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Abstract

In these notes, we compute the renormalized 1PI two-point Green function for elec-
trons in QED at one loop order. Renormalization is carried out in the modified minimal
subtraction scheme (MS) and the on-shell (OS) schemes, in a general covariant gauge
using dimensional regularization. The wave function renormalization and mass renor-
malization constants, Zs and Z,, are explicitly evaluated. Special attention is given to
the dependence on the gauge parameter. In the OS scheme, Z5 exhibits an infrared
divergence for (almost) all possible values of the gauge parameter, with one exception
(corresponding to the Yennie gauge).

I. Introduction

The bare QED Lagrangian is given by
v A . A ]-
Lawp = =1 F5" Fpu + (i + es Ao — mip pib — %—B(%A’é)2 ) (1)

where the subscript B refers to bare parameters and fields. Introducing the renormalization
constants to relate bare quantities to renormalized quantities (the latter with the B subscript
removed ), the renormalized parameters are defined via

e= Ze_l,u_EeB , m = Zglmg, §= Zg_lfB ) (2)

where ¢ = 2 — %n appears so that the renormalized coupling e is dimensionless when one-
loop integrals are evaluated in n dimensions using dimensional regularization. Likewise, the
renormalized fields are defined via

v=2,"ys, R (3)
It is traditional to introduce the vertex renormalization constant via
e p = pZ  ep p M
in which case we identify Z, = 7,25 1Z3_ 2 One can also prove that
1 1
2% T 2%

as a consequence of the Ward identities, which implies that Z; = Zs.

(9, A")? (0, A%)* (4)
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Inserting egs. (2) and (3) into eq. (1) yields
1

25(@14“)2 +Ler,

Laup = — 1 F" Fu + (0 + pe )y — myy) —
where the counterterm Lagrangian is given by

Lot = —(Z3 — 1)AF™E,, + (Zs — 1)Yibp — (ZnZy — Lympp + (Zy — 1) pSep Aa .

Note that the counterterm Lagrangian does not contain a term proportional to the gauge
parameter ¢ in light of eq. (4). The counterterm Lagrangian is treated as a perturbation,
which introduces additional Feynman rules for QED Green functions.

Working to one-loop order, it is convenient to define

0Z;=7Z;—1, (fori=1,2,3), 0L = Zm — 1.

At one loop, 6Z;, 6Z,, ~ O(a), where a = e*/(4m). Hence we can rewrite the counterterm
Lagrangian at one-loop as

Lot = —10Z3F" Fpyy + 16 Zopp — (0Zy, + 6 Zo)ymaptp + 6 ZypSep An .
II. The 1PI electron two-point function

We now turn to the 1PI electron two-point function in momentum space,

iT®(p) = i(p —m) —iX(p), (5)

where p is the four-momentum of the electron. Here, we have denoted the sum of the loop
contributions to iI'® (p) by —i%X(p). At one-loop the two contributing Feynman graphs are

q
p q+p p g g

where the cross indicates the contribution of the terms 6 Zo@ — (6Z,, + 6 Zo)mibap of the
counterterm Lagrangian. Thus, at one loop,

—q = (iue 2 dnq ’}/V(q_l_ﬁ_‘_m)’y“ . . qMQV i —im
%(p) = (ip‘e) /(%)nqz[(q+p)2_m2] <gw (1-¢) " )+ 8 Zop — im0 Zyy + 625) .

Using Dirac algebra in n = 4 — 2¢ dimensions,
Y +P+m)v=2(—1)(d+p)+ (4 —2¢)m,
bt = (20-p = P = 240 — ¢°P.



it follow that

/ (d"qn V(g +p+m)y" (gW - €)QM3V)

2m)" ¢2[(q + p)? — m?] q

:/(d”q 2(6—1)(ﬂ+15)+(4—26)m_(1_5)/(d”q ¢ —p+m)+2apd

20" @[(q+p)? —m?] 2m)" q*[(q +p)? —m?]

:/ d'q 2(e-D(+p)+ @ —-29m -1 - —-p+m)
(

2m)" @ [(q+p)? — m?]

d"q q"q”
—2 = Opua / Q2m)" q*[(q+p)*> —m?] ©)

Introducing Feynman parameters,

/(g;) [(q +p)? —m?] / / (4 +2qp€6+€6(p —m2)]”

= i(4m)* 2F()/ dza™[m® —p*(1 —2)] ", (7)

/(;l:r) q+p — m?] /da:/ @+ 2q- p:)s::):(p —mz)]

= —z'(47r)6_2F(e)p”/0 de x'=e [mQ —p*(1 — x)}_ﬁ, (8)

d"q q"q” o [ [ ¢"q”
/ @2m)mgt[(g+p)2—m?] 2/0 (1=z)d / (2m)" [¢2 +2¢-pa + x(p? — mz)}g )

= —i(47)2T(e) /01 da (1 — 2)z7 17 [m? — p*(1 — 2)] _1_6{ex2p“p" — 39" x[m* — p*(1 - z)] } :

It then follows that

d"q y"(f+p+m)" TR
/ @ 2[(q+pP = <g’“’ (1-4) q?)

= i(47T)E_2F(€){ [(3 +&—2em— (1+& — 26)]§:| /0 dza™[m® —p*(1 — )]
+(3—-¢— 26)}6/0 dez'~ [m* - p*(1 —z)]*

+2(1 = O)p /01 de (1 —z)a = m? - p* (1 —2)] (61’2]92 — La[m? - p*(1 - z)]) } .
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Hence, we end up with
%(p) = —pAP*) +mB(p?) (10)

where

x{(l C)(l-0 —a(1—g — L=9all ‘”“"”’2} (1)

m? — p*(1 — )

m?—p*(1—x2)]"

p? ] 12)

B(p?) = 62 + 025+ 5-(4m) () [J(8+ §) — ¢ /0 dv [

after putting e = 4wa.
We recognize the ultraviolet divergence due to the presence of I'(e). But, if we attempt to
take the on-shell limit, p? = 0, we obtain an indeterminant quantity in the ¢ — 0 limit.

ITI. A(p?) and B(p?) in terms of Passarino-Veltman loop functions
We can rewrite eqs. (7)—(9) in terms of Passarino-Veltman loop functions,

dnq 1 iﬂ_26 ) )
/ @2m)"¢?[(q+p)? —m?] 167 o(p50,m7) (13)

dq ¢ i i 2 2
/ o @llg+p?—m?]  1on2 " 1(p750,m%), (14)

dnq q”qv _iﬂ_Qe H O (O 2 2.0 0 2)_|_ 4o (0 2 2.0 0 2)
(27T)”q4|:(q+p)2_m2} - 167’(’2 [pp 22U, p,p U, U,m g 24\U,p,p U, U,m :|

(15)
It then follows that

/ d"q (4 +p+m)* (%w . 5)%;21”)

2m)" ¢*[(q + p)? — m?]

- leé:; { [(26 —&{—1)p+ (3 -2+ S)m] By (p*;0,m?) + (2¢ + € — 3)pBy(p*; 0, m?)

—2(1 — &)p[p*Ca2(0, p*, p*; 0,0, m?) + Cs4 (0, p%, p*; 0,0, m?)] } . (16)

Hence,
A(p*) =625 + %{ [%(1 +&)— 6} Boy(p*;0,m?) + [%(3 — &) — e} By (p*;0,m?)
+(1 =€) [p*Ca(0,p* p*;0,0,m*) + Co4(0, p*, p*; 0,0, m?)] } . (17)

B(p*) =02y + 62y + — [5(3+ &) — €| Bo(p*; 0,m?). (18)

e
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Using the integral representations of the Passarino-Veltman loop functions, one can easily
derive,

Bu(y*s0.m%) = ()T | o [m2 —ri- 2 -

112

B 0.m) = ~(am) 10 [ ot [T AZE] T (20)

pr(l—z) [mZ _p(1— x>] _57

1
2 2 2, 2\ €
p 022(0,]9 » D 70707m ) - _(47T) EF(E)/O dx m2 _p2(1 —LE‘) qu

g (1 - 2)a— [m2 —rl- J] - (22)

1

C24(0,p*, p*0,0,m?) = %(47T)EF(€)/O

Plugging these results into eqs. (17) and (18), we recover the results of egs. (11) and (12).
IV. The limit of a zero mass electron
The limit of m = 0 is a subtle one. In this case, X(p) = —p[6Z; + Ao(p®)], where

Ao(p?) = %(élw)E (1—¢€)T(e) (_p_z)_ /0 (1 —2)"(1—2z+&x)dr, (23)

after employing the result of eq. (11). Noting the symmetry of the integrand under x — 1 —x,
it follows that

Ao(pQ) = g—f

af  LEOT*2—¢ [ p'\ ™
= %(47{') (3 -2 <_E) . (24)

(4m) (1 —€) T(e) (-p—Z)_E /01 ' (1 — x) " dx

Recalling that e = 2 — %n, where n is the number of spacetime dimensions, we recognize
the ultraviolet divergence due to the presence of I'(¢). In particular, one must assume that
n < 4 or equivalently ¢ > 0, prior to the analytic continuation to e = 0. But, if we attempt to
take the on-shell limit, p? = 0, we obtain an indeterminate quantity in the € — 0 limit. One
suggested strategy for dealing with this ambiguity is outlined on pp. 118-119 of Ref. [1].

