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Abstract
In addition to the diagonalization of a normal matrix by a unitary similarity transfor-
mation, there are two other types of diagonalization procedures that sometimes arise in
quantum theory applications—the singular value decomposition and the Autonne-Takagi
factorization. In this pedagogical review, each of these diagonalization procedures is per-
formed for the most general 2 x 2 matrices for which the corresponding diagonalization is
possible, and explicit analytical results are provided in each of the three cases.

1 Introduction

In quantum physics, some problems can be reduced to two state systems. The solution to these
problems involves the diagonalization of the 2 x 2 hermitian matrix Hamiltonian H, which
consists of reducing H via a unitary similarity transformation to a diagonal matrix whose
elements are the (real) eigenvalues of H. Instead of repeating the diagonalization every time
a problem of this type arises, it is convenient to solve it once and for all by considering the
diagonalization of a general 2 x 2 hermitian matrix. In fact, it is possible to be slightly more
general. Recall that a matrix is normal (i.e. the matrix commutes with its hermitian adjoint) if
and only if it is diagonalizable by a unitary similarity transformation (see, e.g., Theorem 2.5.3
of Ref. [1]). Hence, this pedagogical review will begin by providing the explicit diagonalization
of a general 2 x 2 normal matrix.

Two additional diagonalization procedures often arise in the quantum field theories of
fermions (see, e.g., Ref. [2]). The fermion mass eigenstates are identified by reducing the fermion
mass matrix to diagonal form. But, in such problems, the relevant diagonalization procedure is
not carried out by a unitary similarity transformation. In general, the mass matrix that arises
in a theory of charged fermions is a complex matrix with no other special features. The relevant
diagonalization procedure is called the singular value decomposition of a complex matrix (see,
e.g., Refs. [1, B]). This decomposition produces a diagonal matrix whose diagonal elements are
real and nonnegative, corresponding to the physical masses of the charged fermions. In contrast,
the mass matrix that arises in a theory of neutral (Majorana) fermions is a complex symmetric
matrix. The relevant diagonalization procedure is called the Autonne-Takagi factorization of
a complex symmetric matrix [4], [5]. This factorization also produces a diagonal matrix whose
diagonal elements are real and nonnegative, corresponding to the physical masses of the neutral
fermions.

In this review, we apply the three diagonalization procedures mentioned above to a complex
normal matrix, an arbitrary complex matrix, and a complex symmetric matrix, respectively. In
each case, we diagonalize the corresponding 2 x 2 matrix explicitly and provide analytic results
for the corresponding diagonalizing matrix and for the elements of the resulting diagonal matrix.



2 The diagonalization of a 2 X 2 normal matrix by a
unitary similarity transformation

Consider a general 2 x 2 complex matrix,

Then, N is normal if

NiN =NNT. (2)
Inserting eq. () into eq. (@), it follows thatl]
0] = ], Im[(d — a)e™*972] = 0, (3)
where
a=argh, g =argc. (4)

It is then straightforward to verify that the matrix

- 0 pleia—5)/2
A=e DN — qly,,) = <|b|e—i(a—ﬁ)/2 (d |_ |a)6—z'(a+6)/2 ’

is hermitian, where 155 is the 2 X 2 identity matrix.
The diagonalization of N by a unitary similarity transformation is given by,

UT'NU = (‘61 52) , (6)
where 1 and o are the complex eigenvalues of NV,
1 .
=5 [a +dF/la—dp?+ 4|b|261(a+5)} . (7)
Using eq. (B), it follows that
UINU = CORTTAU + alygys . (8)

Hence, to diagonalize N, we must diagonalize the hermitian matrix A. We will carry out this
procedure in Section 3] which will provide an explicit expression for the diagonalizing matrix U.

The eigenvalues of an hermitian matrix are real. Denoting the eigenvalues of A by A; and
g, one easily obtains

1 . .
Mo = |(d=a)e o 5 V(@ = aye-ie+o)2])? 1 appfe] . ()

Note that in light of eq. ([3), it follows that A; and Ay are real numbers. Hence, eq. (8) yields,
o = @AY L L. (10)

It is straightforward to check that egs. (I0) and () are equivalent.

