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Abstract

In these notes, we compute the renormalized 1PI two-point Green function for elec-
trons in QED at one loop order. Renormalization is carried out in the modified minimal
subtraction scheme (MS) and the on-shell (OS) schemes, in a general covariant gauge
using dimensional regularization. The wave function renormalization and mass renor-
malization constants, Z2 and Zm are explicitly evaluated. Special attention is given to
the dependence on the gauge parameter. In the OS scheme, Z2 exhibits an infrared
divergence for (almost) all possible values of the gauge parameter, with one exception
(corresponding to the Yennie gauge).

I. Introduction

The bare QED Lagrangian is given by

LQED = −1
4
F µν
B FBµν + ψB(i/∂ + eB /A)ψB −mψBψB − 1

2ξB
(∂µA

µ
B)

2 , (1)

where the subscript B refers to bare parameters and fields. Introducing the renormalization
constants to relate bare quantities to renormalized quantities (the latter with the B subscript
removed), the renormalized parameters are defined via

e = Z−1
e µ−ǫeB , m = Z−1

m mB , ξ = Z−1
ξ ξB , (2)

where ǫ ≡ 2 − 1
2
n appears so that the renormalized coupling e is dimensionless when one-

loop integrals are evaluated in n dimensions using dimensional regularization. Likewise, the
renormalized fields are defined via

ψ = Z
−1/2
2 ψB , Aµ = Z

−1/2
3 Aµ

B . (3)

It is traditional to introduce the vertex renormalization constant via

e ψ /Aψ = µ−ǫZ−1
1 eBψB /AψB ,

in which case we identify Ze = Z1Z
−1
2 Z

−1/2
3 . One can also prove that

1

2ξ
(∂µA

µ)2 =
1

2ξB
(∂µA

µ
B)

2 , (4)

as a consequence of the Ward identities, which implies that Zξ = Z3.
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Inserting eqs. (2) and (3) into eq. (1) yields

LQED = −1
4
F µνFµν + ψ(i/∂ + µǫe/A)ψ −mψψ − 1

2ξ
(∂µA

µ)2 + LCT ,

where the counterterm Lagrangian is given by

LCT = −(Z3 − 1)1
4
F µνFµν + (Z2 − 1)iψ/∂ψ − (ZmZ2 − 1)mψψ + (Z1 − 1)µǫeψ /Aψ .

Note that the counterterm Lagrangian does not contain a term proportional to the gauge
parameter ξ in light of eq. (4). The counterterm Lagrangian is treated as a perturbation,
which introduces additional Feynman rules for QED Green functions.

Working to one-loop order, it is convenient to define

δZi ≡ Zi − 1 , (for i = 1, 2, 3) , δZm ≡ Zm − 1 .

At one loop, δZi , δZm ∼ O(α), where α ≡ e2/(4π). Hence we can rewrite the counterterm
Lagrangian at one-loop as

LCT = −1
4
δZ3F

µνFµν + iδZ2ψ/∂ψ − (δZm + δZ2)mψψ + δZ1µ
ǫeψ /Aψ .

II. The 1PI electron two-point function

We now turn to the 1PI electron two-point function in momentum space,

iΓ(2)(p) = i(/p−m)− iΣ(p) , (5)

where p is the four-momentum of the electron. Here, we have denoted the sum of the loop
contributions to iΓ(2)(p) by −iΣ(p). At one-loop the two contributing Feynman graphs are

×
p pq + p

q

where the cross indicates the contribution of the terms iδZ2ψ/∂ψ − (δZm + δZ2)mψψ of the
counterterm Lagrangian. Thus, at one loop,

−iΣ(p) = (iµǫe)2
∫

dnq

(2π)n
γν(q/+ /p+m)γµ

q2
[

(q + p)2 −m2
]

(

gµν − (1− ξ)
qµqν
q2

)

+ iδZ2/p− im(δZm + δZ2) .

Using Dirac algebra in n = 4− 2ǫ dimensions,

γµ(q/+ /p+m)γµ = 2(ǫ− 1)(q/+ /p) + (4− 2ǫ)m,

q//pq/ = (2q ·p− /pq/)q/ = 2q ·p q/− q2/p ,
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it follow that
∫

dnq

(2π)n
γν(q/+ /p+m)γµ

q2
[

(q + p)2 −m2
]

(

gµν − (1− ξ)
qµqν
q2

)

=

∫

dnq

(2π)n
2(ǫ− 1)(q/+ /p) + (4− 2ǫ)m

q2
[

(q + p)2 −m2
] − (1− ξ)

∫

dnq

(2π)n
q2(q/− /p+m) + 2q ·p q/
q4
[

(q + p)2 −m2
] .

=

∫

dnq

(2π)n
2(ǫ− 1)(q/+ /p) + (4− 2ǫ)m− (1− ξ)(q/− /p+m)

q2
[

(q + p)2 −m2
]

−2(1− ξ)pµγν

∫

dnq

(2π)n
qµqν

q4
[

(q + p)2 −m2
] . (6)

Introducing Feynman parameters,
∫

dnq

(2π)n
1

q2
[

(q + p)2 −m2
] =

∫ 1

0

dx

∫

dnq

(2π)n
1

[

q2 + 2q ·p x+ x(p2 −m2)
]2

= i(4π)ǫ−2Γ(ǫ)

∫ 1

0

dx x−ǫ
[

m2 − p2(1− x)
]−ǫ

, (7)

∫

dnq

(2π)n
qµ

q2
[

(q + p)2 −m2
] =

∫ 1

0

dx

∫

dnq

(2π)n
qµ

[

q2 + 2q ·p x+ x(p2 −m2)
]2

= −i(4π)ǫ−2Γ(ǫ)pµ
∫ 1

0

dx x1−ǫ
[

m2 − p2(1− x)
]−ǫ

, (8)

∫

dnq

(2π)n
qµqν

q4
[

(q + p)2 −m2
] = 2

∫ 1

0

(1− x) dx

∫

dnq

(2π)n
qµqν

[

q2 + 2q ·p x+ x(p2 −m2)
]3 (9)

= −i(4π)ǫ−2Γ(ǫ)

∫ 1

0

dx (1− x)x−1−ǫ
[

m2 − p2(1− x)
]−1−ǫ

{

ǫx2pµpν − 1
2
gµνx

[

m2 − p2(1− x)
]

}

.

It then follows that
∫

dnq

(2π)n
γν(q/+ /p+m)γµ

q2
[

(q + p)2 −m2
]

(

gµν − (1− ξ)
qµqν
q2

)

= i(4π)ǫ−2Γ(ǫ)

{

[

(3 + ξ − 2ǫ)m− (1 + ξ − 2ǫ)/p

]
∫ 1

0

dx x−ǫ
[

m2 − p2(1− x)
]−ǫ

+(3− ξ − 2ǫ)/p

∫ 1

0

dx x1−ǫ
[

m2 − p2(1− x)
]−ǫ

+2(1− ξ)/p

∫ 1

0

dx (1− x)x−1−ǫ
[

m2 − p2(1− x)
]−1−ǫ

(

ǫx2p2 − 1
2
x
[

m2 − p2(1− x)
]

)

}

.
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Hence, we end up with
Σ(p) = −/pA(p2) +mB(p2) , (10)

where

A(p2) = δZ2 +
α

2π
(4π)ǫ Γ(ǫ)

∫ 1

0

dx x−ǫ

[

m2 − p2(1− x)

µ2

]−ǫ

×
{

(1− x)(1 − ǫ)− x(1 − ξ)− ǫ(1− ξ)x(1− x)p2

m2 − p2(1− x)

}

(11)

B(p2) = δZm + δZ2 +
α

2π
(4π)ǫ Γ(ǫ)

[

1
2
(3 + ξ)− ǫ

]

∫ 1

0

dx x−ǫ

[

m2 − p2(1− x)

µ2

]−ǫ

, (12)

after putting e2 = 4πα.
We recognize the ultraviolet divergence due to the presence of Γ(ǫ). But, if we attempt to

take the on-shell limit, p2 = 0, we obtain an indeterminant quantity in the ǫ→ 0 limit.

III. A(p2) and B(p2) in terms of Passarino-Veltman loop functions

We can rewrite eqs. (7)–(9) in terms of Passarino-Veltman loop functions,
∫

dnq

(2π)n
1

q2
[

(q + p)2 −m2
] =

iµ−2ǫ

16π2
B0(p

2; 0, m2) , (13)

∫

dnq

(2π)n
qµ

q2
[

(q + p)2 −m2
] =

iµ−2ǫ

16π2
pµB1(p

2; 0, m2) , (14)

∫

dnq

(2π)n
qµqν

q4
[

(q + p)2 −m2
] =

iµ−2ǫ

16π2

[

pµpνC22(0, p
2, p2; 0, 0, m2) + gµνC24(0, p

2, p2; 0, 0, m2)
]

.

(15)

It then follows that
∫

dnq

(2π)n
γν(q/+ /p+m)γµ

q2
[

(q + p)2 −m2
]

(

gµν − (1− ξ)
qµqν
q2

)

=
iµ−2ǫ

16π2

{

[

(2ǫ− ξ − 1)/p+ (3− 2ǫ+ ξ)m
]

B0(p
2; 0, m2) + (2ǫ+ ξ − 3)/pB1(p

2; 0, m2)

−2(1− ξ)/p
[

p2C22(0, p
2, p2; 0, 0, m2) + C24(0, p

2, p2; 0, 0, m2)
]

}

. (16)

Hence,

A(p2) = δZ2 +
α

2π

{

[

1
2
(1 + ξ)− ǫ

]

B0(p
2; 0, m2) +

[

1
2
(3− ξ)− ǫ

]

B1(p
2; 0, m2)

+(1− ξ)
[

p2C22(0, p
2, p2; 0, 0, m2) + C24(0, p

2, p2; 0, 0, m2)
]

}

, (17)

B(p2) = δZm + δZ2 +
α

2π

[

1
2
(3 + ξ)− ǫ

]

B0(p
2; 0, m2) . (18)
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Using the integral representations of the Passarino-Veltman loop functions, one can easily
derive,

B0(p
2; 0, m2) = (4π)ǫΓ(ǫ)

∫ 1

0

dx x−ǫ

[

m2 − p2(1− x)

µ2

]−ǫ

, (19)

B1(p
2; 0, m2) = −(4π)ǫΓ(ǫ)

∫ 1

0

dx x1−ǫ

[

m2 − p2(1− x)

µ2

]−ǫ

, (20)

p2C22(0, p
2, p2; 0, 0, m2) = −(4π)ǫǫΓ(ǫ)

∫ 1

0

dx
p2x(1− x)

m2 − p2(1− x)
x−ǫ

[

m2 − p2(1− x)

µ2

]−ǫ

, (21)

C24(0, p
2, p2; 0, 0, m2) = 1

2
(4π)ǫΓ(ǫ)

∫ 1

0

dx (1− x)x−ǫ

[

m2 − p2(1− x)

µ2

]−ǫ

, (22)

Plugging these results into eqs. (17) and (18), we recover the results of eqs. (11) and (12).