However, a more direct approach can be adopted by setting p* = m? = 0 in eq. (6). It
then follows that,

/ (d"q V(g + )" (gw - g)ngu)

2m)" q%(q + p)? q

B R TR P Ry
( )T

2m)" q*(q + p)? 2m)" q*(q +p)*




If we write (¢ + p)? = ¢* + 2¢-p, then

1 ! d 1 ' 1-2)d
SCYIC NG TR :/—ZE 2 12 :2/ 0= :)33. (26)
*(¢* — 2q°p) o [¢?+ 2zq-p] q*(¢* — 2q¢-p) 0 [¢?+ 2zq-p]
Defining a new integration variable, Q = ¢ + xp, it follows that Q? = ¢* 4+ 2z¢-p and

/(d"q 20e-D@+p) -1 -8 -7 75/

2m)" ¢*(q +p)?

rQ 1

(2m)" Q1
:¢[§+e—gg]/é;§ié. (27)

1—x)+(1—§)(1+x)]dz/

and

e o 1 ro oo "o 1
p“%/ @2m)mql(q+p)? 2p“%/o (1=2) dx/ @2m)» Q5 _ﬁ/ - &)

Hence, after putting n = 4 — 2e,

/ <;l7r§7c‘z(<¢{:ia)>7 (9“”‘(1‘@(123”) :43“—32—5— éig] / éffn&- (29)

Strictly speaking, the integral
aq 1
| e o

is undefined for any value of n. In particular, it is both ultraviolet and infrared divergent for

n = 4. Following the conventions of dimensional regularization (see, e.g., Ref. [2]), one defines
integrals with no explicit scale to be zero,

rQ 1
| =0 )

for any power p. In particular, one can understand the vanishing of eq. (30) in dimensional
regularization as a consequence of an exact cancellation of the infrared and ultraviolet diver-
gence.

In order to see this cancellation explicitly, we shall rewrite eq. (30) following eq. (C.22) of

Ref. [3],
rQ 1 [ dQ 1 CfdQ
/ <2w>@‘/ 2m) G — ) / 2m) NG =) (32)

This result clearly exhibits the infrared and ultraviolet divergences, but relegates them to
separate integrals. It then follows from eq. (7) that

d"Q 1 T ) () lx—e )
/(27?)"@2(Q2_m2)_ (4m) 7T (e)(m”) /0 d

l

(47r) (1 7—|—ln(47r)+1—1nm)—l—(9(6), (33)

where n = 4 — 2¢, which exhibits an ultraviolet divergence when the limit of € — 0 is taken.
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The second integral on the right-hand side of eq. (32) is infrared divergent. To distinguish
this divergence from the ultraviolet divergence in eq. (33), we will write n = 4 — 2¢’ in the
following computation,

/ <Cm>2 Q4(@m2— o / xdx/ 2 — 1ix>m2>}3

= —i(4m) 2 (mH) T (1 + e')/o (1 —z)7 da

e e DA AT(=€) i (4n\TT(1+€)
it o S = o () i

— )2 (% — v+ In(4r)+1—1In m2) +O(). (34)

Q1 i (11
/(2w)n@_ 1672 (E_Z) =0 (35)

after using n = 4 — 2e = 4 — 2¢/, which demonstrates the exact cancellation of the infrared
and ultraviolet divergences as asserted below eq. (31).

Of course, the statement that Ay(p? = 0) does not imply that the divergence is absent.
Indeed, 67, can be unambiguously determined the MS scheme where no infrared divergences
are present as we will show in Sections V. In the computation of physical observables at one-
loop, the implication of A(p? = 0) = 0 in massless QED is simply that one can neglect Feynman
diagrams that contain self-energy corrections on the outgoing electrons and positron lines.
The counterterms on the external legs of the diagram are still present, and will end up being
reinterpreted as contributing to the infrared divergence, which will ultimately cancel infrared
divergences arising from other Feynman graphs, since physical observables are necessarily
infrared safe.

Hence, eq. (32) yields,

V. The renormalized 1PI electron two-point function in the MS scheme

If we use MS subtraction to fix the counterterms, then

575 = 2y r(e) [ e (1= 22 426 = ~2Eamy o
2 = 5 (4T eox vt ag) = - (dr €),
57V 4 573 = _BFE) yepiy).
4
Hence,
s _ 08 MS _ s«
525 = 2Ly, 62 = -2y T, (36)
where

1
(Am)T(e) == —v+Indr + Ofe) .
€
Note that 075 is gauge dependent, whereas 67, is gauge independent.
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We can easily reproduce the results of eq. (36) using the Passarion-Veltman functions. In
particular, the MS procedure instructs us to set A(p*) = B(p?) =0 in egs. (17) and (18) and
identify

m)T(e), Bi(p*0,m*) = —5(4m)T(e), (37)

Bo(p2;0am ) (
AT (e), Ca(0,p?, p*0,0,m*) = 0. (38)

024(071727172; 07 07 m )

Solving for §Z, and §Z,,, and setting e = 0 except in the prefactors, we recover eq. (36).

Inserting eq. (36) back into egs. (11) and (12) and taking the € — 0 limit, we obtain

APy = —%{/01 {1 - T+ xg;_xp)z((lf_gx)])ﬂ e
+/01(1 — 21 + x€) {lnx+ln <m2 _p;(l - z)ﬂ d:c} :

B(p?)ys = —%{1 +1(3+¢) /01 [lnx+ln <m2 _p;(l _x))} dx},

The relevant integrals are

z(l —xz)d 2m? —p?> m? m? p
> ==  ~a\lm gy ){l-"5 ),
m 1—x) 2p P P m

1
/x mhrdr=—-——=, forn=0,1,2,..,

1 2 _ 201 _ 2 .2 2 2
/m(m Ll x))dx:ln<m zp)—m—zln(l—%)—l,
0 2 I p m
2 2

! m? —p*(1 —x) 1 m? — p? m* D m? 1
1—2)1 do = =1 ~ (- ) - -2
/0< x>n< p? ) T n( p? ) 2p* ( mz) 2p* 4

It follows that

) _ag m2 m2_p2 m4 p2
A(p)—s—y{l—i‘p?—ln( ,Ll,2 +F1H 1_ﬁ s

s v dora o (7)o )]

Note that A and B are finite for p?> = m?,

A(m2)g = 28 {2—1 (mj)] : B(m2)MS:%{2+£—%(3+£)1n(75—22)] . (39)

MS — A7 L




In light of egs. (5) and (10), the one-loop correction to the inverse propagator is

L (p)ss = —m — (p)ss = P[1 + A" )ws] — m[1+ B(0*)ss]
A () 5 (2]
_m{1+% (2+§—§(3+5) [m (m:_sz) —T;L—;ln (1— :1—22)})}.(40)

In eq. (40), m = m(u) is the renormalized mass, which differs from the physical pole mass.
The definition of the MS mass is obtained by setting ;1 = m. That is, the MS mass is defined
as mp = m(m). Thus, we set 4 = m in eq. (40) and obtain,

oot 2322
—mR{l—l—% {2+§—§(3+§) (1—”;—22)11(1(1—%)”. (41)

The physical pole mass, denoted by m., corresponds to a zero of the inverse propagator. That
is, m, is defined by the condition

@ (p) L{_ =0. (42)

The simplest way to obtain an expression for m, at one loop accuracy is to rewrite eq. (40)

as
1+ B(p?)

