA UL —sA — _
e e /0 e e ds /0 exp [ads] <dt> ds
1 o0 1
— —/ exp[sadA} (dA) Zni ada)"” (dA)/ s"ds
0 - 0

°°0 L () =~ (4 (52)

n

which coincides with Theorem 2.



Likewise, starting from eq. (51) and making use of eq. (24), it follows that,

1 1
(5) evo=et [eperas = [ el o)
at),_, 0 0

n

= eA/O ds exp[—sad](B) = e* Z (=1)

n!

wa(3) [ s

n=0

=t > U aa(8) = et 8), 53)

n=0

which coincides with Theorem 2(b).

Theorem 4: The Baker-Campbell-Hausdorff (BCH) formula

In (e”e”) = B+ /0 g lexp(tady)exp(adp)] (A) dt, (54)

where g(z) is defined via its Taylor series in eq. (21). Since g(z) is only defined for |1 —z| < 1, it
follows that the BCH formula for In (e#e?) converges provided that ||ete® —I|| < 1, where I is
the identity matrix and || - - - || is a suitably defined matrix norm. Expanding the BCH formula,
using the Taylor series definition of g(z), yields:

ete? = exp (A+B—|- %[A,B] + % [A, [A, B]] + % 1B, [B, Al +) ' (55)

assuming that the resulting series is convergent. An example where the BCH series does not
converge occurs for the following elements of SL(2,R):

w (7 2 bR

where X is any nonzero real number. It is easy to prove® that no matrix C exists such that
M = exp C. Nevertheless, the BCH formula is guaranteed to converge in a neighborhood of
the identity of any Lie group.

3The characteristic equation for any 2 x 2 matrix A is given by
M — (Tr A)A+det A=0.

Hence, the eigenvalues of any 2 x 2 traceless matrix A € s1(2,R) [that is, A is an element of the Lie algebra of
SL(2,R)] are given by Ay = &(—det A)Y/2. Then,

2 cosh |det A|Y/?, ifdet A <0,

Tr e = exp(A\y) +exp(A_) =
P(A+) p(A-) {2005|det A2 ifdet A>0.

Thus, if det A < 0, then Tr e > 2, and if det A > 0, then —2 < Tr e < 2. It follows that for any A € sl(2,R),

Tr e4 > —2. For the matrix M defined in eq. (56), Tr M = —2cosh A < —2 for any nonzero real . Hence,

no matrix C exists such that M = exp C. Further details can be found in section 3.4 of Ref. [7] and in section

10.5(b) of Ref. [8].
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Two corollaries of the BCH formula are noteworthy.

Corollary 1: The Trotter Product formula

lim (eA/keB/k)k = A8 (57)
k—oo

Corollary 2: The Commutator formula

lim (eA/keB/ke_A/ke_B/k)k2 = exp([A, B]) . (58)

k—o00

The proofs of egs. (57) and (58) can be found, e.g., in Section 3.4.1 of Ref. [3].

Proof of the BCH formula: Define

or equivalently,
eCl) = teB | (60)

Using Theorem 1, it follows that for any complex n x n matrix H,
exp [adew ] (H) = e“OHe W = 4B ge—tAe—B
= ' [exp(adp)(H)] e
= exp(ady4) exp(adp)(H) . (61)
Hence, the following operator equation is valid:
exp [adc(] = exp(tada)exp(adp) (62)

after noting that exp(ad;4) = exp(tada). Next, we use Theorem 2 to write:

d dac
Ct) Z—C) — _ -~
e e f(adc) (dt) - (63)
However, we can compute the left-hand side of eq. (63) directly:
ec(t)%e—c(t) _ etAeB%e_Be_tA _ etA%e_tA — A, (64)

since B is independent of ¢, and tA commutes with 4 (¢4). Combining the results of eqs. (63)
and (64),

dcC
A= Jtadew) (%) (65)
Multiplying both sides of eq. (65) by g(expade() and using eq. (23) yields:
e
I glexpade)(4). (66)
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Employing the operator equation, eq. (62), one may rewrite eq. (66) as:

dc

- = g(exp(tada)exp(adg))(A), (67)

which is a differential equation for C(t). Integrating from ¢t = 0 to ¢t = T', one easily solves
for C'. The end result is

C(T)=1B +/0 g(exp(tada)exp(adp))(A)dt, (68)

where the constant of integration, B, has been obtained by setting 7" = 0. Finally, setting
T =1 in eq. (68) yields the BCH formula.