IV. The limit of a zero mass electron

The limit of m = 0 is a subtle one. In this case, Σ(p) = −/p
[

δZ2 + A0(p
2)
]

, where

A0(p
2) =

α

2π
(4π)ǫ (1− ǫ) Γ(ǫ)

(

−p2

µ2

)−ǫ ∫ 1

0

x−ǫ(1− x)−ǫ(1− 2x+ ξx) dx , (23)

after employing the result of eq. (11). Noting the symmetry of the integrand under x→ 1−x,
it follows that

A0(p
2) =

α ξ

2π
(4π)ǫ (1− ǫ) Γ(ǫ)

(

−p2

µ2

)−ǫ ∫ 1

0

x1−ǫ(1− x)−ǫ dx

=
α ξ

2π
(4π)ǫ

Γ(ǫ) Γ2(2− ǫ)

Γ(3− 2ǫ)

(

−p2

µ2

)−ǫ

. (24)

Recalling that ǫ = 2 − 1
2
n, where n is the number of spacetime dimensions, we recognize

the ultraviolet divergence due to the presence of Γ(ǫ). In particular, one must assume that
n < 4 or equivalently ǫ > 0, prior to the analytic continuation to ǫ = 0. But, if we attempt to
take the on-shell limit, p2 = 0, we obtain an indeterminate quantity in the ǫ → 0 limit. One
suggested strategy for dealing with this ambiguity is outlined on pp. 118–119 of Ref. [1].

However, a more direct approach can be adopted by setting p2 = m2 = 0 in eq. (6). It
then follows that,

∫

dnq

(2π)n
γν(q/+ /p)γµ

q2(q + p)2

(

gµν − (1− ξ)
qµqν
q2

)

=

∫

dnq

(2π)n
2(ǫ− 1)(q/+ /p)− (1− ξ)(q/− /p)

q2(q + p)2
− 2(1− ξ)pµγν

∫

dnq

(2π)n
qµqν

q4(q + p)2
. (25)
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If we write (q + p)2 = q2 + 2q ·p, then

1

q2(q2 − 2q ·p) =

∫ 1

0

dx
[

q2 + 2xq ·p
]2 ,

1

q4(q2 − 2q ·p) = 2

∫ 1

0

(1− x) dx
[

q2 + 2xq ·p
]3 . (26)

Defining a new integration variable, Q = q + xp, it follows that Q2 = q2 + 2xq ·p and
∫

dnq

(2π)n
2(ǫ− 1)(q/+ /p)− (1− ξ)(q/− /p)

q2(q + p)2
= /p

∫ 1

0

[

2(ǫ− 1)(1− x) + (1− ξ)(1 + x)
]

dx

∫

dnQ

(2π)n
1

Q4

= /p
[

1
2
+ ǫ− 3

2
ξ
]

∫

dnQ

(2π)n
1

Q4
. (27)

and

pµγν

∫

dnq

(2π)n
qµqν

q4(q + p)2
= 2pµγν

∫ 1

0

(1− x) dx

∫

dnQ

(2π)n
QµQν

Q6
=

1

n
/p

∫

dnQ

(2π)n
1

Q4
. (28)

Hence, after putting n = 4− 2ǫ,
∫

dnq

(2π)n
γν(q/+ /p)γµ

q2(q + p)2

(

gµν − (1− ξ)
qµqν
q2

)

= /p

[

1

2
+ ǫ− 3ξ

2
− 1− ξ

2− ǫ

]
∫

dnQ

(2π)n
1

Q4
. (29)

Strictly speaking, the integral
∫

dnQ

(2π)n
1

Q4
, (30)

is undefined for any value of n. In particular, it is both ultraviolet and infrared divergent for
n = 4. Following the conventions of dimensional regularization (see, e.g., Ref. [2]), one defines
integrals with no explicit scale to be zero,

∫

dnQ

(2π)n
1

Qp
= 0 , (31)

for any power p. In particular, one can understand the vanishing of eq. (30) in dimensional
regularization as a consequence of an exact cancellation of the infrared and ultraviolet diver-
gence.

In order to see this cancellation explicitly, we shall rewrite eq. (30) following eq. (C.22) of
Ref. [3],

∫

dnQ

(2π)n
1

Q4
=

∫

dnQ

(2π)n
1

Q2(Q2 −m2)
−
∫

dnQ

(2π)n
m2

Q4(Q2 −m2)
. (32)

This result clearly exhibits the infrared and ultraviolet divergences, but relegates them to
separate integrals. It then follows from eq. (7) that

∫

dnQ

(2π)n
1

Q2(Q2 −m2)
= i(4π)ǫ−2Γ(ǫ)(m2)−ǫ

∫ 1

0

x−ǫ dx

=
i

(4π)2

(

1

ǫ
− γ + ln(4π) + 1− lnm2

)

+O(ǫ) , (33)

where n = 4− 2ǫ, which exhibits an ultraviolet divergence when the limit of ǫ→ 0 is taken.
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The second integral on the right-hand side of eq. (32) is infrared divergent. To distinguish
this divergence from the ultraviolet divergence in eq. (33), we will write n = 4 − 2ǫ′ in the
following computation,
∫

dnQ

(2π)n
m2

Q4(Q2 −m2)
= 2m2

∫ 1

0

x dx

∫

dnq

(2π)n
1

[

q2 − (1− x)m2)
]3

= −i(4π)ǫ′−2(m2)−ǫ′ Γ(1 + ǫ′)

∫ 1

0

x(1− x)−1−ǫ′ dx

= −i(4π)ǫ′−2(m2)−ǫ′ Γ(1 + ǫ′)Γ(−ǫ′)
Γ(2− ǫ′)

=
i

(4π)2

(

4π

m2

)ǫ′
Γ(1 + ǫ′)

ǫ′(1− ǫ′)

=
i

(4π)2

(

1

ǫ′
− γ + ln(4π) + 1− lnm2

)

+O(ǫ′) . (34)

Hence, eq. (32) yields,
∫

dnQ

(2π)n
1

Q4
=

i

16π2

(

1

ǫ
− 1

ǫ′

)

= 0 , (35)

after using n = 4 − 2ǫ = 4 − 2ǫ′, which demonstrates the exact cancellation of the infrared
and ultraviolet divergences as asserted below eq. (31).

Of course, the statement that A0(p
2 = 0) does not imply that the divergence is absent.

Indeed, δZ2 can be unambiguously determined the MS scheme where no infrared divergences
are present as we will show in Sections V. In the computation of physical observables at one-
loop, the implication ofA(p2 = 0) = 0 in massless QED is simply that one can neglect Feynman
diagrams that contain self-energy corrections on the outgoing electrons and positron lines.
The counterterms on the external legs of the diagram are still present, and will end up being
reinterpreted as contributing to the infrared divergence, which will ultimately cancel infrared
divergences arising from other Feynman graphs, since physical observables are necessarily
infrared safe.

V. The renormalized 1PI electron two-point function in the MS scheme

If we use MS subtraction to fix the counterterms, then

δZMS
2 = − α

2π
(4π)ǫ Γ(ǫ)

∫ 1

0

dx (1− 2x+ xξ) = −α ξ
4π

(4π)ǫ Γ(ǫ) ,

δZMS
m + δZMS

2 = −α(3 + ξ)

4π
(4π)ǫ Γ(ǫ) .

Hence,

δZMS
2 = −α ξ

4π
(4π)ǫ Γ(ǫ) , δZMS

m = −3α

4π
(4π)ǫ Γ(ǫ) , (36)

where

(4π)ǫ Γ(ǫ) =
1

ǫ
− γ + ln 4π +O(ǫ) .

Note that δZ2 is gauge dependent, whereas δZm is gauge independent.
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We can easily reproduce the results of eq. (36) using the Passarion-Veltman functions. In
particular, the MS procedure instructs us to set A(p2) = B(p2) = 0 in eqs. (17) and (18) and
identify

B0(p
2; 0, m2) = (4π)ǫΓ(ǫ) , B1(p

2; 0, m2) = −1
2
(4π)ǫΓ(ǫ) , (37)

C24(0, p
2, p2; 0, 0, m2) = 1

4
(4π)ǫΓ(ǫ) , C22(0, p

2, p2; 0, 0, m2) = 0 . (38)

Solving for δZ2 and δZm, and setting ǫ = 0 except in the prefactors, we recover eq. (36).

Inserting eq. (36) back into eqs. (11) and (12) and taking the ǫ→ 0 limit, we obtain

A(p2)MS = − α

2π

{

∫ 1

0

[

1− x+
x(1− x)(1− ξ)p2

m2 − p2(1− x)

]

dx

+

∫ 1

0

(1− 2x+ xξ)

[

ln x+ ln

(

m2 − p2(1− x)

µ2

)]

dx

}

,

B(p2)MS = − α

2π

{

1 + 1
2
(3 + ξ)

∫ 1

0

[

ln x+ ln

(

m2 − p2(1− x)

µ2

)]

dx

}

,

The relevant integrals are

∫ 1

0

x(1− x)dx

m2 − p2(1− x)
=

2m2 − p2

2p4
− m2

p4

(

1− m2

p2

)

ln

(

1− p2

m2

)

,

∫ 1

0

xn ln x dx = − 1

(n+ 1)2
, for n = 0, 1, 2, . . .,

∫ 1

0

ln

(

m2 − p2(1− x)

µ2

)

dx = ln

(

m2 − p2

µ2

)

− m2

p2
ln

(

1− p2

m2

)

− 1 ,

∫ 1

0

(1− x) ln

(

m2 − p2(1− x)

µ2

)

dx =
1

2
ln

(

m2 − p2

µ2

)

− m4

2p4
ln

(

1− p2

m2

)

− m2

2p2
− 1

4
.

It follows that

A(p2)MS =
α ξ

4π

[

1 +
m2

p2
− ln

(

m2 − p2

µ2

)

+
m4

p4
ln

(

1− p2

m2

)]

,

B(p2)MS =
α

2π

{

2 + ξ − 1
2
(3 + ξ)

[

ln

(

m2 − p2

µ2

)

− m2

p2
ln

(

1− p2

m2

)]}

.

Note that A and B are finite for p2 = m2,

A(m2)MS =
α ξ

4π

[

2− ln

(

m2

µ2

)]

, B(m2)MS =
α

2π

[

2 + ξ − 1
2
(3 + ξ) ln

(

m2

µ2

)]

. (39)
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In light of eqs. (5) and (10), the one-loop correction to the inverse propagator is

Γ(2)(p)MS = /p−m− Σ(p)MS = /p
[

1 + A(p2)MS

]

−m
[

1 +B(p2)MS

]

= /p

{

1 +
α ξ

4π

[

1 +
m2

p2
− ln

(

m2 − p2

µ2

)

+
m4

p4
ln

(

1− p2

m2

)]}

−m
{

1 +
α

2π

(

2 + ξ − 1
2
(3 + ξ)

[

ln

(

m2 − p2

µ2

)

− m2

p2
ln

(

1− p2

m2

)])}

.(40)

In eq. (40), m ≡ m(µ) is the renormalized mass, which differs from the physical pole mass.
The definition of the MS mass is obtained by setting µ = m. That is, the MS mass is defined
as mR ≡ m(m). Thus, we set µ = m in eq. (40) and obtain,

Γ(2)(p)MS = /p

{

1 +
α ξ

4π

[

1 +
m2

R

p2
−
(

1− m4
R

p4

)

ln

(

1− p2

m2
R

)]}

−mR

{

1 +
α

2π

[

2 + ξ − 1
2
(3 + ξ)

(

1− m2
R

p2

)

ln

(

1− p2

m2
R

)]}

. (41)

The physical pole mass, denoted by me, corresponds to a zero of the inverse propagator. That
is, me is defined by the condition

Γ(2)(p)

∣

∣

∣

∣

/p=me

= 0 . (42)

The simplest way to obtain an expression for me at one loop accuracy is to rewrite eq. (40)
as

Γ(2)(p)MS =
[

1 + A(p2)MS

]

[

/p−m

(

1 +B(p2)MS

1 + A(p2)MS

)]

.