I'®(p)yg = [1+ AR S}[ _m<1+A—(p2)MM_SH .
Since A(p?)yg and B(p?)ypg are quantities of O(a), then to one-loop accuracy,
L (p)sgs = [L+ AP )as) [p — m(L+ B*)us — A0*)ws)] -
We can then immediately identify
me = m|[1+ B(m?)yg — Almd)ys] -

At one-loop accuracy, A(m?) = A(mz)‘ﬂ

we end up with
Me = MR (1 + g) )
T

Although the quantity B(p?)ys — A(p?)arg is gauge-invariant on-shell, it depends on the gauge
parameter £ off-shell. In particular,

2 2 2 2 9 9
e () o () e (-5}

One can easily check that B(m?) — A(m?) = a/7 as required.

_and B(m?) = B(mz)‘uzm. Hence, using eq. (39),
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Finally, we note that the MS scheme is a mass-independent scheme. In particular, no
infrared divergences appear in the evaluation of the 1PI electron two-point function in this
scheme.

VI. The renormalized 1PI electron two-point function in the on-shell (OS) scheme

Consider the on-shell (OS) renormalization scheme, where we identify the parameter m as
the pole mass. In this case, we expand,

S(p) = S(m) + (p — m)X'(m) + O((p — m)?) .

The renormalization conditions that ensure that the residue of the propagator is unity and
the pole of the propagator is the pole mass m are:

Y(m)os =0, ¥ (m)os =0. (43)
It then follows that the inverse propagator can be written as
T®(p)os = p—m —B(p)os = [1 + X' (m)os] (p — m) — T(m)os + O((p — m)?)
=p—m+O((p—m)?).

Employing eq. (10), we can rewrite the boundary conditions specified in eq. (43) as

0Bos 0Aos
e, s () ()]
where we have used pp = p? and
0,0
op Top*

Using egs. (11) and (12),

A(m?)os = 675 + 21(47r)6r(e) (%) ) /0 dra>[(1—2)(1— (2= &e) — (1 —&)]

™ I
a m2\ ¢ [l
B(m*)os =62y +6Zs+ — (33 +&) — €| (4m)T(e) { — / drx™% .
2 G 0
The integrals above are elementary; the end result is
2 os , a§ e m*\ 1
Amlos =625 + S am) (0 (1) 15 (45)
B(m*)os = 0295 + 6795 + - [ L(3+¢) — ¢ ) (47)T(e) mEy (46)
OS m 2 27T 2 lu2 1 _ 26 .
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Using eq. (44), we conclude that

5208 = —4&(4W)Er(e) (ﬁj)_ (3 - 26) _ 3o [(4%)61“(6) +4 - (Z’L—j)} . ()

T 7 1—2e

after dropping terms of O(e).
Next, we compute derivatives of eqs. (11) and (12) with respect to p?,

dAos  « . 1 1 m? — p2(1 — x) “1-e
o 27W2(47r) F(1+e)/0 drx (1 ){ 2 }
e (O (1~ a)p?
=i -g-2-g - LSRRy
0BOS o« . 1 . 1 (1 — m2_p2(1_$) —1—¢
o 27TM2(47T) F(1+e€)[2(3+¢) ]/0 d (1 )[ 2 ] . (49)

Note that these quantities are ultraviolet finite, after using el'(¢) = I'(1 + €). If we now
set p® = m?, we see that the integrands in egs. (48) and (49) behave as z7'72¢ as z — 0.
Thus integrating over x generates infrared divergences, which are regulated when € # 0. The
resulting integrals are elementary, and it follows that

<8£§S)pzzm2 - _4:77512 (%22) ) % (50)
(885;)28)p2:m2 N _47:712 (%2) ) % [3B3+&) —€. (51)

In light of egs. (44) and (45),

5705 _ al (m?\ “(Ar)T(e) o (m*\ ° @n)T(1+e€)
2 47r(,u2) 1 —2e¢ +47T<,u2) €(1 — 2e)
The term on the right hand side of eq. (52) proportional to I'(e) represents the ultraviolet
divergence [cf. eq. (36)]. The last term on the right hand side of eq. (52) which contains a
pole at € = 0 corresponds to the infrared divergence. Note that the infrared divergence at one
loop is absent in the Yennie gauge, which corresponds to £ = 3.

We can add the two terms on the right hand side of eq. (52), if we are not concerned about
the mixing of the infrared and the ultraviolet divergences. The end result is

2\ T (3—=2¢)(4m)T(1+¢)
5705 — — (M) . 53
2 4 \ p? (1 — 2e) (53)
The ultraviolet divergence cancels part of the infrared divergence. Remarkably, the end result
is independent of the gauge parameter &.

Using eqs. (11) and (12), we can determine A(p?) and B(p?) in the on-shell scheme by

writing

[€—3+2]. (52

AP os = Ay + 0295 — 67238

B(p*)os = B(p?)xg + 029° +029% — 6205 — 52015
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Egs. (36), (47) and (52) yield,

52298—5234_32—0‘—5 [1—§1n (m—2)] + (ﬁ)_gwk—uze]. (54)

27 2 4 \ p? (1 — 2e)
2
0s MS _ @ 3 m
The infrared divergence is explicitly exhibited in eq. (54). Expanding about € = 0 yields
s alE=3), . a m?
6295 — 6708 = T(47r) [(e) — - { —2In (F : (56)

Thus, both A(p*)os and B(p*)os are infrared divergent if £ # 3. However the difference
B(p*)os—A(p?)os is infrared finite, although it depends on the gauge parameter £ for p? # m?.

It is instructive to check the results obtained in this section by employing eqs. (17) and
(18). Then, eq. (44) yields,

a
5228 = —%{ [Bo(mQ; 0,m?) — [%(3 &) — e} Bi(m?*,0,m?),
—(1-=¢) [mQC’QQ(O,mQ,mz; 0,0, m?) + Cy4(0, m?, m?; 0, O,mz)} } (57)
Using eqgs. (20)—(22), it follows that

4m)°l 2\
m?Cay(0,m*,m?0,0,m*)+Ca4(0,m*, m*;0,0,m*) = =1 By (m* 0, m*) = @mT( (ﬁz) :

41—¢€) \p

(58)

Hence, it follows that
629% = == [Bo(m*:0,m*) = (1= ) Bi(m* 0,m?)] (59)

T
In light of eq. (19),
€ 2\ ~¢€
By(m0,m?) = LD (10 (60)
1 —2¢ 2

Employing the results of egs. (58) and (60) in eq. (59), we recover the result of eq. (47).
Likewise, eq. (44) yields,

575 =~ L1504~ DB 0,08) + [43 - 9 — I Bil 0,

+(1 = &) [m*Ca2(0, m*, m*;0,0,m?) + Ca4(0, m*, m*; 0,0, m?)]
—2m?Bj(m?; 0, m?) + 2m? [%(3 —&) — e} B} (m?*0,m?)
+2m*(1 — €) [Ca2(0, m?, m?; 0,0, m?) + m*C4,(0,m*, m* 0,0, m?)

+C%,(0,m?,m?0,0,m*)] } , 61
24
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where the prime indicates

0
Bz{(m2;07m2) = WBZ(p2707m2) ) (62)
p p2=m?2
Cz(j(oa m2> m2; 07 Oa m2) = 8%92 Cij(oa p27 p2; 07 Oa m2) (63)
p2=m2

Using eq. (58), the expression for §Z95 can be rewritten as,
6Z§)S —2&{ [%(1 +£&)— e] Bo(m?;0,m?) + (1 — €)B;(m?;0,m?)

—2m”By(m* 0,m?) + 2m*[1(3 — &) — €] B{(m* 0,m?)
+2m?(1 — £) [Caa(0, m?, m?; 0,0, m?) + m*Ch,(0,m*, m? 0,0, m?)