'Egs. @) and (&) have been inspired by Problem 2.5.P29 of Ref. [1].
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3 The diagonalization of a 2 X 2 hermitian matrix by a
unitary similarity transformation

Consider a general 2 x 2 hermitian matrix

A:(C‘i Z) (11)

where a and b are real numbers and the complex number ¢ expressed in polar exponential form
is given by,
c=|cle*, where 0 < ¢ < 27. (12)

The eigenvalues are the roots of the characteristic equation:
a—A ¢ 2 2 2
det (“7N L C ) =@ NN P =N Aa b+ @) =0, (13)

Noting that (a + b)* — 4(ab — |c|?) = (a — b)* + 4|c|?, the two roots can be written as:

)\lzé[a+b—\/(a—b)2+4|c|2 and )\2:%[a+b+\/(a—b)2+4|c|2], (14)

where by convention we take \; < Ag. As expected, the eigenvalues of the hermitian matrix A
are real.
An hermitian matrix can be diagonalized by a unitary matrix U,

At 0
-1 _ 1
- (%0, )

where A\; and A\, are the eigenvalues obtained in eq. (I4]). Note that one can always transform
U — €U without modifying eq. (T, since the phase factor cancels out. Since detU is
a complex number of unit modulus, one can choose detU = 1 in eq. (&) without loss of
generality. The most general 2 x 2 unitary matrix of unit determinant can be written as,

U _ e cos 6 X sin
T\ —eXginh e Pcosh :

The columns of U are the normalized eigenvectors of A corresponding to the eigenvalues \; and
A9, respectively. But, we are always free to multiply any normalized eigenvector by an arbitrary
complex phase factor. Thus, without loss of generality, we can choose § = 0 and cos€ > 0.
Moreover, the sign of sin # can always be absorbed into the definition of x. Hence, we will take

cosf X sin 6
U= ( —e Xgind cos 6 ) ’ (16)
where
Ogegéw, and 0<y<27. (17)



We now plug in eq. (I8]) into eq. (I5). Since the off-diagonal terms must vanish, one obtains
constraints on the angles ¢ and y. In particular,

147, [ cosf —eXsin 6 a |c|e™® cosf eX sin 6
UmAU = (e_ix sin ¢ cos 0 ) <\c\e‘i¢ b —e Xsinf  cosf

B ( cos 0 —eX sin 9) <a cos 6 — |c[e’®) sin 0 ae™sin 0 + |c|e' cos O )

e~ Xsin 6 cos 6 cle™™ cos§ — be~Xsin®  |c|le” @) sin§ + bcos §
_ (Al Z)
Z* X))
where
A1 = acos? 0 — 2|c| cos O sinf cos(¢p — x) + bsin? @, (18)
Ay = asin? 0 + 2|c| cos O sin § cos(¢p — ) + bcos? (19)
Z = eix{(a —b) cosfsinf + || [ei((b_X) cos? § — e 197 gin? 9} } : (20)

The vanishing of the off-diagonal elements of U~ AU implies that:
(a —b) cosOsinb + || [ei(d’_X) cos? @ — e~ @) gip? 9} =0.
This is a complex equation. Taking real and imaginary parts yields two real equations,
(a—b)sin 260 + |c| cos 26 cos(¢ — x) =0, (21)
| sin(g — x) = 0. (22)
Consider first the special case of ¢ = 0. Then, in light of our convention that \; < A,
c=0 and a<b = 6=0 and y is undefined,
c=0 and a>b = 0= %71’ and y is undefined ,
c=0 and a=b = 0 and x are undefined.