Since A(p2)MS and B(p2)MS are quantities of O(α), then to one-loop accuracy,

Γ(2)(p)MS ≃
[

1 + A(p2)MS

][

/p−m
(

1 + B(p2)MS − A(p2)MS

)]

.

We can then immediately identify

me = m
[

1 +B(m2
e)MS − A(m2

e)MS

]

.

At one-loop accuracy, A(m2
e) = A(m2)

∣

∣

µ=m
and B(m2

e) = B(m2)
∣

∣

µ=m
. Hence, using eq. (39),

we end up with

me = mR

(

1 +
α

π

)

.

Although the quantity B(p2)MS−A(p2)MS is gauge-invariant on-shell, it depends on the gauge
parameter ξ off-shell. In particular,

B(p2)MS−A(p2)MS =
α

4π

{

4 + ξ

(

1− m2

p2

)

− 3 ln

(

m2 − p2

µ2

)

+
m2

p2

[

3 + ξ

(

1− m2

p2

)]

ln

(

1− p2

m2

)}

.

One can easily check that B(m2)−A(m2) = α/π as required.
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Finally, we note that the MS scheme is a mass-independent scheme. In particular, no
infrared divergences appear in the evaluation of the 1PI electron two-point function in this
scheme.

VI. The renormalized 1PI electron two-point function in the on-shell (OS) scheme

Consider the on-shell (OS) renormalization scheme, where we identify the parameter m as
the pole mass. In this case, we expand,

Σ(p) = Σ(m) + (/p−m)Σ′(m) +O
(

(/p−m)2
)

.

The renormalization conditions that ensure that the residue of the propagator is unity and
the pole of the propagator is the pole mass m are:

Σ(m)OS = 0 , Σ′(m)OS = 0 . (43)

It then follows that the inverse propagator can be written as

Γ(2)(p)OS = /p−m− Σ(p)OS =
[

1 + Σ′(m)OS

]

(/p−m)− Σ(m)OS +O
(

(/p−m)2
)

= /p−m+O
(

(/p−m)2
)

.

Employing eq. (10), we can rewrite the boundary conditions specified in eq. (43) as

A(m2)OS = B(m2)OS , A(m2)OS = 2m2

[(

∂BOS

∂p2

)

−
(

∂AOS

∂p2

)]

p2=m2

, (44)

where we have used /p/p = p2 and
∂

∂/p
= 2/p

∂

∂p2
.

Using eqs. (11) and (12),

A(m2)OS = δZ2 +
α

2π
(4π)ǫΓ(ǫ)

(

m2

µ2

)−ǫ ∫ 1

0

dx x−2ǫ
[

(1− x)
(

1− (2− ξ)ǫ
)

− x(1− ξ)
]

B(m2)OS = δZm + δZ2 +
α

2π

(

1
2
(3 + ξ)− ǫ

)

(4π)ǫΓ(ǫ)

(

m2

µ2

)−ǫ ∫ 1

0

dx x−2ǫ .

The integrals above are elementary; the end result is

A(m2)OS = δZOS
2 +

α ξ

4π
(4π)ǫΓ(ǫ)

(

m2

µ2

)−ǫ
1

1− 2ǫ
, (45)

B(m2)OS = δZOS
m + δZOS

2 +
α

2π

(

1
2
(3 + ξ)− ǫ

)

(4π)ǫΓ(ǫ)

(

m2

µ2

)−ǫ
1

1− 2ǫ
. (46)
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Using eq. (44), we conclude that

δZOS
m = − α

4π
(4π)ǫΓ(ǫ)

(

m2

µ2

)−ǫ(
3− 2ǫ

1− 2ǫ

)

= −3α

4π

[

(4π)ǫΓ(ǫ) + 4
3
− ln

(

m2

µ2

)]

, (47)

after dropping terms of O(ǫ).
Next, we compute derivatives of eqs. (11) and (12) with respect to p2,

∂AOS

∂p2
=

α

2πµ2
(4π)ǫΓ(1 + ǫ)

∫ 1

0

dx x−ǫ(1− x)

[

m2 − p2(1− x)

µ2

]−1−ǫ

×
{

(1− x)(1− ǫ)− 2x(1− ξ)− (1− ξ)(1 + ǫ)x(1− x)p2

m2 − p2(1− x)

}

, (48)

∂BOS

∂p2
=

α

2πµ2
(4π)ǫΓ(1 + ǫ)

[

1
2
(3 + ξ)− ǫ

]

∫ 1

0

dx x−ǫ(1− x)

[

m2 − p2(1− x)

µ2

]−1−ǫ

. (49)

Note that these quantities are ultraviolet finite, after using ǫΓ(ǫ) = Γ(1 + ǫ). If we now
set p2 = m2, we see that the integrands in eqs. (48) and (49) behave as x−1+2ǫ as x → 0.
Thus integrating over x generates infrared divergences, which are regulated when ǫ 6= 0. The
resulting integrals are elementary, and it follows that

(

∂AOS

∂p2

)

p2=m2

= − α ξ

4πm2

(

m2

µ2

)−ǫ
(4π)ǫΓ(1 + ǫ)

ǫ(1− 2ǫ)
, (50)

(

∂BOS

∂p2

)

p2=m2

= − α

4πm2

(

m2

µ2

)−ǫ
(4π)ǫΓ(1 + ǫ)

ǫ(1− 2ǫ)

[

1
2
(3 + ξ)− ǫ

]

. (51)

In light of eqs. (44) and (45),

δZOS
2 = −α ξ

4π

(

m2

µ2

)−ǫ
(4π)ǫΓ(ǫ)

1− 2ǫ
+

α

4π

(

m2

µ2

)−ǫ
(4π)ǫΓ(1 + ǫ)

ǫ(1− 2ǫ)

[

ξ − 3 + 2ǫ
]

. (52)

The term on the right hand side of eq. (52) proportional to Γ(ǫ) represents the ultraviolet
divergence [cf. eq. (36)]. The last term on the right hand side of eq. (52) which contains a
pole at ǫ = 0 corresponds to the infrared divergence. Note that the infrared divergence at one
loop is absent in the Yennie gauge, which corresponds to ξ = 3.

We can add the two terms on the right hand side of eq. (52), if we are not concerned about
the mixing of the infrared and the ultraviolet divergences. The end result is

δZOS
2 = − α

4π

(

m2

µ2

)−ǫ
(3− 2ǫ)(4π)ǫΓ(1 + ǫ)

ǫ(1− 2ǫ)
. (53)

The ultraviolet divergence cancels part of the infrared divergence. Remarkably, the end result
is independent of the gauge parameter ξ.

Using eqs. (11) and (12), we can determine A(p2) and B(p2) in the on-shell scheme by
writing

A(p2)OS = A(p2)MS + δZOS
2 − δZMS

2 ,

B(p2)OS = B(p2)MS + δZOS
m + δZOS

2 − δZMS
m − δZMS

2 .
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Eqs. (36), (47) and (52) yield,

δZOS
2 − δZMS

2 = −α ξ
2π

[

1− 1
2
ln

(

m2

µ2

)]

+
α

4π

(

m2

µ2

)−ǫ
(4π)ǫΓ(1 + ǫ)

ǫ(1 − 2ǫ)

[

ξ − 3 + 2ǫ
]

. (54)

δZOS
m − δZMS

m = −α
π

[

1− 3
4
ln

(

m2

µ2

)]

. (55)

The infrared divergence is explicitly exhibited in eq. (54). Expanding about ǫ = 0 yields

δZOS
2 − δZMS

2 =
α(ξ − 3)

4π
(4π)ǫΓ(ǫ)− α

π

[

1− 3
4
ln

(

m2

µ2

)]

. (56)

Thus, both A(p2)OS and B(p2)OS are infrared divergent if ξ 6= 3. However the difference
B(p2)OS−A(p2)OS is infrared finite, although it depends on the gauge parameter ξ for p2 6= m2.

It is instructive to check the results obtained in this section by employing eqs. (17) and
(18). Then, eq. (44) yields,

δZOS
m = − α

2π

{

[

B0(m
2; 0, m2)−

[

1
2
(3− ξ)− ǫ

]

B1(m
2; 0, m2) ,

−(1− ξ)
[

m2C22(0, m
2, m2; 0, 0, m2) + C24(0, m

2, m2; 0, 0, m2)
]

}

. (57)

Using eqs. (20)–(22), it follows that

m2C22(0, m
2, m2; 0, 0, m2)+C24(0, m

2, m2; 0, 0, m2) = −1
2
B1(m

2; 0, m2) =
(4π)ǫΓ(ǫ)

4(1− ǫ)

(

m2

µ2

)−ǫ

.

(58)
Hence, it follows that

δZOS
m = − α

2π

[

B0(m
2; 0, m2)− (1− ǫ)B1(m

2; 0, m2)
]

(59)

In light of eq. (19),

B0(m
2; 0, m2) =

(4π)ǫΓ(ǫ)

1− 2ǫ

(

m2

µ2

)−ǫ

. (60)

Employing the results of eqs. (58) and (60) in eq. (59), we recover the result of eq. (47).