+C%,(0,m* m*0, O,m2)}} , (64)

It is straightforward to obtain,
9m?Bl(m2; 0, m?) = 4;_51;6 (%) (65)
2m* B} (m?* 0, m?) = (1 o 1 — 26 (%) : (66)
2m?Cla (0, m?, m*; 0,0, m?) = (1 5 1 . 26 (%) , (67)
2mAChy (0, m2,m?;0,0,m?) = (?1”_ 61 J; 6_ 2 (7;—) (68)
2m?C5,(0, m?, m?;0,0,m?) = TG fﬂe El; 20 ( 2) . (69)

All divergences that appear above are infrared divergences. We can simplify our expression
for 6795 by employing,

1
m?[Ca(0,m*, m? 0,0, m*)+m>*C4, (0, m*, m*; 0,0, m*)+C4%,(0,m*, m*0,0,m?)] = —ZBi(m2;O,m2) .
(70)
We then end up with

675 = —%{ (50 +€) — € Bo(m?0,m%) + (1 — ) By (m* 0, m?)

(I —€)(1 =& —2e)

—2m?*By(m?*;0,m?) — 2m? 5
€

| B0} (o)

which reproduces the result of eq. (52).
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VII. The functions A(p?) and B(p?) in terms of hypergeometric functions

It is sometimes convenient to evaluate the functions A(p?) and B(p?) prior to taking the
¢ — 0 limit. In this case, A(p?) and B(p?) can be expressed in terms of hypergeometric
functions. First, we define the following family of integrals:

Lne(p?) = /01 dz 2" {m2 —rii- x)} _E_Z, (72)

m2
Using the integral representation of the Gauss hypergeometric function,

I'(c) ' -1 c—b—1 —a
r(b)r(c-b)/o 21— a) (L - az) " d,

for Rec > Reb > 0 and |arg(1 — 2)| < 7, and the functional relation,

Fla,b;c;z2)=

F(a,b;c;z):(l—z)_“F(a,c—b;c; Zl) ,
o

it follows that

2

1
F(€+e,1;n+2—e;p—2). (73)
m

nel?’) = o

It is convenient to rewrite I, o(€) in another form using the recursion relation,
(c—a—bF(a,b;c;2)+a(l—2)Fla+1,b;¢;2)—(c—b)F(a,b—1;¢;2)=0.

It follows that

1 2 2
Lo(p?) [1 ‘ (1—p—>F<1+6,1;n+2—e;%>]. (74)

:n+1—26 Cn+l-—c¢ m2

Using egs. (11) and (12),

AP = 675+ 2 (ﬁ) <4w>€r<e>{<1 O [Tod?) — Luo?)] — (1 — O)1o(6)

2m \ p?
(1= O L 140 - a7 (75)
B(p?) = 6Zy + 675 + % (%) i (AT)T(e) [2(B+ &) — €] Loo(p?) .- (76)

From egs. (75) and (76), one can easily perform the expansion in €. In particular,

1 2¢ € p? p?
L,o(p?) = 1 - 1-=—= | F(1,1; 2; — O(é?
o(P’) n+1[ +n—|—1 n+1< m2> <’ A " 'm2 +0(e),
2 1 P’
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where

F(L 1;n+2;z):_(1—|—n)(1—z)" dr {ln(l—z)} .

n! dzm z

In particular,

F(1,1;2;z):—@, (77)
F(l,1;3;2):2E+(1_2):;(1_2)}, (78)
P, 1:4;2) = 3 lQ ;232' 2(1 — z)i;n(l — Z)} (79)
It follows that
A(p?) :5Z2+Z—7§(47T)T(6) + %{g - <1 - :1—22) F (1, 152, :1—22)

B(p?) = 670 + 675 + %(3 4 €)(4m)<T(e)

+%{2+§—%(3+5) Kl_:%_z)F(l’l;Q; :1—22) +ln<f—j)”+0(e).

Inserting the results of egs. (77)—(79) yields

a0 =522+ 2Eqamrmia 2 (1) o (1Y (- 2] (%)) ot

B(?) = 6Zm + 62> + (3 + )(4m)° (e

b D)u(e-5)en(E) o0

which are equivalent to the results previously obtained.
In the OS scheme, we also need to compute the derivatives of A(p?) and B(p?) with respect
to p?. It is straightforward to obtain,

8In0 € p2
0 _ Fll+e 2;n+3—e L2
o2 m*n+1l—€(n+2—¢) (+€’ R ey
A(p*In,1) 1 v
1 Flite 2:n+2-e 2,
Op? n+1—ce¢ te, aind <2
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Taking the derivative of eq. (75), it follows that

DA aé (m*\ " I'(1+e) P 1—e p?
i ) () Fll4e,2:3-¢; 2 )= Flite,2,4—¢; 2
Op? 27rm2<u2) (4r) 2—¢ TE 2 2 3—¢ te s “m

Likewise, we can compute B/dp? by taking the derivative of eq. (76). We can simplify the
expression for 9A/dp? by using the recursion relation,

(c=b—1)F(a,b;c;2z)+bF(a,b+1;¢c;2)—(c—=1)F(a,b;c—1;2)=0.

The end result is

=2 () g S (1hesia- e ) (50)
g_]i:ﬁ (%)_E(4w)f%[%(3+f)—e]F(1+6,2;3—6; Z—Z) - (81)

The infrared divergence emerges when p? = m?. In this limit, we can employ the identity,

L(e)l'(c—a—10)
I'(c—a)l(c—=0)’

F(a,b;c;1)=

in egs. (80) and (81) to recover the results of egs. (50) and (51).
Finally, to demonstrate the fact that the infrared divergence in 07, cancels in the Yennie
gauge, we make use of another recursion relation,

cFla,b;c;2)—bzF(a,b+1;c+1;2)—cF(la—1,b;¢;2)=0,

to write

2 2 22 2
(3—6){F<1+e,2;3—e; p—2)—F<e,2;3—e; p—z)}—iF(1+e,3;4—e; p—z) —0.
m m m

m2

Hence, it follows that

OB 0A  «a m2\ ° T+ [[3B+8 —€  m? _ PP
(‘)—292_0—])2_271-7”2 <F) (47?) 9 _ ¢ {|: 1—«¢ — p2:|F<1+6’273_67W)

_|_€pﬂ22p <€,2;3—6; :1—22)}
o (mP\ T . I'1+¢ m2 | o
" dmm? (F) (47) ) {3_5—26(1—5)%-5(1—?)]F<1+e,273—e, W)

26(1 — 2 2
‘I’MF(E,Q;ZS—E; p—2)}
P m

16

2

)}



In the case of ¢ = 3, we can take the e — 0 limit when p?> = m? without encountering an
infrared divergence in 6725,

0B 0A a a
lim — lim4eF'(1 2; ;1) p = .
p2—m? <0p 8pz>§ 5 8mm? {6+ 2o (1+e,2;3- )} Am?

That is, in light of eq. (44), we recover eq. (56) in the Yennie gauge,

o a m?
(025" =023 )emy = —— [ — i <—>] :

112

Appendix A Integrals arising in one-loop calculations

A.1 The formulae of dimensional regularization

In dimensional regularization, loop integrals are carried out in d = 4 — 2¢ dimensions, which
defines the parameter €. In particular,

9" g =d =4 — 2. (A1)
Ultraviolet and infrared divergences will appear as poles in €.
dq 1 Pletr—2)
= 1 _1 r 2 2\2—e—r 4 e—2 s\t A
/@ﬂﬂf+%p—W+my i(=1)"(p" +m?)* =" (4n) 0
&g ¢ ; 2 212 o N(e+1r—2)
= — _]_ r —€—T 4 e—2 -\ T 1 4]
/ (2m) (¢* + 2q-p — m? + ie)" W(=1)"(p" +m)7 " (4m) ORI
& " ; 2 2\2 o I'(e+r—3)
= -1)" (A2 7/
/k%WQF+%p—nﬂ+wy (1) + m)P T (4
x[(e+1 = 3)p'p” — 1g™(p* +m?)]
[le+r—3)

ddq qul/qa . , - )
= — _]_ r —e—r 4 €e—
/ (2m) (¢ +2q-p — m? + ig)" i(=1)"(p" +m?) (4m) 0
[(6 + 7 = 3)p'p’p®

—L(g"p* + g"p” + g"p") (* + m?)]

dq "¢ q*q" _ yz—er(y ez L€+ —4)
| Gt Eragy = 0T

{e+r— e+r—4)pp”po‘p6

—3(e+r—4)(g"pp + 9" PP’ + ¢"p"p
+g"p"p” + g"Pprp® + g™ ptp”) (p® + m?)