In particular, if ¢ = 0 and a = b, then A = alyy, and it follows that U 'AU = U~'U = alyyo,
which is satisfied for any unitary matrix U. Consequently, in this limit # and y are arbitrary

and hence undefined, as indicated above.
If ¢ # 0 then eq. (22)) yields

sin(p —x) =0 and cos(¢p—x) =€, wheree==+1. (23)

We can determine the sign ¢ as follows. Since A\; < Ay, we subtract egs. (I8) and (19) and make
use of eq. (23] to obtain,
(@ —b)cos20 — 2¢|c|sin26 > 0. (24)



Likewise, we insert eq. (23) into eq. (2I]), which yields
(a — b)sin 20 4 2¢|c| cos20 = 0. (25)

Finally, we multiply eq. (24]) by sin 20 and eq. (25]) by cos26 and subtract the two resulting
equations. The end result is,
2e|c] > 0. (26)

By assumption, ¢ # 0. Thus, it follows that € > 0. Since ¢ = +1, we can conclude that ¢ = 1.
Hence,

cos(p—x) =1, forc#0. (27)
By the conventions established in eqs. (I2]) and (7)), we take 0 < ¢, x < 27. Hence, it follows
that

X=¢. (28)
We can now determine 6. Inserting eq. (27)) into eq. (1) yields
2
tan29:b|_c|a, forc#0and a #b. (29)
Note that if @ = b, then eq. (25) yields cos 20 = 0. In light of eq. (I7),
c#0 and a=b = 6=1ir. (30)

If ¢ # 0 and a # b, then we can use eq. (29) with the convention that sin26 > 0 [cf. eq. ()]
to conclude that

5in 20 = 2l . (31)

Vb= ap AP

b—a
cos 20 = . 32
V(0= a)? + 4fcf? 2
Using the well known identity, tan 6 = (1 — cos 20)/sin 20, it follows that
A b—a)? 1 4lc?

tang = 2 + V(b —a) 44 (33)

2|c| ’

which is manifestly positive. It then follows that,

1/2 1/2
, a—b++/(b—a)?+4c] b—a+\/(b—a)2+4\c\2>
sinf = , cosf = . (34

< 24/ (b — a)? + 4]c|? ) ( 24/ (b — a)? + 4]c|]? (34)

Indeed, the above results imply that the sign of b — a determines whether 0 < 6 < iw or
iﬂ' <0< %w. The former corresponds to a < b while the latter corresponds to a > b. The
borderline case of a = b has already been treated in eq. (30]).

To summarize, if ¢ # 0, then eqs. (28)), (BI) and (32)) uniquely specify the diagonalizing
matrix U [in the conventions specified in eqs. (I2)) and ([I7))]. When ¢ = 0 and a # b, it follows
that y is arbitrary and 8 = 0 or %w for the two cases of a < b or a > b, respectively Finally,
if c=0and a =0, then A = alyy», in which case U is arbitrary.

ZNote that in the case of ¢ = 0 and a > b, the matrix A is diagonal. Nevertheless, the “diagonalizing” matrix,
U # 12x2. Indeed, in this case § = %w, and U1 AU simply interchanges the two diagonal elements of A to
ensure that Ay < Ay in eq. ([[H), as required by the convention adopted below eq. (4.
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4 The diagonalization of a 2 X 2 real symmetric matrix
by an orthogonal similarity transformation

In this section, we consider a special case of the one treated in Section [3] in which the matrix
A given in eq. (1)) is real. That is, ¢ = ¢*, in which case A is a real symmetric matrix that can
be diagonalized by a real orthogonal matrix. The two eigenvalues are still given by eq. (I4) in
the convention that A\; < Ay, although the absolute values signs are no longer needed since for
real values of ¢, we have |c|? = ¢?. Moreover, since c is real, eq. (I2) implies that if ¢ # 0 then
¢p=0or ¢ =m. Eq. [28)) then yields

0, forc# 0 and ¢ =0,
X = (35)
T, forc#0and ¢ =,
which is equivalent to the statement that
eX =sgnc, for real ¢ # 0. (36)
It is convenient to redefine §# — 6 sgnc in eq. (I6). With this modification, the range of 6 can
be taken ad3

—In<f< Im. (37)
The diagonalizing matrix U is now a real orthogonal 2 X 2 matrix,
cosd  sind c>0 = 0<f<ir,
U= ) : where c=0 = O=0orf=1%ir, (38)
—sinf  cosf 1 2
c<0 = —37T<0<0.