Likewise, eq. (44) yields,

δZOS
2 = − α

2π

{

[

1
2
(1 + ξ)− ǫ

]

B0(m
2; 0, m2) +

[

1
2
(3− ξ)− ǫ

]

B1(m
2; 0, m2)

+(1− ξ)
[

m2C22(0, m
2, m2; 0, 0, m2) + C24(0, m

2, m2; 0, 0, m2)
]

−2m2B′
0(m

2; 0, m2) + 2m2
[

1
2
(3− ξ)− ǫ

]

B′
1(m

2; 0, m2)

+2m2(1− ξ)
[

C22(0, m
2, m2; 0, 0, m2) +m2C ′

22(0, m
2, m2; 0, 0, m2)

+C ′
24(0, m

2, m2; 0, 0, m2)
]

}

, (61)
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where the prime indicates

B′
i(m

2; 0, m2) ≡ ∂

∂p2
Bi(p

2; 0, m2)

∣

∣

∣

∣

p2=m2

, (62)

C ′
ij(0, m

2, m2; 0, 0, m2) ≡ ∂

∂p2
Cij(0, p

2, p2; 0, 0, m2)

∣

∣

∣

∣

p2=m2

. (63)

Using eq. (58), the expression for δZOS
2 can be rewritten as,

δZOS
2 = − α

2π

{

[

1
2
(1 + ξ)− ǫ

]

B0(m
2; 0, m2) + (1− ǫ)B1(m

2; 0, m2)

−2m2B′
0(m

2; 0, m2) + 2m2
[

1
2
(3− ξ)− ǫ

]

B′
1(m

2; 0, m2)

+2m2(1− ξ)
[

C22(0, m
2, m2; 0, 0, m2) +m2C ′

22(0, m
2, m2; 0, 0, m2)

+C ′
24(0, m

2, m2; 0, 0, m2)
]

}

, (64)

It is straightforward to obtain,

2m2B′
0(m

2; 0, m2) = −(4π)ǫΓ(ǫ)

1− 2ǫ

(

m2

µ2

)−ǫ

, (65)

2m2B′
1(m

2; 0, m2) = − (4π)ǫǫΓ(ǫ)

(1− ǫ)(1− 2ǫ)

(

m2

µ2

)−ǫ

, (66)

2m2C22(0, m
2, m2; 0, 0, m2) = − (4π)ǫǫΓ(ǫ)

(1− ǫ)(1− 2ǫ)

(

m2

µ2

)−ǫ

, (67)

2m4C ′
22(0, m

2, m2; 0, 0, m2) =
(4π)ǫ(1 + ǫ)Γ(ǫ)

(1− ǫ)(1− 2ǫ)

(

m2

µ2

)−ǫ

, (68)

2m2C ′
24(0, m

2, m2; 0, 0, m2) = − (4π)ǫΓ(ǫ)

2(1− ǫ)(1− 2ǫ)

(

m2

µ2

)−ǫ

. (69)

All divergences that appear above are infrared divergences. We can simplify our expression
for δZOS

2 by employing,

2m2
[

C22(0, m
2, m2; 0, 0, m2)+m2C ′

22(0, m
2, m2; 0, 0, m2)+C ′

24(0, m
2, m2; 0, 0, m2)

]

= − 1

2ǫ
B′

1(m
2; 0, m2) .

(70)
We then end up with

δZOS
2 = − α

2π

{

[

1
2
(1 + ξ)− ǫ

]

B0(m
2; 0, m2) + (1− ǫ)B1(m

2; 0, m2)

−2m2B′
0(m

2; 0, m2)− 2m2

[

(1− ǫ)(1− ξ − 2ǫ)

2ǫ

]

B′
1(m

2; 0, m2)

}

, (71)

which reproduces the result of eq. (52).
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VII. The functions A(p2) and B(p2) in terms of hypergeometric functions

It is sometimes convenient to evaluate the functions A(p2) and B(p2) prior to taking the
ǫ → 0 limit. In this case, A(p2) and B(p2) can be expressed in terms of hypergeometric
functions. First, we define the following family of integrals:

In,ℓ(p
2) ≡

∫ 1

0

dx xn−ǫ

[

m2 − p2(1− x)

m2

]−ǫ−ℓ

, (72)

Using the integral representation of the Gauss hypergeometric function,

F (a , b ; c ; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

xb−1(1− x)c−b−1(1− xz)−a dx ,

for Re c > Re b > 0 and |arg(1− z)| < π, and the functional relation,

F (a , b ; c ; z) = (1− z)−aF

(

a , c− b ; c ;
z

z − 1

)

,

it follows that

In,ℓ(p
2) =

1

n+ 1− ǫ
F

(

ℓ+ ǫ , 1 ; n + 2− ǫ ;
p2

m2

)

. (73)

It is convenient to rewrite In,0(ǫ) in another form using the recursion relation,

(c− a− b)F (a , b ; c ; z) + a(1− z)F (a + 1 , b ; c ; z)− (c− b)F (a , b− 1 ; c ; z) = 0 .

It follows that

In,0(p
2) =

1

n+ 1− 2ǫ

[

1− ǫ

n + 1− ǫ

(

1− p2

m2

)

F

(

1 + ǫ , 1 ; n+ 2− ǫ ;
p2

m2

)]

. (74)

Using eqs. (11) and (12),

A(p2) = δZ2 +
α

2π

(

m2

µ2

)−ǫ

(4π)ǫ Γ(ǫ)

{

(1− ǫ)
[

I0,0(p
2)− I1,0(p

2)
]

− (1− ξ)I1,0(ǫ)

−ǫ(1 − ξ)
p2

m2

[

I1,1(p
2)− I2,1(p

2)
]

}

(75)

B(p2) = δZm + δZ2 +
α

2π

(

m2

µ2

)−ǫ

(4π)ǫ Γ(ǫ)
[

1
2
(3 + ξ)− ǫ

]

I0,0(p
2) . (76)

From eqs. (75) and (76), one can easily perform the expansion in ǫ. In particular,

In,0(p
2) =

1

n + 1

[

1 +
2ǫ

n+ 1
− ǫ

n + 1

(

1− p2

m2

)

F

(

1 , 1 ; n + 2 ;
p2

m2

)]

+O(ǫ2) ,

In,1(p
2) =

1

n + 1
F

(

1 , 1 ; n+ 2 ;
p2

m2

)

+O(ǫ) ,

14



where

F (1 , 1 ; n+ 2 ; z) = −(1 + n)(1− z)n

n!

dn

dzn

[

ln(1− z)

z

]

.

In particular,

F (1 , 1 ; 2 ; z) = − ln(1− z)

z
, (77)

F (1 , 1 ; 3 ; z) = 2

[

1

z
+

(1− z) ln(1− z)

z2

]

, (78)

F (1 , 1 ; 4 ; z) = −3

2

[

2− 3z

z2
+

2(1− z)2 ln(1− z)

z3

]

. (79)

It follows that

A(p2) = δZ2 +
α ξ

4π
(4π)ǫΓ(ǫ) +

α

2π

{

3

2
−
(

1− p2

m2

)

F

(

1 , 1 ; 2 ;
p2

m2

)

−(1− 1
2
ξ)

[

1− 1

2

(

1− p2

m2

)

F

(

1 , 1 ; 3 ;
p2

m2

)]

−(1− ξ)
p2

m2

[

1
2
F

(

1 , 1 ; 3 ;
p2

m2

)

− 1
3
F

(

1 , 1 ; 4 ;
p2

m2

)]

− 1
2
ξ ln

(

m2

µ2

)

}

+O(ǫ) .

B(p2) = δZm + δZ2 +
α

4π
(3 + ξ)(4π)ǫ Γ(ǫ)

+
α

2π

{

2 + ξ − 1
2
(3 + ξ)

[(

1− p2

m2

)

F

(

1 , 1 ; 2 ;
p2

m2

)

+ ln

(

m2

µ2

)]

}

+O(ǫ) .

Inserting the results of eqs. (77)–(79) yields

A(p2) = δZ2 +
α ξ

4π
(4π)ǫΓ(ǫ) +

α ξ

4π

{(

1 +
m2

p2

)[

1−
(

1− m2

p2

)

ln

(

1− p2

m2

)]

− ln

(

m2

µ2

)}

+O(ǫ) ,

B(p2) = δZm + δZ2 +
α

4π
(3 + ξ)(4π)ǫ Γ(ǫ)

+
α

2π

{

2 + ξ − 1
2
(3 + ξ)

[(

1− m2

p2

)

ln

(

1− p2

m2

)

+ ln

(

m2

µ2

)]}

+O(ǫ) ,

which are equivalent to the results previously obtained.
In the OS scheme, we also need to compute the derivatives of A(p2) and B(p2) with respect

to p2. It is straightforward to obtain,

∂In,0
∂p2

=
ǫ

m2(n + 1− ǫ)(n + 2− ǫ)
F

(

1 + ǫ , 2 ; n+ 3− ǫ ;
p2

m2

)

,

∂(p2In,1)

∂p2
=

1

n+ 1− ǫ
F

(

1 + ǫ , 2 ; n+ 2− ǫ ;
p2

m2

)

.
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Taking the derivative of eq. (75), it follows that

∂A

∂p2
=

α ξ

2πm2

(

m2

µ2

)−ǫ

(4π)ǫ
Γ(1 + ǫ)

2− ǫ

{

F

(

1 + ǫ , 2 ; 3− ǫ ;
p2

m2

)

−
(

1− ǫ

3− ǫ

)

F

(

1 + ǫ , 2 ; 4− ǫ ;
p2

m2

)

}

.

Likewise, we can compute ∂B/∂p2 by taking the derivative of eq. (76). We can simplify the
expression for ∂A/∂p2 by using the recursion relation,

(c− b− 1)F (a , b ; c ; z) + bF (a , b+ 1 ; c ; z)− (c− 1)F (a , b ; c− 1 ; z) = 0 .

The end result is

∂A

∂p2
=

α ξ

πm2

(

m2

µ2

)−ǫ

(4π)ǫ
Γ(1 + ǫ)

(2− ǫ)(3− ǫ)
F

(

1 + ǫ , 3 ; 4− ǫ ;
p2

m2

)

, (80)

∂B

∂p2
=

α

2πm2

(

m2

µ2

)−ǫ

(4π)ǫ
Γ(1 + ǫ)

(1− ǫ)(2− ǫ)

[

1
2
(3 + ξ)− ǫ

]

F

(

1 + ǫ , 2 ; 3− ǫ ;
p2

m2

)

. (81)

The infrared divergence emerges when p2 = m2. In this limit, we can employ the identity,

F (a , b ; c ; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
,

in eqs. (80) and (81) to recover the results of eqs. (50) and (51).
Finally, to demonstrate the fact that the infrared divergence in δZ2 cancels in the Yennie

gauge, we make use of another recursion relation,

cF (a , b ; c ; z)− bzF (a , b+ 1 ; c+ 1 ; z)− cF (a− 1 , b ; c ; z) = 0 ,

to write

(3−ǫ)
[

F

(

1 + ǫ , 2 ; 3− ǫ ;
p2

m2

)

−F
(

ǫ , 2 ; 3− ǫ ;
p2

m2

)]

−2p2

m2
F

(

1 + ǫ , 3 ; 4− ǫ ;
p2

m2

)

= 0 .

Hence, it follows that

∂B

∂p2
− ∂A

∂p2
=

α

2πm2

(

m2

µ2

)−ǫ

(4π)ǫ
Γ(1 + ǫ)

2− ǫ

{[ 1
2
(3 + ξ)− ǫ

1− ǫ
− ξm2

p2

]

F

(

1 + ǫ , 2 ; 3− ǫ ;
p2

m2

)

+
ξm2

p2
F

(

ǫ , 2 ; 3− ǫ ;
p2

m2

)}

=
α

4πm2

(

m2

µ2

)−ǫ

(4π)ǫ
Γ(1 + ǫ)

(1− ǫ)(2− ǫ)

[

3− ξ − 2ǫ(1− ξ) + ξ

(

1− m2

p2

)]

F

(

1 + ǫ , 2 ; 3− ǫ ;
p2

m2

)

+
2ξ(1− ǫ)m2

p2
F

(

ǫ , 2 ; 3− ǫ ;
p2

m2

)}

.
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In the case of ξ = 3, we can take the ǫ → 0 limit when p2 = m2 without encountering an
infrared divergence in δZ2,

lim
p2→m2

(

∂B

∂p2
− ∂A

∂p2

)

ξ=3

=
α

8πm2

{

6 + lim
ǫ→0

4ǫF (1 + ǫ , 2 ; 3− ǫ ; 1)

}

=
α

4πm2
.