+1(g" g + g"g"P + g"P g ) (p* + mZ)Q}
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where € (not to be confused with €) is a positive infinitesimal constant.
In addition, all scaleless integrals are defined by the dimensionless regularization procedure

to be zero. For example,
dlg 1
0, A2

| 2
which corresponds to setting p> = m? = 0 in the first integral above under the assumption
that € < 2 — r. However, in dimensional regularization, eq. (A.2) is defined to be valid for

all r.
We can expand about € = 0 by using

r@N+@:‘ﬁf{%+wN+m+0@}, (A.3)

where N is a non-negative integer, ¥ (z) = I (z)/T'(z) with IV(z) = dI'(z) /dx,

P(1) = -7, Y(N+1)=—y+ ) 7, (A.4)

k=1

| =

and v = —I"(1) = 0.5772- - - is the Euler-Mascheroni constant.
Finally, we record some of the Feynman parameter formulae:

1 T(e+p) (! N 20711 — z)P1
AaBS — F(a)r(ﬁ)/o ! [zA+ (1 —a)B]"™ 49

1 F(OK + B + 5) /1 " /1 p xOH‘B—Q ya—l(l _ $)6_1(1 _ y)ﬁ—l
= T Y o )
A*BPC?  T(a)D(B)L(0) Jo 0 [ayA+2(1 —y)B+ (1 — 2)C] oo
(A.6)
and more generally,
1 (o +ag+--+ay) (! ! al
aa e = dx---/dxé zj—1
AJTAS? - AN F(og)T(ag) - T'(an) /0 ! 0 N <; ! )
a1—1 _as—1 . any—1
1 T2 N . (A7)

X
(xlAl + oAy + -+ + xNAN)a1+a2+---+aN

A.2 The Passarino—Veltman loop functions

We collect here the relevant integrals that arise in one-loop computations of one-point, two-
point and three-point Green functions based on work that first appeared in Ref. [?, ?].
However, in contrast to the original presentation, we employ the metric convention g,, =
diag(1,—1,—1,—1), and we have chosen a different overall normalization constant in defining
the loop functions. Here, we follow the conventions that appear in Ref. [?].
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The Passarino—Veltman loop functions that arise when evaluating the one loop contribu-
tions to one-point, two-point and three-point Green functions (or the corresponding ampli-
tudes of a physical process) are defined as follows,’

Ag(m?) = —167r2i,u25/ i ! (A.8)
0 (2m)4 q? — m? + i’ '
ddq 1: q,u. ququ
. . v, 2. 2 2\ 2. 2e ) )
BOa BN’ B* (p 7maamb) = —16m (7% / (27T)d Dg ) (Ag)
v o [ d% 159" 4"q"
Co; C*; O™ (p}, p3, p*; miy, my, m?) = —16m%ip° / 2r)d Do (A.10)
where the integrals are evaluated in d = 4 — 2¢ dimensions,
Dp = (¢ —my +ig)[(q + p)* — mj + ie], (A.11)
D¢ = (¢ —m?2 +ie)[(q +p1)* — mi +ie][(q + p1 + p2)? — m? +ig], (A.12)

and p = —(p; + p2). In Egs. (A.8)-(A.10) all external momenta are flowing into the diagram-
matic representation of the Green function. We have included the p?¢ factor for convenience
as it will ensure that the arguments of all logarithms that arise in the evaluation of the above
integrals are dimensionless.

The arguments of the Passarino—Veltman loop functions employed in egs. (A.9) and (A.10)
have been chosen with the understanding that Lorentz covariance can be used to decompose
the loop functions in terms of Lorentz scalar functions of the same arguments,

B" = Bypt, (A.13)
B" = Bo1p'p” + Baog"” | (A.14)
CH = Cipl + Craphy (A.15)
C" = Couplpy + Coaphply + Cos(pyps + php7) + Caagh” . (A.16)

The derivatives of B-type integrals are also of interest and will be analyzed below.?

Among the integrals listed above, Ay, By, B, Bay, By and Cyy are divergent as € — 0.
The integrals Cyy and Cj; for ij # 24 are ultraviolet convergent and can be evaluated by setting
e = 0 (assuming that no infrared divergences are present). The divergent parts of Ay, By, By
and Cyy are easily obtained,

Ag(m?) | = = (A.17)

Bo(p*;m2, m)|aiv = % (A.18)
Bi(p* mg, mi) |aiv. = —% (A.19)

Cos(pF, 05, 0% me, mi, m2) |aiv. = 4% (A.20)

LAll squared masses, m?2, m?2, mg and m? are nonnegative real parameters. The four momenta p;, p» and

p correspond to either on-shell or off-shell particles depending on the application.

20ne can also consider B-type and C-type tensor integrals with more than two Lorentz indices, the deriva-
tives of C-type integrals, and the D-type and FE-type Passarino-Veltman loop functions that arise when
evaluating the respective one-loop contributions to four-point and five-point Green functions. These loop
integrals will not be treated in this Appendix; for further details, the reader may consult Refs. [?].
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It is convenient to introduce the quantity,
1

A= A4r)T(e) =—-—v+In4r)+ Ofe), (A.21)
€

where ~ is Euler’s constant. Then, we can evaluate Ay, By and B; explicitly in d = 4 — 2¢
dimensions. All terms of O(¢) will be dropped in the expressions below. The following results
are then obtained,

m2
Ag(m?) = m? {A +1—-1In (F)} : (A.22)
Bo(p%m2,md) = A — /1 In <p2x2 — mgﬂ; M) i’f) dr | (A.23)
Buy(p% m2,m?) = —1A i / I (W — @ - my)e 4 i 2'5) cdr. (A1)
0
Boi(p%;m2,mi) = 1A — /1 In <p2x2 — 0+ mgu—ng)x g = ig) 22 dz (A.25)
0

1
Bas(p*smi,mp) = 2(A+1)(m2 +m; — +p°) — %/ [p*a* — (p* + m2 — mj)z + m]]
0

2,2 2 2 2 2 _ .
— — — i€
% In (p x (p +ma 2mb)z+ma ?
0
It is possible to evaluate B; in terms of Ay and B, by noting that ,

) dz. (A.26)

o [ d% peg
P*Bi(p*ymy, my) = puB"(p*ymy, my) = — 167710 /W Dy’ (A.27)
where Dp is given in eq. (A.11). To simplify this result, we shall employ the method of partial
fractions by making use of following algebraic identity,

2

p-q=3(g+p)?—¢ -] =§[(g+p)?®—m; = (¢* —m) —p* +mj —mZ].

(A.28)
Plugging this result into eq. (A.27) yields,
d’q 1 1
2p 2,22:2~2e/ _
P BpTmg, my) = &g { (2m)d \(g+p)2—m+ic q¢>—m2+ic
dlg 1
2 2 9y 2 LU A9
+(p +m, mb>,u / (27T)d DB} ( 9)
The end result is,
p*Bi(p*smy, my) = 3[Ao(mg) — Ao(mg) — (p* +mg — my) Bo(p*sm, my)] -
(A.30)
In particular,
B (p*;m? m?) = —%Bo(pz;m2,m2). (A.31)
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Similarly, Bs; and By can be expressed in terms of Ay, By and By. Starting from
eq. (A.14), it follows that

p”BuV = pu(p2321 + ng) s g’WBW = p2321 + dBQg s (A32)

where the arguments of the B loop functions are (p?; m2, m?). Following the steps used in the
derivation of eq. (A.30), we obtain two equations,

p2321 + BQQ = %Ao(mg) — %(pz + mz — mg)Bl s (A33)
p2Bgl + dB22 = Ao(mg) + szo . (A34)
Solving for Bs; and Bas yields,

(d —1)p°Boy = (3d — 1) Ag(m;) — 2d(p® + m2 — mj) By — m2By, (A.35)
(d—1)Ba = $A0(my) + m2By + 1(p* + m2 — mj}) By . (A.36)