Hence, for real ¢ # 0 with the range of 6 specified in eq. ([37), we see that eqgs. (29) and
BI)-(@B3) are modified by replacing |c| with ¢. For example,

sin 260 = 2 cos 260 = b-a (39)

V(0 —a)?+4c2’ V(b —a)2 442

It then follows that

1/2 1/2
—b++/(b—a)?+4c? b— V(b —a)?+ 4c?
sin # = sgn(c) (a V-t C) , cosf = ( atVib-aP+ C) :

24/(b—a)? + 4c? 2¢/(b—a)?+4c?
(40)
The sign of ¢ determines the quadrant in which @ lives. Moreover, for ¢ > 0, the sign of
b — a determines whether 0 < 6 < iw or %71‘ <0< %w. The former corresponds to a < b
while the latter corresponds to a > b. Likewise, for ¢ < 0, the sign of b — a determines whether
—%7? <0< —iﬂ' or —iﬂ' < 0 < 0. The former corresponds to a > b while the latter corresponds

to a < b. The borderline cases are likewise determined:
a=0b and c#0 = sin20 =sgn(c),
a#b and ¢c=0 = cos20=sgn(b—a),

If a =0band ¢ =0, then A = alsys, in which case U is arbitrary.

3Using cos( + m) = — cos@ and sin(f + m) = —sind, it follows that shifting § — 6 + m simply multiplies U
by an overall factor of —1. In particular, U~ ' AU is unchanged. Hence, the convention —%71' <0< %ﬂ' may be
chosen without loss of generality.



5 The singular value decomposition of a complex 2 X 2
matrix

For any complex n X n matrix M, unitary n x n matrices L and R exist such that
L' MR = Mp = diag(my, ma, ..., m,), (41)

where the my are real and nonnegative. This is called the singular value decomposition of
the matrix M. A proof of eq. (A1) is given in Appendix D of Ref. [2] (see also Refs. [T, B]).
In general, the m; are not the eigenvalues of M. Rather, the m; are the singular values of
the general complex matrix M, which are defined to be the nonnegative square roots of the
eigenvalues of either MM or MMT (both yield the same results).

An equivalent definition of the singular values can be established as follows. Since MTM is a
nonnegative hermitian matrix, its eigenvalues are real and nonnegative and its eigenvectors, wy,
defined by M Muwj, = m2wy, can be chosen to be orthonormal [l Consider first the eigenvectors
corresponding to the positive eigenvalues of MTM. Then, we define the vectors v, such that
Muwy, = myv;. Tt follows that m2w,, = MTMuw,;, = mkMTv,’;, which yields: MTUZ = myw. Note
that these equations also imply that M MTv; = m2v;. The orthonormality of the wj, implies
the orthonormality of the v} (and hence the vy):

(M| M) = (MM Tv;) = — (v} |vg) (42)

m;myg m;my m;

Ok = (wjlwg) =

which yields (vi[vy) = dj.

If w; is an eigenvector of MTM with zero eigenvalue, then 0 = w! M Muw; = (Muw;|Muw;),
which implies that Mw; = 0. Likewise, if v} is an eigenvector of M M with zero eigenvalue, then
0 = o] MMTv; = (MTv;|MTv;)*, which implies that MTv; = 0. Because the eigenvectors of
MM [MTM] can be chosen orthonormal, the eigenvectors corresponding to the zero eigenvalues
of M [MT] can be taken to be orthonormal [ Finally, these eigenvectors are also orthogonal to
the eigenvectors corresponding to the nonzero eigenvalues of MM [MTM]. That is,

1 1
wlw;) = — (Mot |w;) = — (vi|Mw;) =0, 43
(i) = (M) = = o5 M) (13)
and similarly (v;|v;) = 0, where the index ¢ [j] runs over the eigenvectors corresponding to the
zero [nonzero| eigenvalues. Thus, we can define the singular values of a general complex matrix

M to be the simultaneous solutions (with real nonnegative my,) of

Muwy, = myvy, v M = myw! . (44)

The corresponding vy (wy), normalized to have unit norm, are called the left (right) singular
vectors of M.