It is instructive to use eq. (54) to obtain the terms exhibited in eq. (55). In light of the
series definition of g(z) given in eq. (21), we need to compute

I —exp(tads)exp(adp) =1 — (I +tads + 3t*ad?)(I + adp + Sady)
= —adp —tady —tadygadg — %adzB — %tz ad?, (69)

and
[ —exp(tada) exp(adB)F = ad} + tadaadp + tadgads + t*ad? (70)

after dropping cubic terms and higher. Hence, using eq. (21),
glexp(tada)exp(adp)) = I —jadp—itads—itadsadp+itadgads+ %ad% +Lt? ad? . (71)

Noting that ada(A) = [A, A] = 0, it follows that to cubic order,

B+ /01 glexp(tada)exp(adp))(A)dt = B+ A— 1B, Al — L[A,[B,A]] + & [B, [B, A

= A+ B+ 1A B+ L[A A B + 5B, (B, 4],

(72)
which confirms the result of eq. (55).

Theorem 5: The Zassenhaus formula

The Zassenhaus formula for matrix exponentials is sometimes referred to as the dual of the
Baker-Campbell Hausdorff formula. It provides an expression for exp(A + B) as an infinite
produce of matrix exponentials. It is convenient to insert a parameter ¢ into the argument of
the exponential. Then, the Zassenhaus formula is given by

exp{t(A + B)} = ¢! 4etB exp{—%t2 [A, B] } exp{%t?’ (2[3, [A, BH + [A, [A, BH)} e (73)

More explicitly [9], ot s
exp{t(A+ B)} =Pt e (74)
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where the C,, are defined recursively as

1[0*( 5 _

Cy = 3 {ﬁ (e Be tAet(AJFB))L_O = —1[A, B, (75)
1[0 —t2Cy —tB _—tA t(A+B) 1

0325 % € € € e :_§[A+2B,C2], (76)

: t=0
and in general
= l {ﬁ (e—tnlcnl o e—tZC’ge—tBe—tAet(A-i-B))] . (77)

n! | Ot" —o0

We can now rederive eq. (35), which we repeat here for the reader’s convenience.

Corollary:
exp(A + €B) = ¢ [1+ e f(ada)(B) + O(e”)] . (78)

Proof: In eq. (74), replace A — A/t and t — e. Then it follows immediately that

t?Co = —3€[A, B]+ O(¢) (79)
1

180y = —Le[A,Cy) + O(e2) = %e A4 B]] + O() = e (ada)(B) + O(), (80)

and in general

n+1 _ 1 2\ __ (_1)n n 2
" Chyr = B €[A,C,]+ O(€) = CFL e (ada)"(B) + O(€) . (81)
Hence, eq. (74) yields,
(1)

exp(A+eB) = ee? [T exp { n)! e(ada)"(B) + 0(62)}

(n+1

=e' [1+eB+ 0O(e)] H {1 - (= )n e (ads)"(B) + 0(62)}

n=1

(n+

1+e¢ Z% (_1)1:! (ada)"(B) + (’)(62)]

= eA[1+ ¢ f(ada)(B) + O())], (82)
after employing eq. (33). The proof is complete.