After expanding about € = 0 and dropping terms of O(e), it follows that
dB21 = 4321 — % s dB22 = 4322 — %(mz + mg - %p2) y (A37)
dBy =4B; + 1, LdAo(my) = 240(my) — mj . (A.38)

We end up with

1 p?
P*Boi (p*;m2,mp) = g{Ao(mf) — m2Bo(p*;m2,mp) — 2(md +mj) + 5

2%+ m = ) B ) | (A.39)
2. 9 9 1 2 2 2. 9 92 2 2 p2
B22(p ;mav mb) = 6 AO(mb) + 2maBO(p ;mav mb) + ma + mb - ?
U ) B ) | (A.40)

The symmetry properties of By, By, By and Bgy under an interchange of m? <» m? are
noteworthy;,

Bo(p*; mg, my) = Bo(p*; miy, mg) (A.41)
By(p*;mg, mi;) = —Bu(p*ymy, mg) — Bo(p*s miy, mg) - (A.42)
Boi(p*;mi, my) = Boy(p%; mi, mi) + 2Bu(p*smy, mi)) + Bo(p*smy,mi) . (A.43)
Bas(p*;mg, my) = Bas(p*; iy, my) (A.44)

One can now perform the integration in eq. (A.23). The end result is,
Bo(p*smg, my) = A — F(p*ymg,my) (A.45)

where the function F' is explicitly evaluated below in five distinct cases [?]. The expressions
make use of the well-known kinematical triangle function [?],

AMa? b, ) = a* + b 4 ¢t = 2a°0 — 2a°¢ — 26°¢% = [a® — (b+ ¢)?] [a® — (b—¢)?].
(A.46)
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Case 1: p? > (m, + my)?

+)\1/2(])2,7’11 m;) [ln ([P2 — (mq —my)?] / [p* — (mq +my)?] 1/2> zw]
2 2 2 1/2 2 1/2
p 2 = (ma — my)?] [p* = (ma +1m5)?]
Case 2: p* < ( )? and p* # 0
F(p*;m2,m;) =In (7}5) -2- (p il glp2_ mb) 1 <%) (A.48)
+)\1/2(p m? ( [ Ma + Mp) —pz} 2 + [(ma —my)? —p }1/2>
2 1/2 5 1/2
P [m + my)? p} [(ma—mb) —p}

Case 3: (m, —my)? < p? < (mg +my)?

2 2 2 2
Pl m2.m?) = In (mzb) ~ (w) In (Eg) o
1 2p mg

[ \(p2. m2. m2 1/2 3 — D)
+ [ (p mzm mb)} arctan VP2~ (1 — ) , (A.49)
p \/(ma + mb)2 — p2

where the principal value of the real arctangent function satisfies | arctan x| < %w.

1 m?2 m?
m |:mi ln (F) — mg ln (Iu_zb):| —1. (ASO)

Case 5: p> =0 and m = m, = my

Case 4: p* =0 and m, # my

F(0;m2,m}) =

m2
F(0;m* m?) =In (F) : (A.51)
Sometimes a loop integral arises in which one or more of the propagator denominators are
raised to a power. For an A-type loop integral, we can simply use the formulae provided in
Appendix A.1. As an example,
For a B-type loop integral, consider

OBy 5 5 2 2 / dq 1
950 2. — 1672
om?2 (p%5ma, ;) s (2m)? (¢ — m2 +ie)?[(q¢ + p)? — m} + ig]
! (1 —z)dx
= — . A.52
/0 p2x? — (p? + m2 —m)x +m2 —ic (A52)
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One can express this integral in terms of Ag and B, as follows,

0By 1
(p*;mi,mp) = —{(—p2 +m7 — mi)Bo(p*; m, my)
om2 " Mp?,m2, md) ' '
p*— mg — mg 2 2 2 2 2
(B e ) ag(m2) + 240(md) +57 —m2 +mE, (A53)

under the assumption that A(p?, m2,m7) # 0 [cf. eq. (A.46)].
Taking the derivative of eq. (A.30) with respect to m? yields,

OB 1T Ag(m2) OB
2 1 2. 2 2\ 0 a 2. 2 2 2 2 2 0 2. 2 2
p 8mg(p 7ma7mb) - 5 |i mg _1_30(p 7ma7mb)_(p _ma—i_mb)&mg(p 7ma7mb>:| )
(A54)
after employing
0Ao(m3) m?\ _ Ag(m3)
87771[21 = A —1In ﬁ = mz —1 y (A55)

in light of egs. (A.8) and (A.22) after dropping terms of O(¢). Likewise, taking the derivative
of egs. (A.35) and (A.36) yields,

0By,

0B
A= DG P md) = BolpPmi,mi) + LBy (s 2 md) 4 m? o0 (s, )
Ld(p? 2 _ 2081 5 5 A .56
+2 (p +ma mb)amQ (p 7maamb)7 ( . )
OB OB
p*(d—1) 87:22 (p*;mi,my) = Bo(p*; me, mi)) + 5 Bi(p*;me, mi) +ms, am‘; (p*;my, my)
0B
+1p® +ml — m?)amé (p*;mi, mi) . (A.57)

If only ultraviolet divergences are present, then we can employ %dBl =2B, + % and

(0= )G ) = 352 ) = 5. (A5%)
while setting d = 4 everywhere else to obtain,
S P ) = 3 | Bl o)+ 2 (0 )+ 5+ S )
F202 2 = ) S )| (A59)
G i ) = 5 Bl )+ 4B mmd) o m S )
R0 it ) S )| (A.60)

In computing wave function renormalization, one encounters derivatives of B-type loop
integrals with respect to p?. For example, taking the derivative with respect to p? of eq. (A.23)
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yields,

0 ! (1 — z)dx
Bl (p*;m?,m?) = == By(p*; m> 2:/ . A.61
O(p 7mavmb> 8]92 0(p 7ma7mb) 0 p2$2 _ (pg_'_mg_mg)x_i_mg — e ( )
Note that,
By(p*; ma, my) = By(p*; miy, mg) . (A.62)

One can obtain the following expression for B in terms of By = By(p?; m2, m?) and A,,

1 2/ 2 2 2 212
P2A(p?, m2,m3) { [p (mg +my) — (my, —mg) }BO

By (% m2, m2) —
ﬂw@mtm%mﬂww@W+@—ﬁwﬁm%m%ﬁﬁ,mw

under the assumption that p* # 0 and A(p?, m?2, m?) # 0 [cf. eq. (A.46)].
Taking the derivatives with respect to p? of eqs. (A.30), (A.39) and (A.40) yields,

1
Bi(p*m3, my) = i [Bi+ 1By + 1(0* + mZ — m}) By, (A.64)
1
By, (p*; mi, mj) = T3 [3Ba1 + 2By — § +mi By + 2(p* + mi —m;)By]
(A.65)
Bio(p*;mi,my) = §[ By — § + 2mi By + (p* +m — mj)Bj] (A.66)

where the suppressed arguments of the loop functions above are (p?; m2, m?).

For completeness, we list the following limiting cases,
Ag(m3) — Ao(mp)

BO(Ov m?w mg) =

m2 —m; ’
A (m2
BO(O;mzumz) = 0(7/’21 ) - 17
m

1 4
— [m
4(m2 —m?)? [

By(0:m? m?) = — % (AO(mz) - 1) ,

Bl (0’ m?ﬁ mg) = = mlA; + 2m¢21A0(m§) - 2(2m3 - mg)AO(mlg)] )

a_

2 m?
2 2 2
JBy (0,m2,m2) = — 1 - mp _ Ao(mg) _ AO(”;IJ) ’
o2 T R mE\ m T m
0By, o, 1
oz &) = "
9B, s o o 1 1 Ag(m2)  Ao(mp)
8mg ((ma - mb) 7ma7mb) - ma(ma _ mb) + 2(ma — mb)2 m2 — mz ,
1
By(0;mj,my) = m2 —m2)? [5(mg — my) +mi Ag(m) —miAg(my)]
1
B(/J(O§ m?, mz) = Gm2’ (A.67)
2 Ma + My Ao(mz)  Ap(my)
B! ((m, — 2.2 2\ _ _ _ a) b
o = mmim) = 2 = e (M -



Note that if A(p?,m2,m?) = 0, then it follows that p? = (m, + my)? or p> = (m, — my)>.
Evaluating Bj(p?*; m2,m?) and 0By(p*;m?2,m?)/0m?2 at p*> = (m, — my)? requires some care
due to the presence of an infrared divergence.