4We define the inner product of two vectors to be (v|w) = viw.

>The multiplicity of zero eigenvalues of MM [M MT], which is equal to the number of linearly independent
eigenvectors of MTM [MMT] with zero eigenvalue, coincides with the number of linearly independent eigen-
vectors of M [MT] with zero eigenvalue. Moreover, the number of linearly independent w; coincides with the
number of linearly independent v;.

6One can always find a solution to eq. (@) such that the my are real and nonnegative. Given a solution
where my, is complex, we simply write my = |mk|ele and redefine v, — vie? to remove the phase 6.
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The singular value decomposition of a general 2 x 2 complex matrix can be performed fully
analytically. The result is more involved than the standard diagonalization of a 2 x 2 hermitian
matrix by a unitary similarity transformation. Let us consider the non-diagonal complex matrix,

a c
v=(44). (45)
where at least one of the two quantities ¢ or ¢ is nonzero. The singular value decomposition of
the complex matrix M is

L"MR = (ml 0 ) , (46)

0 mo

where L and R are unitary 2 X 2 matrices and my, my are nonnegative. Following Ref. [6], one
can parameterize the matrices L and R as follows

_ _ cosf  €%rsinfp) (e 0

L=U,P = (_6—i¢L sinf;, cosdy, ) ( 0 e_iﬁ) ’ o
_ _ cosfp  €97sinfp\ (e 0

R =UgrP = (_e—i¢R sinfp cosfp ) ( 0 e—iﬁ) ’ e

where 0 < 01 p < %w, 0<a,f<mand 0< ¢, ¢ < 27.
The singular values m; o of the matrix M can be determined by taking the positive square
root of the nonnegative eigenvalues, miz, of the hermitian matrix MTM,

m}, = 3 [lal* + [b]* + |c|* + |2* F A, (49)
in a convention where 0 < my < ms (i.e., A > 0), with

= ~ * ~x1211/2
A= [(la]? = [b — [c* + |21 + 4la*c + be ]

= [(Jaf? + B> + |ef> + &%) — 4]ab — ] (50)
It follows that
mi 4+ mj = |a|* + |b]” + ¢ + |¢]?, A =m5—mi. (51)
Moreover, by taking the determinant of eq. (@f]), it follows that
mymy = (ab — cé)e 28 (52)
Note that m; = ms if and only if |a| = |b|, |c| = |¢| and a*c + bé* = 0 are satisfied.

We first assume that m; # msy. Using the results of Section [ enables us to compute
the rotation angles, 0 g, and the phases, %2 by diagonalizing MTM and M*MT with a
diagonalizing matrix R and L, respectively. Explicitly, we have

lal® + |c|? a*c+b5*)

ac* + b*c 1b]2 + |c|? (53)

MTM:(

"Without loss of generality, we have employed the same diagonal phase matrix P in defining L and R. Had
we written L = Uz Pr, and R = UgPg in eqs. @) and @8)) with Py g = diag(e "% | e~L.2) we would have
discovered that only the sums «y, + ar and (1, + Br are fixed. Moreover, since eq. (@) is unchanged under
a— a+mor f— [+, one can fix the range of a and  as specified below eq. [@8).



and M*MT is obtained form MM by interchanging ¢ and é Applying egs. (28) and (34) to
the diagonalization of MTM and M*MT then yields,

sty = [T VEEERE AT R RPE
= 1 =
R,L 2A ) R,L 2A Y
(54)
and . o s *
gion — LT o, _ @b (55)
|a*c + be| |a*é + ber|