That is, in light of eq. (44), we recover eq. (56) in the Yennie gauge,

(δZOS
2 − δZMS

2 )ξ=3 = −α
π

[

1− 3
4
ln

(

m2

µ2

)]

.

Appendix A Integrals arising in one-loop calculations

A.1 The formulae of dimensional regularization

In dimensional regularization, loop integrals are carried out in d = 4 − 2ǫ dimensions, which
defines the parameter ǫ. In particular,

gµνgµν = d = 4− 2ǫ . (A.1)

Ultraviolet and infrared divergences will appear as poles in ǫ.
∫

ddq

(2π)d
1

(q2 + 2q ·p−m2 + iε)r
= i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 2)

Γ(r)

∫

ddq

(2π)d
qµ

(q2 + 2q ·p−m2 + iε)r
= −i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 2)

Γ(r)
pµ

∫

ddq

(2π)d
qµqν

(q2 + 2q ·p−m2 + iε)r
= i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 3)

Γ(r)

×
[

(ǫ+ r − 3)pµpν − 1
2
gµν(p2 +m2)

]

∫

ddq

(2π)d
qµqνqα

(q2 + 2q ·p−m2 + iε)r
= −i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 3)

Γ(r)

×
[

(ǫ+ r − 3)pµpνpα

−1
2
(gµνpα + gµαpν + gναpµ)(p2 +m2)

]

∫

ddq

(2π)d
qµqνqαqβ

(q2 + 2q ·p−m2 + iε)r
= i(−1)r(p2 +m2)2−ǫ−r(4π)ǫ−2 Γ(ǫ+ r − 4)

Γ(r)

×
{

(ǫ+ r − 3)(ǫ+ r − 4)pµpνpαpβ

−1
2
(ǫ+ r − 4)(gµνpαpβ + gµαpνpβ + gµβpνpα

+gναpµpβ + gνβpµpα + gαβpµpν)(p2 +m2)

+1
4
(gµνgαβ + gµαgνβ + gµβgνα)(p2 +m2)2

}
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where ε (not to be confused with ǫ) is a positive infinitesimal constant.
In addition, all scaleless integrals are defined by the dimensionless regularization procedure

to be zero. For example,
∫

ddq

(2π)d
1

(q2)r
≡ 0 , (A.2)

which corresponds to setting p2 = m2 = 0 in the first integral above under the assumption
that ǫ < 2 − r. However, in dimensional regularization, eq. (A.2) is defined to be valid for
all r.

We can expand about ǫ = 0 by using

Γ(−N + ǫ) =
(−1)N

N !

[

1

ǫ
+ ψ(N + 1) +O(ǫ)

]

, (A.3)

where N is a non-negative integer, ψ(x) ≡ Γ′(x)/Γ(x) with Γ′(x) ≡ dΓ(x)/dx,

ψ(1) = −γ , ψ(N + 1) = −γ +

N
∑

k=1

1

k
, (A.4)

and γ = −Γ′(1) = 0.5772 · · · is the Euler-Mascheroni constant.
Finally, we record some of the Feynman parameter formulae:

1

AαBβ
=

Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

dx
xα−1(1− x)β−1

[

xA + (1− x)B
]α+β

, (A.5)

1

AαBβCδ
=

Γ(α + β + δ)

Γ(α)Γ(β)Γ(δ)

∫ 1

0

x dx

∫ 1

0

dy
xα+β−2 yα−1(1− x)δ−1(1− y)β−1

[

xyA+ x(1− y)B + (1− x)C
]α+β+δ

,

(A.6)

and more generally,

1

Aα1

1 A
α2

2 · · ·AαN

N

=
Γ(α1 + α2 + · · ·+ αN)

Γ(α1)Γ(α2) · · ·Γ(αN )

∫ 1

0

dx1 · · ·
∫ 1

0

dxN δ

(

N
∑

j=1

xj − 1

)

× xα1−1
1 xα2−1

2 · · ·xαN−1
N

(x1A1 + x2A2 + · · ·+ xNAN )α1+α2+···+αN

. (A.7)

A.2 The Passarino–Veltman loop functions

We collect here the relevant integrals that arise in one-loop computations of one-point, two-
point and three-point Green functions based on work that first appeared in Ref. [?, ?].
However, in contrast to the original presentation, we employ the metric convention gµν =
diag(1,−1,−1,−1), and we have chosen a different overall normalization constant in defining
the loop functions. Here, we follow the conventions that appear in Ref. [?].
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The Passarino–Veltman loop functions that arise when evaluating the one loop contribu-
tions to one-point, two-point and three-point Green functions (or the corresponding ampli-
tudes of a physical process) are defined as follows,1

A0(m
2) = −16π2iµ2ǫ

∫

ddq

(2π)d
1

q2 −m2 + iε
, (A.8)

B0;B
µ;Bµν(p2;m2

a, m
2
b) = −16π2iµ2ǫ

∫

ddq

(2π)d
1; qµ; qµqν

DB
, (A.9)

C0;C
µ;Cµν(p21, p

2
2, p

2;m2
a, m

2
b , m

2
c) = −16π2iµ2ǫ

∫

ddq

(2π)d
1; qµ; qµqν

DC
, (A.10)

where the integrals are evaluated in d = 4− 2ǫ dimensions,

DB ≡ (q2 −m2
a + iε)[(q + p)2 −m2

b + iε] , (A.11)

DC ≡ (q2 −m2
a + iε)[(q + p1)

2 −m2
b + iε][(q + p1 + p2)

2 −m2
c + iε] , (A.12)

and p = −(p1 + p2). In Eqs. (A.8)-(A.10) all external momenta are flowing into the diagram-
matic representation of the Green function. We have included the µ2ǫ factor for convenience
as it will ensure that the arguments of all logarithms that arise in the evaluation of the above
integrals are dimensionless.

The arguments of the Passarino–Veltman loop functions employed in eqs. (A.9) and (A.10)
have been chosen with the understanding that Lorentz covariance can be used to decompose
the loop functions in terms of Lorentz scalar functions of the same arguments,

Bµ = B1p
µ , (A.13)

Bµν = B21p
µpν +B22g

µν , (A.14)

Cµ = C11p
µ
1 + C12p

µ
2 , (A.15)

Cµν = C21p
µ
1p

ν
1 + C22p

µ
2p

ν
2 + C23(p

µ
1p

ν
2 + pµ2p

ν
1) + C24g

µν . (A.16)

The derivatives of B-type integrals are also of interest and will be analyzed below.2

Among the integrals listed above, A0, B0, B1, B21, B22 and C24 are divergent as ǫ → 0.
The integrals C0 and Cij for ij 6= 24 are ultraviolet convergent and can be evaluated by setting
ǫ = 0 (assuming that no infrared divergences are present). The divergent parts of A0, B0, B1

and C24 are easily obtained,

A0(m
2)|div =

m2

ǫ
(A.17)

B0(p
2;m2

a, m
2
b)|div =

1

ǫ
(A.18)

B1(p
2;m2

a, m
2
b)|div. = − 1

2ǫ
(A.19)

C24(p
2
1, p

2
2, p

2;m2
a, m

2
b , m

2
c)|div. =

1

4ǫ
. (A.20)

1All squared masses, m2, m2

a
, m2

b
and m2

c
are nonnegative real parameters. The four momenta p1, p2 and

p correspond to either on-shell or off-shell particles depending on the application.
2One can also consider B-type and C-type tensor integrals with more than two Lorentz indices, the deriva-

tives of C-type integrals, and the D-type and E-type Passarino-Veltman loop functions that arise when
evaluating the respective one-loop contributions to four-point and five-point Green functions. These loop
integrals will not be treated in this Appendix; for further details, the reader may consult Refs. [?].
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It is convenient to introduce the quantity,

∆ ≡ (4π)ǫ Γ(ǫ) =
1

ǫ
− γ + ln(4π) +O(ǫ) , (A.21)

where γ is Euler’s constant. Then, we can evaluate A0, B0 and B1 explicitly in d = 4 − 2ǫ
dimensions. All terms of O(ǫ) will be dropped in the expressions below. The following results
are then obtained,

A0(m
2) = m2

[

∆+ 1− ln

(

m2

µ2

)]

, (A.22)

B0(p
2;m2

a, m
2
b) = ∆−

∫ 1

0

ln

(

p2x2 − (p2 +m2
a −m2

b)x+m2
a − iε

µ2

)

dx , (A.23)

B1(p
2;m2

a, m
2
b) = −1

2
∆+

∫ 1

0

ln

(

p2x2 − (p2 +m2
a −m2

b)x+m2
a − iε

µ2

)

x dx , (A.24)

B21(p
2;m2

a, m
2
b) =

1
3
∆−

∫ 1

0

ln

(

p2x2 − (p2 +m2
a −m2

b)x+m2
a − iε

µ2

)

x2 dx , (A.25)

B22(p
2;m2

a, m
2
b) =

1
4
(∆ + 1)

(

m2
a +m2

b − 1
3
p2
)

− 1
2

∫ 1

0

[

p2x2 − (p2 +m2
a −m2

b)x+m2
a

]

× ln

(

p2x2 − (p2 +m2
a −m2

b)x+m2
a − iε

µ2

)

dx . (A.26)

It is possible to evaluate B1 in terms of A0 and B0 by noting that ,

p2B1(p
2;m2

a, m
2
b) = pµB

µ(p2;m2
a, m

2
b) = −16π2iµ2ǫ

∫

ddq

(2π)d
p·q
DB

, (A.27)

where DB is given in eq. (A.11). To simplify this result, we shall employ the method of partial
fractions by making use of following algebraic identity,

p·q = 1
2

[

(q + p)2 − q2 − p2
]

= 1
2

[

(q + p)2 −m2
b − (q2 −m2

a)− p2 +m2
b −m2

a

]

.

(A.28)

Plugging this result into eq. (A.27) yields,

p2B1(p
2;m2

a, m
2
b) = 8π2iµ2ǫ

{

∫

ddq

(2π)d

(

1

(q + p)2 −m2
b + iε

− 1

q2 −m2
a + iε

)

+(p2 +m2
a −m2

b)µ
2ǫ

∫

ddq

(2π)d
1

DB

}

. (A.29)

The end result is,

p2B1(p
2;m2

a, m
2
b) =

1
2

[

A0(m
2
a)− A0(m

2
b)− (p2 +m2

a −m2
b)B0(p

2;m2
a, m

2
b)
]

.