First, consider the following expression for By(p*; m2, m?),

1
Bo(p*;m?,m3) = (4mp®)€ F(e)/ [p*x® — (p* + m2 — mj)x + m] — ic] “dz. (A.68)
0

Infrared divergences, if present, will reveal themselves when performing the integration over x.
il no infrared divergences are present, then one may perform an expansion in € to obtain the
integral representation given in eq. (A.23). Here, we shall postpone the expansion in e and
work to all orders in € until the penultimate step of the computation. Differentiating eq. (A.68)
with respect to p? yields,

1
Bj(p*;m2,m}) = (47r,u2)€F(1+6)/ [p2x2—(p2+m§—mg)x+mi—z'5}_l_eat(l—:):)d:):, (A.69)
0

after using €l'(€) = I'(1 + €). Plugging in p* = (m, + my)? yields,
By ((mq +mp)*;md,my) = (4rp®) T(1 + €) Z(mg, my) - (A.70)

where
T(ma,mp) = /0 ([ma — (ma + mp)2]?) ™ 2(1 — 2) da. (A1)

The integral Z(m,,my) is well defined if Ree < —%. After integration, we shall analytically
continue the result in the complex e-plane to the region near ¢ = 0. Note that the fact that the
analytic continuation is performed starting from the negative region of Re € is the hallmark of
the infrared divergence, which will be exposed at e = 0. To evaluate Z(m,, my), we shall break
up the integration range into two intervals, 0 < z < m,/(mq,+mp) and my/(mg+my) < x < 1.
In the first interval we redefine the integration variable by y = x(mg, + my)/m,, and in the
second interval we redefine the integration variable by y = (1 — z)(m, + my)/mp. It then
follows that

1 1
1 — —2-2€
CRTTTAE /0 y(l—y)

e = (e Y omdye - (Yo fan )

where (1 —y)™27%¢ = [(1 - y)?] ~17¢. Note that Z(mq, ms) can be expressed as a sum of Beta
functions. Is is straightforward to obtain,

Z(mg,my) =

T(masms) = m{mzrﬁ B-1-20 - () B, -1 20)

+(mjp)~€ {B(z, —1—2¢) — ( ) B(3,-1— 26)} } . (AT3)
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This result can be simplified by using

D(2)I(—1 — 2¢) 1 1
B(2,-1-2€) = P —2e)  2e(1+2¢)° B3, ~1—2) = e(1+2€¢)(1—2¢)°
(A.74)

Hence, we end up with

(4m) T ()
2(1 —4e?)(mg +myp)?

2\ —€ 2\ —€
m mp — My m Mg — M
X { (—2“) {*’7 — 26:| + (—21’) {75’ — 26} } (A.75)
I mg + my W Mg + My
As expected, the above expression is symmetric under the interchange, m, <> m;. Moreover,
as anticipated, the divergence as ¢ — 0 is a consequence of the infrared divergence that was
generated in the integration over the Feynman parameter x.

As a check of the above result, consider the special case of m;, = 0. In this case, eq. (A.70)
yields,

B(’)((ma +my)3m2, mg)

2\ —€ 1
Bj(m2;m?2,0) = (4m)°T(1+¢) <ﬂ2“) / r(1—z) "% de. (A.76)
H 0
The integral is easily evaluated,
! I'(—2¢) 1
1— )" dx = B(2,—2¢) = = — : A
/0 #(1—2) v=B2 =2 = T g T T3 =29 (A.77)

Hence, in light of eq. (A.62),

2

L (47T (%) s (A78)

2. ,,2 _ 2. 2\ _
Bé(m,m,O)—Bé(mﬁ,m)——m p
in agreement with the m; = 0 limit of eq. (A.75) [where (m?)~¢ = 0 since ¢ < 0]. Moreover,
we have reproduced the result of eq. (65).
Second, consider the following expression for 0By (p* m?2, m?)/0m2,

1
gﬁg (p*;me,my) = —(4np?) T(1 + €) / [P2? — (0 +m2 —m)a +m2 —ic] (1 - 2)dz.

’ ’ (A.79)
As previously noted, if no infrared divergences are present, then one may perform an expansion
in € to obtain the integral representation given in eq. (A.52). Here, we shall postpone the
expansion in ¢ and work to all orders in e until the penultimate step of the computation.
Plugging in p? = (mg, + my)? yields,

0By

2
om?2

((mq +mp)*smi,my) = —(4mp®)  D(1 + €) T (mq, my) . (A.80)

where

T (g, mp) = /0 ([ma — (ma +my)z]*) 71 - 2) da. (A.81)

26



The integral J(mq,ms) is well defined if Ree < —5. The computation is nearly identical to
the previous one.

m—1—2e (m2>—e 2)—6
Mg, mp) = —2——B(1, —1 — 2€) 4+ ~—2 “__B(2,—1— 2
J( 0) mg + My ( ) (mg +myp)? ( )

:___;L__{mﬁwmm;%+W@*—W@*},<Aw>

2e(mg + myp)? 14 2¢
<m§)‘€ (mg)_e
I I '

Hence, we end up with,
(A.83)

— (m

me+mﬂ%m@:ﬁﬁ&i{@%%P+@%—l

om? 2(mg + my)? 12 My 1+ 2¢

A special case of interest corresponds to m, = 0. Note that the above expression was
derived under the assumption that Ree < —%, which implies that m_;172¢ = 0. Thus, we
obtain,
0By 1 m2\ ¢
= (47T (e) (2] . A.84
= gt 73970 () A
This can be checked by setting m, = 0 in egs. (A.80) and (A.81),

OB 4m)€(1 AN A

0 __UmTi+e <2 +9) (™ / 22721 — 2)dr, (A.85)

omg my, I 0

which reproduces the result obtained in eq. (A.84).
It is noteworthy that 0By (p?; m?2, mi)/0m? at p*> = (m, —my)? is a special type of C-type
loop integral. In particular, egs. (A.10) and (A.52) yield,

((mq +my)*;mi, m3)
meq=0

((ma + my)? mg, mi)

meq=0

gﬁg (p*;mi,my) = Co(0, p?, p*; m, mz, m) . (A.86)
Next, we present integracll expressions for Cy and the Cij

Co(pt, p3, p*s ma, mij, m / d:c/ D — (A.87)
Cu (.30 ml / ve [ 5% (A89)
Cualg? 8. % i i / o [ (A.89)
Co1(p, p3, 0% m2, mi, m? / x dx/ D—ze (A.90)
Coa(p, p3, 0% m2, mi, m / / 2dy’ (A.91)
Cos(pi, 13, 5 My, iy, m / x dx / S L/ ) (A.92)

Coa (9, 2, s 2, 2, =———/dx/ dyln( ) (A.93)
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where
D =p’s® + p3y® + (01 — p5 — Py + (m2 —ml — p*)x
+(mi —mZ+p* —phy +m2. (A.94)

In addition, the following expression for Cy is useful and worthy of display,

Cou(p3, p3, p°ym2, my, m2) = +[Bo(p3; mi, m?2) + (p; +m2 —m;)Chy

+(p* — pf + mg - mg)C’lg + QmiCo + 1] , (A.95)

where the suppressed arguments of Cy, C1; and C}, are the same as those of Cyy. Indeed, it
is possible to express all the Cj; (and their derivatives) in terms of Ay, By and Cy following
the same partial fractioning strategy that was used to obtain B; in terms of By and Ajg.