For completeness, we note that the denominators in eq. (55]) can be written in another form by
employing the following results [which are a consequence of eq. (B0)],

ja*c + 08| = 5/ A% = (]b]2 — Ja]? + [c]* - [e*)?, (56)

|a*c +bc*| = /A% = (Jb]? — |a]? — [c]? + [¢]2)2. (57)
The final step of the computation is to determine the angles o and 3. To perform this task,
we first rewrite eq. (@) as,
2ia

« [me 0
M%z%(b 7Ww) (58)

where we have made use of eqs. (7)) and (48]). Setting the diagonal elements of the left hand
side and the right hand side of eq. (58] equal, we end up with the following two equations,

my cos 0™ = acosfp — ce “Rsin g, (59)
My cos 0,e?” = beosOr + e sinfp . (60)

Next, we multiply both egs. (B9) and (60) by A cosfg. Employing egs. (54)—(53) on the right
hand sides of the two resulting equations then yields,

Amy cosfy cosOre”™ = La(A + |b* — |ot|2 + |c” = 1¢?)
ac* + b*c
AZ— (b2 — |a]? 2 _ |7[2)2 61
e T DR )
Amy cos by, cos Ope”” = 1b(A + |b\2 — lal* + |e|* = |¢]%)
éla*c+ ber)
A2 — ([b]2 = [a]2 2 _ [72)2 9
eV = I =P+ fF =P (62
We can simplify eqs. (61 and (62]) further by making use of eq. (56). The end result is,
Amy cosy cosOpe”™ = La(A + |b* — |a|* — |c]* — |¢]*) — b*ce, (63)
Amy cos b, cos Ope”? = 2b(A + [b]* — |a]* + |c|* + |¢]*) + a*cé. (64)

Using eq. (d9), it is convenient to eliminate A in favor of m? and m3 on the right hand side of
egs. (63) and (©4). It then immediately follows that,
a = Larg{a(|p]* — m]) — b*cé (65)

B = Jarg{b(m3 ~ [af?) +a*cé}- (66)



A useful identity can now be derived that exhibits a simple relation between the angles 6},
and fg. First, we make use eq. (54]) to obtain,
b2 — lal? — lel? - |12 b2 — lal? 2 _ |22
O e el P el
_|a*¢ + be?| la*c + be*|

sin 207, = A sin 20p = A

Next, we note two different trigonometric identities for the tangent function to obtain,

tanf, — 1 — cos 20, _ m3 —m? — |b|2~+ la)? + |e|* — |¢]? _ |la)? +~|c|2 —m? | (69)
sin 26, 2|a*¢ + be| |a*¢ + be¥|

tan B — sin20r 2|a*c + be| _ ate+ber (70)
B 14 cos20r mE—mZ+ b2 —|aP+[cP—[¢2  mi—|a]2— ¢’

where we have made use of egs. (B1l), (67) and (68). It then follows that

tanfp _ (laf* + |e* — mP)(m3 — |af* — |¢]*) (71)
tanfp |(a*é + be*)(a*c + be)| '

The numerator of eq. ([T1]) can be simplified with a little help from eqs. (5I]) and (52]) as follows,

(laf* + [el* = mi)(m3 — |af* — [e]*) = |a*(m] + m3) + [e'm3 — |e[*m} — mim]
—(laf* +Ie[*)(lal* + 1¢[*)

= lal*(la® + [B]° + le]* + [&) + [e['m3 + [e*m}
—lab — c* = (lal* + |c[*)(|al* + [¢]*)

= |e|*m3 + |&]*m] + (ab — c&)c & + (a*b* — ¢*¢*)ce

= (Cm26_i(oc+5) + 6*m16i(a+5))(c*m2ei(a+5) + 6m16—i(a+6)) .