Techniques for deriving the expansions exhibited in egs. (55) and (73) can be found in
Refs. [6].
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3 Properties of the Matrix Logarithm

The matrix logarithm should be an inverse function to the matrix exponential. However, in
light of the fact that the complex logarithm is a multi-valued function, the concept of the
matrix logarithm is not as straightforward as was the case of the matrix exponential. Let A
be a complex n X n matrix with no real negative or zero eigenvalues. Then, there is a unique
logarithm, denoted by In A, all of whose eigenvalues lie in the strip, —m < Im z < 7 of the
complex z-plane. We refer to In A as the principal logarithm of A, which is defined on the cut
complex plane, where the cut runs from the origin along the negative real axis. If A is a real
matrix (subject to the conditions just stated), then its principal logarithm is real.*

For an n x n complex matrix A, we can define In A via its Taylor series expansion, under
the assumption that the series converges. The matrix logarithms is then defined as,

InA= i(—nmﬂﬂ, (83)

m

whenever the series converges, where [ is the n x n identity matrix. The series converges
whenever ||[A — I|| < 1, where ||---|| indicates a suitable matrix norm.® If the matrix A
satisfies (A — I)™ = 0 for all integers m > N (where N is some fixed positive integer), then
A — I is called nilpotent and A is called unipotent. If A is unipotent, then the series given
by eq. (83) terminates, and In A is well defined independently of the value of ||A — I]|. For
later use, we also note that if ||[A — I|| < 1, then T — A is non-singular, and (I — A)~! can be
expressed as an infinite geometric series,

(I-A)"= i A™ . (84)

One can also define the matrix logarithm by employing the Gregory series,®

oo

A= —2 2_:1 2m1+ (= A+ AT (85)

which converges under the assumption that all eigenvalues of A possess a positive real part. In
particular, eq. (85) converges for any Hermitian positive definite matrix A. Hence, the region
of convergence of the series in eq. (85) is considerably larger than the corresponding region of
convergence of eq. (83).

Before discussing a number of key results involving the matrix logarithm, we first list some
elementary properties without proofs. Many of the proofs can be found in Chapter 2.3 of

Ref. [2]. A number of properties of the matrix logarithm not treated in Ref. [2] are discussed
in Ref. [11].

4For further details, see Sections 1.5-1.7 of Ref. [11].

®One possible choice is the Hilbert-Schmidt norm, which is defined as || X| = [Tr(XTX)}l/Q, where the
positive square root is chosen.
6See, e.g. Section 11.3 of Ref. [11].
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Property 1: For all A with ||[A — ]| <1, exp(In A) = A.

Property 2: For all A with ||A| <In2, In(e?) = A.

Note that although ||A|| < In2 implies that [le — I]| < 1, the converse is not necessarily
true. This means that it is possible that In(e?) # A despite the fact that the series that defines
In(e4) via eq. (83) converges. For example, if A = 27il, then e* = €™ = [ and e — I = 0,
whereas ||A|| = 27 > In2. In this case, In(e?) = 0 # A.

A slightly stronger version of property 2 quoted in Ref. [11] states that for any n x n
complex matrix, In(e) = A if and only if | Im \;| < 7 for every eigenvalue \; of A.

One can extend the definition of the matrix logarithm given in eq. (83) by adopting the
following integral definition given in Chapter 11 of Ref. [11] and previously derived in Ref. [12].
If Ais a complex n x n matrix with no real negative or zero eigenvalues,” then

1

lnA:(A—I)/l[s(A—I)+I]_ds. (86)

A derivation of eq. (86) can be found on pp. 136-137 of Ref. [13]. It is straightforward to check
that if [|[A — I|| < 1, then one can expand the integrand of eq. (86) in a Taylor series in s
[cf. eq. (84)]. Integrating over s term by term then yields eq. (83). Of course, eq. (86) applies
to a much broader class of matrices, A.

Property 3: Employing the extended definition of the matrix logarithm given in eq. (86), if
A is a complex n x n matrix with no real negative or zero eigenvalues, then exp(ln A) = A.

To prove Property 3, we follow the suggestion of Problem 9 on pp. 31-32 of Ref. [14] and
define a matrix valued function f of a complex variable z,

1

f(z) :z(A—I)/O [s2(A—=1)+1] "ds.

It is straightforward to show that f(z) is analytic in a complex neighborhood of the real interval
between z = 0 and z = 1. In a neighborhood of the origin, one can verify by expanding in z
and dropping terms of O(z?) that

expf(2)=1+2(A—-1). (87)
Using the analyticity of f(z), we can insert z = 1 in eq. (87) to conclude that
exp(ln A) =exp f(1) = A.