The integral given by eq. (A.87) can be explicitly evaluated. The resulting expression,
which involves logarithms and dilogarithms, is given in Ref. [?], although it is not particularly
illuminating in the most general case. However, one can derive a useful set of expressions in
the limit of p? = p2 = p? = 0. For example,

1
C’0(07 Ov 07 m¢217 ml%? mg) =3 3 [30(07 m¢217 ml%) - B0(07 miv m?)]
my —mg

2 2 2
m2mi In (m—;) + mim?In (m—g) +m2m?21n (ﬁg)
m? m2 m2
_ . (A.96)

(m —my)(mi; —mZ)(mZ —mg)

c

C54(0,0,0; m2, my, m2) = 1[By(0;my, mZ) + m2Co(0,0,0;m2, mj, m?) + 3] . (A.97)
If two or three of the masses are degenerate, then it follows that
1 m? m?
CQ(O,O,O;m2’m2’m(2:) = —m |i]_ ‘l— mll’l (ﬁ)] s (A98)
1
Co(0,0,0;m* m* m?) = ——.. A.99
0(77amamam) 2m2 ( )

One other limiting case is noteworthy. The following loop function arises in the calculation
of the one-loop amplitude for the decay of a neutral Higgs boson to 2,

1 Ld 2 21 —a)p® —i
Co(p1,0,p%;m* m*, m*) = 7/ = n <m (1= 2)p ZE)
0

pP=pilo v m? — x(1 - x)p] —ic
1
= O/ m’) = Gli/m*)]. (A.100)

The function G(z) can be explicitly evaluated,

1
G(z) E/ dx In[1 — za(1 — x) — ic]
0 T
21n2<*/2_7—|—w/1—§), for 2 <0,
- —Q[arcsin(%\/?)f, for 0 <z <4, (A.101)

2
T . vz Z
—2[§+Zln<7+ Z_l)] , for z > 4,
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where 0 < arcsin(%f ) < % (for 0 < z < 4) employs the principal range of the real arcsine
function. In the limit of p? = p?, we obtain

1 [0G (1 —x)dz
CO(p2707p2;m27m27m2> =5\ 37 / 2 ) .
m? \ 0z Z:p2/m2 m? — p?x(l — x) — ie

= { o — By’ 2) + 1] (A.102)

after using egs. (A.52) and (A.53). In the limit of p*> = p? = 0, we recover eq. (A.99).
The Cj; functions can be expressed in terms of Ay, By, B; and C via the following relations,

4(P1'p2R2 - p%RQ 4(p1'p2Rl - p%Rz)
Cy = , Clo = , A.103
! A2, pi,p3) " Ap?, p?,p3) ( )
4(p1-paRs — P3R3) 4(py-paRy — piRs)
Cop = , Cay = , A.104
s A2, p?,p3) # Ap?, p?,p3) ( )
4(171 ‘paRs — p%R5) 4(]91 ‘paRe — p§R4)
Chs — _ , A.105
* A2, pi,p3) A2, p,p3) ( )
where
AP?, 1, p3) = 4[(p1-p2)” — pip3) (A.106)

with p = —p; — po (which implies that p;-p; = p* — p? — p3), and the R; are defined as follows,
Ry = 3 [Bo (p*m2,m?2) — By (p3; my, m2) — (pf + mi —m;) Cy]
Ry = L [By (p;m2,my) — By (p%;m2,m2) + (p} — p* — mj + m?) Gy,
Ry =—Cy — 5 [(Pl +m mb)cll - B (P ;m m ) By (p27mbam2)] )
Ry = —3 [(pi +mj —mj)Cia — By (p*;mi, m2) + By (p3;mj,me)]
Rs = —3 [(p* — pi + mj —m2)Ciy — By (pi;ml, mi) + By (p*;ml, m)],
R = —Co — 3 [(0* — P} +mj — mZ)Crz + By (p*;m,m?)],

where Cyy is given by eq. (A.95) and the suppressed arguments of Cy and the C;; above are

2 2 2. 2 2 2
(p17p27p 7ma7mb7mc)'

Finally, we record a number of useful symmetry properties of the C-functions when their
arguments are permuted. First,

C10 (p1>p2>p maamba ) CO (p2ap1ap mcamlnm )
= CO (p 7p17p27mc7ma7mb) = C’0 (p17p2 p§7ml§7m2 m2)
= C10 (p§>p2>p%;mbam2 m ) CO (p p2,p17mz,m3,m§) (A107)

The same symmetry properties are also satisfied by Coy,

2,2 ,2, .2 2 2\ _ 2,2 ,2, .2 2 2
C24 (p17p27p 7ma7mb7mc) - C24 (p27p17p 7mc7mb7ma)

= C24 (p2>p%>p§; mga mfwmlg) = C24 (p%>p2>p§; mlga mfwmi)
= C’24 (p§7p27p§;mgumgum¢21) = C24 (p27p§7p§;mzvmgvmg) : (A108)
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For completeness, we list below the symmetry properties of the other Cj; functions, which
were given in Ref. [?].

—Cz — Co) (93,03, 0% m2, my, m2)
[—C11 + Ch2 — Co] (p°, p1, p3; m2, m2, mj)
[—C11 + Cr2 — Co] (pi, 0%, p3; my, m, m?)
[—Ch2 — Co] (93, P°, p1;my, m2, m2)

= Cu (p*, p3, Py mi, mg, my) (A.109)

Cll (p17p27p ma7mb’ )

[—Cu — Co] (p3, p3, % m2, mi, my)

= [-Cu1 — Co] (v, p1, p3; m2, m2, m;)

= Ch (p}, p*, p3; m, m, m?)

= [Cy1 — Cua] (13, 0%, pT; mip, m?, m?)

= [Cu1 — Cua] (p%, p3. pT;mi, m2,my) (A.110)

Cha (P1>P2>P mijmmm )

Con (p17p27p mm mbv ) [022 +2C12 + CO] (pgup%7p27 mgvmgvmz)

= [Co1 + Cas — 2Co3 4 2Cyy — 2C12 + Cy) (p*, pi, p3; m?2, m3, my )
= [Ca1 + Cag — 2093 + 2C11 — 2C15 + Cy) (pip2729§5 my,ma, mg)
= [Cos + 2C15 + C) (p;pzup%; mg, mgvmi)

= Cou (0%, 03, Py g, m, m3) (A.111)

CY22 (p1>p2>p m?p mg? ) [021 + 2C(ll + CO] (pgap%ap2; mz>mg>m§)

= [021 + 2C'11 + CO] (pzvpiup; mgv mzu mg)
= CY22 (p%>p2>p§; mlga m¢21> mi)
= [021 + CY22 - 2023] (p%>p27p%ﬂ mga mza m?u)

= [021 + C22 - 2023] (p27p§7p§7 mzu mg? mg) :

(A.112)
Cos (p1, 3, p*mg, miy, mg) = [Cos + Chz + Ciy + Co (p3, pi, p*sme, miy, mg)
= [Ca1 — Ca3 + 2C11 — Cia + Co (p°, p1, p3; mZ, m?, my)
= [Cp — Co3 — O] (plap ,p2§mb>mi>m3)
= [Cas — Ca3 — C11 + Cia] (93, 0%, iy miz, m?2, m3)
= [Co1 — O3] (p°, 3, pT;me, m2, mj) . (A.113)
The following three identities are noteworthy,
Cn(p?, ¢, p%; M?,m?, m?) = 201(p?, ¢, p*; M?,m?*, m?), (A.114)
Co (p?, q2 pQ']\/[2 m?,m?) = 2023(p2 ¢, % M? m?, m?) (A.115)
2024(29 ¢, p*; M?,m®, m?) = =By (p* M?,m?)

+¢*[Cos (P, qu s M2, 2, m?) — 209 (p?, ¢, p% M?, m?, m?)].  (A.116)

Note that egs. (A.114) and (A.115) can also be obtained by employing the last equality of
egs. (A.110) and (A.113), respectively.
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Setting ¢ = 0 in eq. (A.115) yields,
2C5(p*,0,p% M, m*, m*) + By(p*; M?,m*) = 0. (A.117)

This result can be established directly from the integral representations given in eqs. (A.24)
and (A.93).

Using the results of eqs. (A.116) and (A.117),

oC. 27 27 2;M27m27m2
( 24(p 1 ]; 2 )) = %C23(p2707p2; M27m27m2) - C2Q(p2707p2; M27m27m2)'
q q2:0

(A.118)

One can check the above result by employing the integral representations given in egs. (A.91)—
(A.93). In particular,

ICu(p?, ¢* s M> i®i?)\ 1 / ' 2’ dx (A.119)
0q? q2:0_12 0 p2x2—|—(ﬁ12—M2—p2)$—|-M2‘ .
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