(72)
Likewise, the denominator of eq. ({71 can be simplified as follows,
[(a*¢ + be*) (a*c + b&)| = |(ac* + b*c)(a*c + bc*)| = |c&*(Ja|® + |b]?) + abé*? + a*b*c?|
= |e&*(Ja]* + |b]* + |c|* + |&]*) + (ab — cé)c*? + (a*b* — ¢*&)c?|
= |c&*(m? 4+ m2) + mymy(c 23 OHH) . 2o 2th))
= [(emae ") 4 &y @)Y (Emae’ @) 4 emye @A) L (73)
Hence, we end up with a remarkably simple result,
tan 6y, _ C*m262:(a+ﬁ) + 6m16_21(a+5) . (74)
tanfp | c*maeilath) 4 emye—ilath)
If my # 0, then one can employ eq. (52)) to obtain an alternate form for eq. (74]),
tandp  |c*(ab— cc) + cm?
tanfp | (ab — cé) + cm? ‘ ' (75)

10



The case of m; = 0 is noteworthy. This special case arises when det M = ab— c¢ = 0, which
implies that there is one singular value that is equal to zero. In particular, it then follows that

A = [af? + b2 + |ef? + [¢[? [f. eq. (ED)] and
mjy = Te(MTM) = |a]* + b]” + |c* + |¢]* . (76)
Egs. (69), (Z0) and (7Z6) then yieldE

tan@L:‘%’:’g ) (77)

Cc

¢
b

a
, tan@R:‘—‘:
c

after using c¢ = ab, and

¢p = arg(b/c) = arg(¢/a),  or = arg(c/a) = arg(b/c), B =jargd. (78)

As expected the angle « is undefined when m; = 0 [cf. egs. (63)) and (65)].
Finally, we treat the case of degenerate nonzero singular values, i.e. m = my; = mg # 0. As
previously noted below eq. (B0), degenerate singular values exist if and only if

la| = |b], |c| = |¢|, and a*c = —bé". (79)
Note that eq. ((9) also implies that a*¢ = —bc*. It then follows from eq. (B3] that
MTM = m2]12><2 5 (80)

where the degenerate singular value is

m = +/|a]? + |¢]?. (81)

Hence, the diagonalization equation, R™'MTMR = m?14.9, is satisfied for any unitary ma-
trix R. However, this does not necessarily mean that an arbitrary unitary matrix R is a
solution to eq. (4@). In the analysis given below, we shall see that in the case of degenerate
singular values, o+ (3 is fixed by the matrix M, whereas the remaining parameters that define
the matrix R exhibited in eq. (48]) can be taken as arbitrary.

Given the unitary matrix R, one can use eq. (46) to determine the matrix elements of the
unitary matrix L. Using eqs. (7)) and (8)), it follows that

OT = (€ 0\ it ag 82
L =m 0 28 R . ( )

In light of egs. ({9) and (1)),

cm?

det M = ab — c¢ = ——; (83)

¢

Evaluating the left and right hand sides of eq. (82]) yields,
cosby = _ L ppia (b cos O + ¢e'®® sin HR) _ L s (a cos g — ce "R sin HR) . (84)

me me
e gin ), = € i (5 cos O — be "R sin HR) ___C e (c* cos O + a*e ¥R sin HR) .(85)

mc mc*

8If either ¢ = 0 or ¢ = 0 then ab = 0, in which case one should discard any fractions appearing in eqs. (77)
and (78) that are of indeterminate form.
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We can rewrite the first part of eq. (84]) as follows,

—2ix b*é * |6|2 —ig .
mecosfy = —e —b*coslr + —e "Fsinfy
c* c*
= e ¥ (acosbp — ce """ sin ), (86)

after complex conjugating and making use of eq. ((9). A similar manipulation (without the
complex conjugation) can be performed on the last term of eq. (85). The end result is

%k

mecos @, = e 2 (a cos g — ce "R sin GR) _ L s (a cos O — ce "R gin HR) . (87)
c
=%
me'’r sin 6, = € 2 (5 cos g — be % sin GR) = —¢ 2@ (5 cos g — be 7 sin GR) . (88)
c

Since both egs. (87) and (88) cannot simultaneously vanish, it follows that

e2i(a+B) _c ) (89)

*

o

We conclude that if g, ¢g and o — [ are taken to be arbitrary parameters, then 6, and ¢,
are fixed by egs. (87) and (88) and « + 3 is fixed by eq. ([89). In Appendix A, we show how
to employ eqgs. ([87) and (8])) to construct explicit examples of the singular decomposition of a
2 x 2 complex matrix M that possesses degenerate singular values.