Property 4: If A is a complex n X n matrix with no real negative or zero eigenvalues and
lp| <1, then In(AP) = pln A. In particular, In(A™") = —In A and In(A"/?) = I In A.

"The absence of zero eigenvalues implies that A is an invertible matrix.
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Property 5: If A(t) is a complex n X n matrix with no real negative or zero eigenvalues that
depends on a parameter ¢, and A commutes with dA/dt, then

d A dA

Property 6: If A is a complex n X n matrix with no real negative or zero eigenvalues and S
is a non-singular matrix, then

In(SAS™) = S(InA)S~'. (88)

Property 7: Suppose that X and Y are complex n xn complex matrices such that XY =Y X.
Moreover, if |arg \;+arg ;| < 7, for every eigenvalue A; of X and the corresponding eigenvalue
pj of Y, then In(XY)=InX +1InY.

Note that if X and Y do not commute, then the corresponding formula for In(XY") is quite
complicated. Indeed, if the matrices X and Y are sufficiently close to I, so that exp(ln X) = X
and In(e®) = X (and similarly for Y), then we can apply eq. (55) with A=1In X and B=InY
to obtain,

In(XY)=IX+InY +3mX Y]+ ..

4 Theorems involving the Matrix Logarithm

Before considering the theorems of interest, we prove the following lemma.
Lemma: If B is a non-singular matrix that depends on a parameter ¢, then

d dB
—B'(t)=-B'—B7".
7B ) o (89)

Proof: eq.(89) is easily derived by taking the derivative of the equation B~'B = I. It follows

that p y B
0=—(B'B)=(—-B"'|B+B'—. 90
Al (dt ) TE (50)
Multiplying on the right of eq. (90) by B~! yields
d dB
—B'+B ' —pl=0
a7 ’

which immediately yields eq. (89).
A second form of eq. (89) employs the Gateau (or equivalently the Fréchet) derivative. In
light of egs. (37) and (39) it follows that,

(i(A + tB)—l) =-A"'BAT!.
dt —o
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Theorem 6:

1
_1dA _

ilnA(t) :/ ds [sA+ (1 — s)I] 1d—[sA+ (1—s)1]"". (91)

dt 0 dt

We provide here two different proofs of Theorem 6. This first proof was derived by my own

analysis, although I expect that others must have produced a similar derivation. The second

proof was inspired by a memo by Stephen L. Adler, which is given in Ref. [15].

Proof 1: Employing the integral representation of In A given in eq. (86), it follows that

d dA (! 1 Lda -

1

ds. (92)
We now make use of eq. (89) to evaluate the integrand of the second integral on the right hand
side of eq. (92), which yields

%mA:% 0 [s(A—I)H}‘lds—(A—J)/O [s(A—I)+1}‘1s%[s(,4—1)+1}‘1 (93)

We can rewrite eq. (93) as follows,

%mA:/O [s(A—1)+1] [s(A—I)+I]_l%[s(/l—])+]]_lds
—/0 s(A—[)[s(A—I)+[}_1%[s(A—])+I]_1, (94)

which simplifies to

d ! _1dA 4
—InA= A-D+1| —|s(A=1)+1| ds.
70 /0 [s( )+ 1] o [s( )+ 1] ds
Thus, we have established eq. (91).
Proof 2: Start with the following formula,
ln(A—l—B)—lnAz/ du{(A+uI)_1—(A+B+uI)_1}, (95)
0

Using the definition of the derivative,

- In|A(t) + hdA/dt h?)| —In A(t
A = i AR A In[A@) + hdA/dt+ O(R)] —In A()
dt h—0 h h—0 h

Denoting B = hdA/dt and making use of eq. (95),

o0

D a@ =tim - [~ { (A ul) ™ —(A+ hdA/dt + ul)_l} , (9%)

h—0 0
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For infinitesimal h, we have

1 -1

(A+hdA/dt +ul)”