(A.30)

In particular,
B1(p

2;m2, m2) = −1
2
B0(p

2;m2, m2) . (A.31)
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Similarly, B21 and B22 can be expressed in terms of A0, B0 and B1. Starting from
eq. (A.14), it follows that

pµBµν = pν(p
2B21 +B22) , gµνBµν = p2B21 + dB22 , (A.32)

where the arguments of the B loop functions are (p2;m2
a, m

2
b). Following the steps used in the

derivation of eq. (A.30), we obtain two equations,

p2B21 +B22 =
1
2
A0(m

2
b)− 1

2
(p2 +m2

a −m2
b)B1 , (A.33)

p2B21 + dB22 = A0(m
2
b) +m2

aB0 . (A.34)

Solving for B21 and B22 yields,

(d− 1)p2B21 =
(

1
2
d− 1

)

A0(m
2
b)− 1

2
d(p2 +m2

a −m2
b)B1 −m2

aB0 , (A.35)

(d− 1)B22 =
1
2
A0(m

2
b) +m2

aB0 +
1
2
(p2 +m2

a −m2
b)B1 . (A.36)

After expanding about ǫ = 0 and dropping terms of O(ǫ), it follows that

dB21 = 4B21 − 2
3
, dB22 = 4B22 − 1

2

(

m2
a +m2

b − 1
3
p2
)

, (A.37)

dB1 = 4B1 + 1 , 1
2
dA0(m

2
b) = 2A0(m

2
b)−m2

b . (A.38)

We end up with

p2B21(p
2;m2

a, m
2
b) =

1

3

{

A0(m
2
b)−m2

aB0(p
2;m2

a, m
2
b)− 1

2
(m2

a +m2
b) +

p2

6

−2(p2 +m2
a −m2

b)B1(p
2;m2

a, m
2
b)

}

, (A.39)

B22(p
2;m2

a, m
2
b) =

1

6

{

A0(m
2
b) + 2m2

aB0(p
2;m2

a, m
2
b) +m2

a +m2
b −

p2

3

+(p2 +m2
a −m2

b)B1(p
2;m2

a, m
2
b)

}

. (A.40)

The symmetry properties of B0, B1, B21 and B22 under an interchange of m2
a ↔ m2

b are
noteworthy,

B0(p
2;m2

a, m
2
b) = B0(p

2;m2
b , m

2
a) , (A.41)

B1(p
2;m2

a, m
2
b) = −B1(p

2;m2
b , m

2
a)−B0(p

2;m2
b , m

2
a) . (A.42)

B21(p
2;m2

a, m
2
b) = B21(p

2;m2
b , m

2
b) + 2B11(p

2;m2
b , m

2
b) +B0(p

2;m2
b , m

2
b) , (A.43)

B22(p
2;m2

a, m
2
b) = B22(p

2;m2
b , m

2
a) . (A.44)

One can now perform the integration in eq. (A.23). The end result is,

B0(p
2;m2

a, m
2
b) = ∆− F (p2;m2

a, m
2
b) , (A.45)

where the function F is explicitly evaluated below in five distinct cases [?]. The expressions
make use of the well-known kinematical triangle function [?],

λ(a2, b2, c2) ≡ a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2 =
[

a2 − (b+ c)2
][

a2 − (b− c)2
]

.

(A.46)
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Case 1: p2 > (ma +mb)
2

F (p2;m2
a, m

2
b) = ln

(

m2
b

µ2

)

− 2−
(

p2 +m2
a −m2

b

2p2

)

ln

(

m2
b

m2
a

)

(A.47)

+
λ1/2(p2, m2

a, m
2
b)

p2

[

ln

(

[

p2 − (ma −mb)
2
]1/2

+
[

p2 − (ma +mb)
2
]1/2

[

p2 − (ma −mb)2
]1/2 −

[

p2 − (ma +mb)2
]1/2

)

− iπ

]

.

Case 2: p2 < (ma −mb)
2 and p2 6= 0

F (p2;m2
a, m

2
b) = ln

(

m2
b

µ2

)

− 2−
(

p2 +m2
a −m2

b

2p2

)

ln

(

m2
b

m2
a

)

(A.48)

+
λ1/2(p2, m2

a, m
2
b)

p2
ln

(

[

(ma +mb)
2 − p2

]1/2
+
[

(ma −mb)
2 − p2

]1/2

[

(ma +mb)2 − p2
]1/2 −

[

(ma −mb)2 − p2
]1/2

)

.

Case 3: (ma −mb)
2 < p2 < (ma +mb)

2

F (p2;m2
a, m

2
b) = ln

(

m2
b

µ2

)

−
(

p2 +m2
a −m2

b

2p2

)

ln

(

m2
b

m2
a

)

− 2

+
2
[

−λ(p2, m2
a, m

2
b)
]1/2

p2
arctan

(

√

p2 − (ma −mb)2
√

(ma +mb)2 − p2

)

, (A.49)

where the principal value of the real arctangent function satisfies | arctanx| ≤ 1
2
π.

Case 4: p2 = 0 and ma 6= mb

F (0;m2
a, m

2
b) =

1

m2
a −m2

b

[

m2
a ln

(

m2
a

µ2

)

−m2
b ln

(

m2
b

µ2

)]

− 1 . (A.50)

Case 5: p2 = 0 and m ≡ ma = mb

F (0;m2, m2) = ln

(

m2

µ2

)

. (A.51)

Sometimes a loop integral arises in which one or more of the propagator denominators are
raised to a power. For an A-type loop integral, we can simply use the formulae provided in
Appendix A.1. As an example,

For a B-type loop integral, consider

∂B0

∂m2
a

(p2;m2
a, m

2
b) = −16π2iµ2ǫ

∫

ddq

(2π)d
1

(q2 −m2
a + iε)2[(q + p)2 −m2

b + iε]

= −
∫ 1

0

(1− x)dx

p2x2 − (p2 +m2
a −m2

b)x+m2
a − iε

. (A.52)
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One can express this integral in terms of A0 and B0 as follows,

∂B0

∂m2
a

(p2;m2
a, m

2
b) =

1

λ(p2, m2
a, m

2
b)

{

(−p2 +m2
a −m2

b)B0(p
2;m2

a, m
2
b)

+

(

p2 −m2
a −m2

b

m2
a

)

A0(m
2
a) + 2A0(m

2
b) + p2 −m2

a +m2
b

}

, (A.53)

under the assumption that λ(p2, m2
a, m

2
b) 6= 0 [cf. eq. (A.46)].

Taking the derivative of eq. (A.30) with respect to m2
a yields,

p2
∂B1

∂m2
a

(p2;m2
a, m

2
b) =

1

2

[

A0(m
2
a)

m2
a

− 1− B0(p
2;m2

a, m
2
b)− (p2 −m2

a +m2
b)
∂B0

∂m2
a

(p2;m2
a, m

2
b)

]

,

(A.54)
after employing

∂A0(m
2
a)

∂m2
a

= ∆− ln

(

m2

µ2

)

=
A0(m

2
a)

m2
a

− 1 , (A.55)

in light of eqs. (A.8) and (A.22) after dropping terms of O(ǫ). Likewise, taking the derivative
of eqs. (A.35) and (A.36) yields,

−p2(d− 1)
∂B21

∂m2
a

(p2;m2
a, m

2
b) = B0(p

2;m2
a, m

2
b) +

1
2
dB1(p

2;m2
a, m

2
b) +m2

a

∂B0

∂m2
a

(p2;m2
a, m

2
b)

+1
2
d(p2 +m2

a −m2
b)
∂B1

∂m2
a

(p2;m2
a, m

2
b) , (A.56)

p2(d− 1)
∂B22

∂m2
a

(p2;m2
a, m

2
b) = B0(p

2;m2
a, m

2
b) +

1
2
B1(p

2;m2
a, m

2
b) +m2

a

∂B0

∂m2
a

(p2;m2
a, m

2
b)

+1
2
(p2 +m2

a −m2
b)
∂B1

∂m2
a

(p2;m2
a, m

2
b) . (A.57)

If only ultraviolet divergences are present, then we can employ 1
2
dB1 = 2B1 +

1
2
and

(d− 1)
∂B22

∂m2
a

(p2;m2
a, m

2
b) = 3

∂B22

∂m2
a

(p2;m2
a, m

2
b)−

1

2
, (A.58)

while setting d = 4 everywhere else to obtain,

−p2∂B21

∂m2
a

(p2;m2
a, m

2
b) =

1

3

[

B0(p
2;m2

a, m
2
b) + 2B1(p

2;m2
a, m

2
b) +

1

2
+m2

a

∂B0

∂m2
a

(p2;m2
a, m

2
b)

+2(p2 +m2
a −m2

b)
∂B1

∂m2
a

(p2;m2
a, m

2
b)

]

, (A.59)

p2
∂B22

∂m2
a

(p2;m2
a, m

2
b) =

1

3

[

B0(p
2;m2

a, m
2
b) +

1
2
B1(p

2;m2
a, m

2
b) +

1

2
+m2

a

∂B0

∂m2
a

(p2;m2
a, m

2
b)

+1
2
(p2 +m2

a −m2
b)
∂B1

∂m2
a

(p2;m2
a, m

2
b)

]

. (A.60)

In computing wave function renormalization, one encounters derivatives of B-type loop
integrals with respect to p2. For example, taking the derivative with respect to p2 of eq. (A.23)
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yields,

B′
0(p

2;m2
a, m

2
b) ≡

∂

∂p2
B0(p

2;m2
a, m

2
b) =

∫ 1

0

x(1− x)dx

p2x2 − (p2 +m2
a −m2

b)x+m2
a − iε

. (A.61)

Note that,
B′

0(p
2;m2

a, m
2
b) = B′

0(p
2;m2

b , m
2
a) . (A.62)

One can obtain the following expression for B′
0 in terms of B0 ≡ B0(p

2;m2
a, m

2
b) and A0,

B′
0(p

2;m2
a, m

2
b) =

1

p2λ(p2, m2
a, m

2
b)

{

[

p2(m2
a +m2

b)− (m2
b −m2

a)
2
]

B0

−A0(m
2
a)[p

2 −m2
a +m2

b ]−A0(m
2
b)[p

2 +m2
a −m2

b ] + p2(m2
a +m2

b − p2)

}

, (A.63)

under the assumption that p2 6= 0 and λ(p2, m2
a, m

2
b) 6= 0 [cf. eq. (A.46)].

Taking the derivatives with respect to p2 of eqs. (A.30), (A.39) and (A.40) yields,

B′
1(p

2;m2
a, m

2
b) = − 1

p2
[

B1 +
1
2
B0 +

1
2
(p2 +m2

a −m2
b)B

′
0

]

, (A.64)

B′
21(p

2;m2
a, m

2
b) = − 1

3p2
[

3B21 + 2B1 − 1
6
+m2

aB
′
0 + 2(p2 +m2

a −m2
b)B

′
1

]

,

(A.65)

B′
22(p

2;m2
a, m

2
b) =

1
6

[

B1 − 1
3
+ 2m2

aB
′
0 + (p2 +m2

a −m2
b)B

′
1

]

, (A.66)

where the suppressed arguments of the loop functions above are (p2;m2
a, m

2
b).

For completeness, we list the following limiting cases,

B0(0;m
2
a, m

2
b) =

A0(m
2
a)− A0(m

2
b)

m2
a −m2

b

,

B0(0;m
2, m2) =

A0(m
2)

m2
− 1 ,

B1(0, m
2
a, m

2
b) = − 1

4(m2
a −m2

b)
2

[

m4
a −m4

b + 2m2
aA0(m

2
a)− 2(2m2

a −m2
b)A0(m

2
b)
]

,

B1(0;m
2, m2) = −1

2

(

A0(m
2)

m2
− 1

)

,

∂B0

∂m2
a

(0, m2
a, m

2
b) = − 1

m2
a −m2

b

− m2
b

(m2
a −m2

b)
2

(

A0(m
2
a)

m2
a

− A0(m
2
b)

m2
b

)

,

∂B0

∂m2
a

(0, m2, m2) = − 1

2m2
,

∂B0

∂m2
a

(

(ma −mb)
2;m2

a, m
2
b

)

=
1

ma(ma −mb)
+

1

2(ma −mb)2

(

A0(m
2
a)

m2
a

− A0(m
2
b)

m2
a

)

,

B′
0(0;m

2
a, m

2
b) =

1

(m2
a −m2

b)
3

[

1
2
(m4

a −m4
b) +m2

bA0(m
2
a)−m2

aA0(m
2
b)
]

,

B′
0(0;m

2, m2) =
1

6m2
, (A.67)

B′
0

(

(ma −mb)
2;m2

a, m
2
b

)

= − 2

(ma −mb)2
− ma +mb

2(ma −mb)3

(

A0(m
2
a)

m2
a

− A0(m
2
b)

m2
b

)

.
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Note that if λ(p2, m2
a, m

2
b) = 0, then it follows that p2 = (ma +mb)

2 or p2 = (ma −mb)
2.

Evaluating B′
0(p

2;m2
a, m

2
b) and ∂B0(p

2;m2
a, m

2
b)/∂m

2
a at p2 = (ma −mb)

2 requires some care
due to the presence of an infrared divergence.

First, consider the following expression for B0(p
2;m2

a, m
2
b),

B0(p
2;m2

a, m
2
b) = (4πµ2)ǫ Γ(ǫ)

∫ 1

0

[

p2x2 − (p2 +m2
a −m2

b)x+m2
a − iε

]−ǫ
dx . (A.68)

Infrared divergences, if present, will reveal themselves when performing the integration over x.
iI no infrared divergences are present, then one may perform an expansion in ǫ to obtain the
integral representation given in eq. (A.23). Here, we shall postpone the expansion in ǫ and
work to all orders in ǫ until the penultimate step of the computation. Differentiating eq. (A.68)
with respect to p2 yields,

B′
0(p

2;m2
a, m

2
b) = (4πµ2)ǫ Γ(1+ǫ)

∫ 1

0

[

p2x2−(p2+m2
a−m2

b)x+m
2
a−iε

]−1−ǫ
x(1−x)dx , (A.69)

after using ǫΓ(ǫ) = Γ(1 + ǫ). Plugging in p2 = (ma +mb)
2 yields,

B′
0

(

(ma +mb)
2;m2

a, m
2
b

)

= (4πµ2)ǫ Γ(1 + ǫ) I(ma, mb) . (A.70)

where

I(ma, mb) ≡
∫ 1

0

([

ma − (ma +mb)x
]2)−1−ǫ

x(1− x) dx . (A.71)

The integral I(ma, mb) is well defined if Re ǫ < −1
2
. After integration, we shall analytically

continue the result in the complex ǫ-plane to the region near ǫ = 0. Note that the fact that the
analytic continuation is performed starting from the negative region of Re ǫ is the hallmark of
the infrared divergence, which will be exposed at ǫ = 0. To evaluate I(ma, mb), we shall break
up the integration range into two intervals, 0 < x < ma/(ma+mb) andma/(ma+mb) < x < 1.
In the first interval we redefine the integration variable by y = x(ma + mb)/ma, and in the
second interval we redefine the integration variable by y = (1 − x)(ma + mb)/mb. It then
follows that

I(ma, mb) =
1

(ma +mb)2

∫ 1

0

y(1− y)−2−2ǫ

×
{

(m2
a)

−ǫ

[

1−
(

ma

ma +mb

)

y

]

+ (m2
b)

−ǫ

[

1−
(

mb

ma +mb

)

y

]}

dy, (A.72)

where (1− y)−2−2ǫ ≡
[

(1− y)2
]−1−ǫ

. Note that I(ma, mb) can be expressed as a sum of Beta
functions. Is is straightforward to obtain,

I(ma, mb) =
1

(ma +mb)2

{

(m2
a)

−ǫ

[

B(2,−1− 2ǫ)−
(

ma

ma +mb

)

B(3,−1− 2ǫ)

]

+(m2
b)

−ǫ

[

B(2,−1− 2ǫ)−
(

mb

ma +mb

)

B(3,−1− 2ǫ)

]

}

. (A.73)
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This result can be simplified by using

B(2,−1− 2ǫ) =
Γ(2)Γ(−1− 2ǫ)

Γ(1− 2ǫ)
=

1

2ǫ(1 + 2ǫ)
, B(3,−1− 2ǫ) =

1

ǫ(1 + 2ǫ)(1− 2ǫ)
.

(A.74)
Hence, we end up with

B′
0

(

(ma +mb)
2;m2

a, m
2
b

)

=
(4π)ǫΓ(ǫ)

2(1− 4ǫ2)(ma +mb)2

×
{

(

m2
a

µ2

)−ǫ [
mb −ma

ma +mb

− 2ǫ

]

+

(

m2
b

µ2

)−ǫ [
ma −mb

ma +mb

− 2ǫ

]

}

. (A.75)

As expected, the above expression is symmetric under the interchange, ma ↔ mb. Moreover,
as anticipated, the divergence as ǫ → 0 is a consequence of the infrared divergence that was
generated in the integration over the Feynman parameter x.

As a check of the above result, consider the special case of mb = 0. In this case, eq. (A.70)
yields,

B′
0

(

m2
a;m

2
a, 0
)

= (4π)ǫ Γ(1 + ǫ)

(

m2
a

µ2

)−ǫ ∫ 1

0

x(1− x)−1−2ǫ dx . (A.76)

The integral is easily evaluated,

∫ 1

0

x(1− x)−1−2ǫ dx = B(2,−2ǫ) =
Γ(−2ǫ)

Γ(2− 2ǫ)
= − 1

2ǫ(1− 2ǫ)
. (A.77)

Hence, in light of eq. (A.62),

B′
0(m

2;m2, 0) = B′
0(m

2; 0, m2) = − 1

2m2(1− 2ǫ)
(4π)ǫ Γ(ǫ)

(

m2

µ2

)−ǫ

, (A.78)

in agreement with the mb = 0 limit of eq. (A.75) [where (m2
b)

−ǫ = 0 since ǫ < 0]. Moreover,
we have reproduced the result of eq. (65).

Second, consider the following expression for ∂B0(p
2;m2

a, m
2
b)/∂m

2
a,

∂B0

∂m2
a

(p2;m2
a, m

2
b) = −(4πµ2)ǫ Γ(1 + ǫ)

∫ 1

0

[

p2x2 − (p2 +m2
a −m2

b)x+m2
a − iε

]−1−ǫ
(1− x)dx .

(A.79)
As previously noted, if no infrared divergences are present, then one may perform an expansion
in ǫ to obtain the integral representation given in eq. (A.52). Here, we shall postpone the
expansion in ǫ and work to all orders in ǫ until the penultimate step of the computation.
Plugging in p2 = (ma +mb)

2 yields,

∂B0

∂m2
a

(

(ma +mb)
2;m2

a, m
2
b

)

= −(4πµ2)ǫ Γ(1 + ǫ)J (ma, mb) . (A.80)

where

J (ma, mb) ≡
∫ 1

0

([

ma − (ma +mb)x
]2)−1−ǫ

(1− x) dx . (A.81)
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The integral J (ma, mb) is well defined if Re ǫ < −1
2
. The computation is nearly identical to

the previous one.

J (ma, mb) =
m−1−2ǫ

a

ma +mb

B(1,−1− 2ǫ) +
(m2

b)
−ǫ − (m2

a)
−ǫ

(ma +mb)2
B(2,−1− 2ǫ)

= − 1

2ǫ(ma +mb)2

{

(ma +mb)m
−1−2ǫ
a +

(m2
a)

−ǫ − (m2
b)

−ǫ

1 + 2ǫ

}

. (A.82)

Hence, we end up with,

∂B0

∂m2
a

(

(ma +mb)
2;m2

a, m
2
b

)

=
(4π)ǫΓ(ǫ)

2(ma +mb)2

{

(

m2
a

µ2

)−ǫ [

1 +
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ma

]

+
1

1 + 2ǫ

[

(

m2
a

µ2

)−ǫ

−
(

m2
b

µ2

)−ǫ
]}

.

(A.83)

A special case of interest corresponds to ma = 0. Note that the above expression was
derived under the assumption that Re ǫ < −1

2
, which implies that m−1−2ǫ

a = 0. Thus, we
obtain,

∂B0

∂m2
a

(

(ma +mb)
2;m2

a, m
2
b

)

∣

∣

∣

∣

ma=0

= − 1

2m2
b(1 + 2ǫ)

(4π)ǫ Γ(ǫ)

(

m2
b

µ2

)−ǫ

. (A.84)

This can be checked by setting ma = 0 in eqs. (A.80) and (A.81),

∂B0

∂m2
a

(

(ma +mb)
2;m2

a, m
2
b

)

∣

∣

∣

∣

ma=0

= − (4π)ǫ Γ(1 + ǫ)

m2
b

(

m2
b

µ2

)−ǫ ∫ 1

0

x2−2ǫ(1− x)dx , (A.85)

which reproduces the result obtained in eq. (A.84).
It is noteworthy that ∂B0(p

2;m2
a, m

2
b)/∂m

2
a at p2 = (ma −mb)

2 is a special type of C-type
loop integral. In particular, eqs. (A.10) and (A.52) yield,

∂B0

∂m2
a

(p2;m2
a, m

2
b) = C0(0, p

2, p2;m2
a, m

2
a, m

2
b) . (A.86)

Next, we present integral expressions for C0 and the Cij .

C0(p
2
1, p

2
2, p

2;m2
a, m

2
b , m

2
c) = −

∫ 1

0

dx

∫ x

0

dy

D − iε
, (A.87)

C11(p
2
1, p

2
2, p

2;m2
a, m

2
b , m

2
c) =

∫ 1

0

x dx

∫ x

0

dy

D − iε
, (A.88)

C12(p
2
1, p

2
2, p

2;m2
a, m

2
b , m

2
c) =

∫ 1

0

dx

∫ x

0

(x− y)dy

D − iε
, (A.89)
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1, p

2
2, p

2;m2
a, m

2
b , m

2
c) = −

∫ 1

0

x2 dx

∫ x

0

dy

D − iε
, (A.90)

C22(p
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1, p

2
2, p

2;m2
a, m

2
b , m

2
c) = −

∫ 1

0

dx

∫ x

0

(x− y)2dy

D − iε
, (A.91)

C23(p
2
1, p

2
2, p

2;m2
a, m

2
b , m

2
c) = −

∫ 1

0

x dx

∫ x

0

(x− y)dy

D − iε
, (A.92)

C24(p
2
1, p

2
2, p

2;m2
a, m

2
b , m

2
c) =

∆

4
− 1

2

∫ 1

0

dx

∫ x

0

dy ln

(

D − iε

µ2

)

, (A.93)
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where

D ≡ p2x2 + p22y
2 + (p21 − p22 − p2)xy + (m2

c −m2
a − p2)x

+(m2
b −m2

c + p2 − p21)y +m2
a . (A.94)

In addition, the following expression for C24 is useful and worthy of display,

C24(p
2
1, p

2
2, p

2;m2
a, m

2
b , m

2
c) =

1
4

[

B0(p
2
2;m

2
b , m

2
c) + (p21 +m2

a −m2
b)C11

+(p2 − p21 +m2
b −m2

c)C12 + 2m2
aC0 + 1

]

, (A.95)

where the suppressed arguments of C0, C11 and C12 are the same as those of C24. Indeed, it
is possible to express all the Cij (and their derivatives) in terms of A0, B0 and C0 following
the same partial fractioning strategy that was used to obtain B1 in terms of B0 and A0.