[(A+ul)(I 4+ WA +ul)" dA/dt)] ™

= (I +h(A+ul) 'dA/dt) ™ (A+ul)™

= (I — h(A+ul) ™ dA/dt) (A +ul)™" + O(h?)
= (A+ul)™ —h(A4ul) ' dA/dt(A +ul)" 4+ O(h?) . (97)
Inserting this result into eq. (96) yields

jtlnA() /Ooodu (A+ul)- O;A(Amn (98)

Finally, if we change variables using u = (1 — s)/s, it follows that

CZlnA() /Ods [sA+ (1—s)I]" 10;1[A+(1—s)1} ' (99)

which is the result quoted in eq. (91).
A second form of Theorem 6 employs the Gateau (or equivalently the Fréchet) derivative.
In light of egs. (37) and (39) it follows that,

Theorem 6(a):

d ! - -
<E In(A + tB)) = / ds [sA+ (1 —s)I] ' B[sA+ (1 —s)1]”" (100)
t=0 0
Eq. (100) was obtained previously in eq. (3.13) of Ref. [16].
Theorem 7:8
= o (dAY _ dA L dA e dA
(101)
Proof: A matrix inverse has the following integral representation,
B! :/ e Bds, (102)
0

if the eigenvalues of B lie in the region, Rez > 0, of the complex z-plane. If we perform a
formal differentiation of eq. (102) with respect to B, it follows that

1

B—n—l _
nl

s"e B ds. (103)

81 have not seen Theorem 7 anywhere in the literature, although it is difficult to believe that such an
expression has never been derived elsewhere.
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Thus, starting with eq. (98), we shall employ eq. (102) to write,
(A+ul)™ = / e~vAtuD) gy
0

Inserting eq. (104) into eq. (98) yields,

lnA / du / dv / dw e~ vAFul) ZA —w(Atul)
:/ dU/ dw e~ (vtw)A e“’Aﬁe—wA/ o~ (vHw)u gy,
dt ;

/ dw/ (v+w)A ewAﬁe—wA ]
vtw© dt

Next, we replace v with x = v 4+ w, and then interchange the order of integration,

lnA / d’LU/ d.ﬁ(: —:(:A wAdA wA:/ d_xe—xA/ dw 6wA%6—wA‘
dt 0 0 dt

We can now employ the result of Theorem 1 [cf. eq. (24)] to obtain

dA " dA
wA —wA __ s n [ 24
e = gy eda) <dt) ’

Inserting this result into eq. (106), we obtain,

d:c _IA dA .
lnA Zn'/ (ad4)” (E)/o w" dw
1 1 o L (dA
_;an-i-l{/o e dx}(adA) (dt)'

Finally, using eq. (103), we end up with

d =1 dA
In A(t At n( 22
g A = Z_:On+1 (ada) (dt)

AL mag) =2 1 [A,%} Iy [A, {A’%H L

dt dt dt dt
Note that if [A,dA/dt] = 0, then eq. (109) yields:
d _,dA
g Al = AT
= 14_1%1414_1 = A_IA%A_1
dt dt
dA
= EA ,

which coincides with Property 5 given in the previous section.
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One can rewrite eq. (108) in a more compact form by defining the function,

= -1 — — S [L'n
hz) = —2'In(1 — z) nZ:o — (111)
It then follows that
A(t)ilnA(t) = h(A 'ad,) a4 (112)
dt B Y \at )

In obtaining eq. (112), we made use of the fact that A~! commutes with the operator ad4. In
more detail,

A7'ady(B) —ada(A™'B) = A"Y(AB — BA) — (AA™'B— A"'BA) = 0.

A second form of Theorem 7 employs the Gateau (or equivalently the Fréchet) derivative.
In light of egs. (37) and (39) it follows that,

Theorem 7(a):

(% In(A + Bt)) = A7 h(A™ada)(B), (113)

t=0
where the function h is defined by its Taylor series given in eq. (111). In particular,

t=0

Note that if [A, B] = 0, then [dIn(A+Bt)/dt],_ = A~'B = BA™', which is also a consequence

of Property 5 given in the previous section in the special case of A(t) = A+ Bt for t-independent
commuting matrices A and B.
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