The integral given by eq. (A.87) can be explicitly evaluated. The resulting expression,
which involves logarithms and dilogarithms, is given in Ref. [?], although it is not particularly
illuminating in the most general case. However, one can derive a useful set of expressions in
the limit of p21 = p22 = p2 = 0. For example,

C0(0, 0, 0;m
2
a, m

2
b , m

2
c) =

1

m2
b −m2

c

[

B0(0;m
2
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2
b)−B0(0;m

2
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2
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=
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2
b ln

(
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c ln

(
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(
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a

)

(m2
a −m2

b)(m
2
b −m2

c)(m
2
c −m2

a)
, (A.96)

C24(0, 0, 0;m
2
a, m

2
b , m

2
c) =

1
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[

B0(0;m
2
b , m

2
c) +m2

aC0(0, 0, 0;m
2
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2
b , m

2
c) +

1
2

]

. (A.97)

If two or three of the masses are degenerate, then it follows that

C0(0, 0, 0;m
2, m2, m2

c) = − 1

m2 −m2
c

[

1 +
m2

c

m2 −m2
c

ln

(

m2
c

m2

)]

, (A.98)

C0(0, 0, 0;m
2, m2, m2) = − 1

2m2
. (A.99)

One other limiting case is noteworthy. The following loop function arises in the calculation
of the one-loop amplitude for the decay of a neutral Higgs boson to Zγ,

C0(p
2
1, 0, p

2;m2, m2, m2) =
1

p2 − p21

∫ 1

0

dx

x
ln

(

m2 − x(1− x)p2 − iε

m2 − x(1− x)p21 − iε

)

=
1

p2 − p21

[

G(p2/m2)−G(p21/m
2)
]

. (A.100)

The function G(z) can be explicitly evaluated,

G(z) ≡
∫ 1

0

dx

x
ln
[

1− zx(1 − x)− iε
]

=
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














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, for 0 ≤ z ≤ 4 ,
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+ i ln
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√
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, for z > 4 ,

(A.101)
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where 0 ≤ arcsin
(

1
2

√
z
)

≤ 1
2
π (for 0 ≤ z ≤ 4) employs the principal range of the real arcsine

function. In the limit of p21 = p2, we obtain

C0(p
2, 0, p2;m2, m2, m2) =

1

m2

(

∂G

∂z

)

z=p2/m2

= −
∫ 1

0

(1− x)dx

m2 − p2x(1− x)− iε

=
1

p2 − 4m2

[

A0(m
2)

m2
− B0(p

2;m2, m2) + 1

]

, (A.102)

after using eqs. (A.52) and (A.53). In the limit of p2 = p21 = 0, we recover eq. (A.99).
The Cij functions can be expressed in terms of A0, B0, B1 and C0 via the following relations,

C11 =
4(p1 ·p2R2 − p22R1)

λ(p2, p21, p
2
2)

, C12 =
4(p1 ·p2R1 − p21R2)

λ(p2, p21, p
2
2)

, (A.103)

C21 =
4(p1 ·p2R5 − p22R3)

λ(p2, p21, p
2
2)

, C22 =
4(p1 ·p2R4 − p21R6)

λ(p2, p21, p
2
2)

, (A.104)

C23 =
4(p1 ·p2R3 − p21R5)

λ(p2, p21, p
2
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=
4(p1 ·p2R6 − p22R4)

λ(p2, p21, p
2
2)

, (A.105)

where
λ(p2, p21, p

2
2) ≡ 4

[

(p1 ·p2)2 − p21p
2
2

]

, (A.106)

with p = −p1−p2 (which implies that p1 ·p2 = p2−p21−p22), and the Ri are defined as follows,
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(

p21 +m2
a −m2

b

)

C0

]

,

R2 ≡ 1
2

[

B0

(
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(
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(
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,
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(
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(
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(
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(
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,

where C24 is given by eq. (A.95) and the suppressed arguments of C0 and the Cij above are
(p21, p

2
2, p

2;m2
a, m

2
b , m

2
c).

Finally, we record a number of useful symmetry properties of the C-functions when their
arguments are permuted. First,

C0

(

p21, p
2
2, p

2;m2
a, m

2
b , m

2
c

)

= C0

(

p22, p
2
1, p

2;m2
c , m

2
b , m

2
a

)

= C0

(

p2, p21, p
2
2;m

2
c , m

2
a, m

2
b

)

= C0

(

p21, p
2, p22;m

2
b , m

2
a, m

2
c

)

= C0

(

p22, p
2, p21;m

2
b , m

2
c , m

2
a

)

= C0

(

p2, p22, p
2
1;m

2
a, m

2
c , m

2
b

)

. (A.107)

The same symmetry properties are also satisfied by C24,

C24

(

p21, p
2
2, p

2;m2
a, m

2
b , m

2
c

)

= C24

(

p22, p
2
1, p

2;m2
c , m

2
b , m

2
a

)

= C24

(

p2, p21, p
2
2;m

2
c , m

2
a, m

2
b

)

= C24

(

p21, p
2, p22;m

2
b , m

2
a, m

2
c

)

= C24

(

p22, p
2, p21;m

2
b , m

2
c , m

2
a

)

= C24

(

p2, p22, p
2
1;m

2
a, m

2
c , m

2
b

)

. (A.108)
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For completeness, we list below the symmetry properties of the other Cij functions, which
were given in Ref. [?].

C11

(

p21, p
2
2, p

2;m2
a, m

2
b , m

2
c

)

= [−C12 − C0]
(

p22, p
2
1, p

2;m2
c , m

2
b , m

2
a

)

= [−C11 + C12 − C0]
(

p2, p21, p
2
2;m

2
c , m

2
a, m

2
b

)

= [−C11 + C12 − C0]
(

p21, p
2, p22;m

2
b , m

2
a, m

2
c

)

= [−C12 − C0]
(

p22, p
2, p21;m

2
b , m

2
c , m

2
a

)

= C11

(

p2, p22, p
2
1;m

2
a, m

2
c , m

2
b

)

. (A.109)

C12

(

p21, p
2
2, p

2;m2
a, m

2
b , m

2
c

)

= [−C11 − C0]
(

p22, p
2
1, p

2;m2
c , m

2
b , m

2
a

)

= [−C11 − C0]
(

p2, p21, p
2
2;m

2
c , m

2
a, m

2
b

)

= C12

(

p21, p
2, p22;m

2
b , m

2
a, m

2
c

)

= [C11 − C12]
(

p22, p
2, p21;m

2
b , m

2
c , m

2
a

)

= [C11 − C12]
(

p2, p22, p
2
1;m

2
a, m

2
c , m

2
b

)

. (A.110)

C21

(

p21, p
2
2, p

2;m2
a, m

2
b , m

2
c

)

= [C22 + 2C12 + C0]
(

p22, p
2
1, p

2;m2
c , m

2
b , m

2
a

)

= [C21 + C22 − 2C23 + 2C11 − 2C12 + C0]
(

p2, p21, p
2
2;m

2
c , m

2
a, m

2
b

)

= [C21 + C22 − 2C23 + 2C11 − 2C12 + C0]
(

p21, p
2, p22;m

2
b , m

2
a, m

2
c

)

= [C22 + 2C12 + C0]
(

p22, p
2, p21;m

2
b , m

2
c , m

2
a

)

= C21

(

p2, p22, p
2
1;m

2
a, m

2
c , m

2
b

)

. (A.111)

C22

(

p21, p
2
2, p

2;m2
a, m

2
b , m

2
c

)

= [C21 + 2C11 + C0]
(

p22, p
2
1, p

2;m2
c , m

2
b , m

2
a

)

= [C21 + 2C11 + C0]
(

p2, p21, p
2
2;m

2
c , m

2
a, m

2
b

)

= C22

(

p21, p
2, p22;m

2
b , m

2
a, m

2
c

)

= [C21 + C22 − 2C23]
(

p22, p
2, p21;m

2
b , m

2
c , m

2
a

)

= [C21 + C22 − 2C23]
(

p2, p22, p
2
1;m

2
a, m

2
c , m

2
b

)

.

(A.112)

C23

(

p21, p
2
2, p

2;m2
a, m

2
b , m

2
c

)

= [C23 + C12 + C11 + C0]
(

p22, p
2
1, p

2;m2
c , m

2
b , m

2
a

)

= [C21 − C23 + 2C11 − C12 + C0]
(

p2, p21, p
2
2;m

2
c , m

2
a, m

2
b

)

= [C22 − C23 − C12]
(

p21, p
2, p22;m

2
b , m

2
a, m

2
c

)

= [C22 − C23 − C11 + C12]
(

p22, p
2, p21;m

2
b , m

2
c , m

2
a

)

= [C21 − C23]
(

p2, p22, p
2
1;m

2
a, m

2
c , m

2
b

)

. (A.113)

The following three identities are noteworthy,

C11(p
2, q2, p2;M2, m̃2, m̃2) = 2C12(p

2, q2, p2;M2, m̃2, m̃2) , (A.114)

C21(p
2, q2, p2;M2, m̃2, m̃2) = 2C23(p

2, q2, p2;M2, m̃2, m̃2) , (A.115)

2C24(p
2, q2, p2;M2, m̃2, m̃2) = −B1(p

2;M2, m̃2)

+q2
[

C23(p
2, q2, p2;M2, m̃2, m̃2)− 2C22(p

2, q2, p2;M2, m̃2, m̃2)
]

. (A.116)

Note that eqs. (A.114) and (A.115) can also be obtained by employing the last equality of
eqs. (A.110) and (A.113), respectively.
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Setting q2 = 0 in eq. (A.115) yields,

2C24(p
2, 0, p2;M2, m2, m2) +B1(p

2;M2, m2) = 0 . (A.117)

This result can be established directly from the integral representations given in eqs. (A.24)
and (A.93).

Using the results of eqs. (A.116) and (A.117),

(

∂C24(p
2, q2, p2;M2, m̃2, m̃2)

∂q2

)

q2=0

= 1
2
C23(p

2, 0, p2;M2, m̃2, m̃2)− C22(p
2, 0, p2;M2, m̃2, m̃2).

(A.118)

One can check the above result by employing the integral representations given in eqs. (A.91)–
(A.93). In particular,

(

∂C24(p
2, q2, p2;M2, m̃2, m̃2)

∂q2

)

q2=0

=
1

12

∫ 1

0

x3 dx

p2x2 + (m̃2 −M2 − p2)x+M2
. (A.119)
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