For a simple example of the degenerate case, consider the singular value decomposition of

the matrix,
0 1
M = (1 0) . (90)

Setting a =b =0 and ¢ =¢ =m = 1 in egs. (87)—(8Y), it then follows that
cos B, = e'®PR) gin | sin 6, = €' *790) cos Ay, e = i (91)

Hence, we conclude that ¢, = ¢r = ¢, 0 = %71’ —0Og, B = %qﬁ and o = —%(gb + 7). Plugging

these values into eqs. (A7) and (48)), we obtain

([ Fie?sin 0 €'%/2 cos O
T \Fie 2 cos0y e 2ginfy )’

([ Fie/? cos Oy e/ sin O (92)
T \Fie ¥ 2sinlg e 2cosly)

One can check that LTMR = 1,,,. Thus, we have found a family of singular value decom-
positions of M that depend on two parameters 6z and ¢. This does not exhaust all possible
singular value decompositions of M, since one is always free to multiply R on the right by
Q diag(e™™ | e=2) and multiply L on the right by @ diag(e?X* , ¢X2), where Q is an arbitrary
real orthogonal 2 x 2 matrix and 0 < x; < 27.

We shall now exhibit two different singular value decompositions of M. First, if we choose
the lower signs in eq. (02)), with 0z = ¢ = %7?, Q =15 and x; = x2 = iw, then it follows that

0 1
L= ]12><27 R = (1 O) : (93)

12



Second, choosing the upper signs in eq. ([@2)) with 0 = iw, d=x1=x2=0and Q = 1,9

yields,
1 i1
L_R_ﬁ(—i 1) . (94)

A singular value decomposition with L = R corresponds to an Autonne-Takagi factorization of
a complex symmetric matrix M. This is the subject of the Section [7]

6 The singular value decomposition of a real 2 X 2 matrix
over the space of real matrices

For any real n x n matrix M, real orthogonal n x n matrices L and R exist such that
L' MR = Mp = diag(my, ma, ..., m,), (95)

where the my are real and nonnegative. This corresponds to the real singular value decomposi-
tion of M, which is restricted to the space of real matrices. A separate treatment independent
of the one presented in Section [l is warranted. As in the complex case treated in Section [3]
the my, are not the eigenvalues of M. Rather, the m, are the singular values of a real matrix
M, which are defined to be the nonnegative square roots of the eigenvalues of either MM or
MMT (both yield the same results).

An equivalent definition of the singular values can be established as follows. Since M TM is a
nonnegative real symmetric matrix, its eigenvalues are real and nonnegative and its eigenvectors,
wy, defined by MTMuw;, = m2wy, can be chosen to be real and orthonormal. First, consider
the eigenvectors of M TM corresponding to the positive eigenvalues, m; # 0. We then define
the vectors vy such that Mwj, = myvy. It follows that m2wy, = MT Mw,, = myM v, which
yields MTv, = mywy;. Note that these equations also imply that MM v, = miv,. The
orthonormality of the wy, implies the orthonormality of the v,

m
djr = (wjlwy) = (MTv;| M Tv) = (v;| MM Tvy,) = #@ﬂvk) , (96)

1Tk !k J
which yields (vj|vg) = 0.
Second, if w; is an eigenvector of MM with zero eigenvalue m; = 0, then it follows that
0 = w; M"Mw; = (Mw;| Mw;), which implies that Mw; = 0. Likewise, if v; is an eigenvector of
MMT with zero eigenvalue, then 0 = v MM Tv; = (M Tv;| M v;), which implies that M Tv; = 0.
Because the eigenvectors of MMT [MTM] can be chosen orthonormal, the eigenvectors corre-
sponding to the zero eigenvalues of M [MT] can be taken to be orthonormal. Finally, these

eigenvectors are also orthogonal to the eigenvectors corresponding to the nonzero eigenvalues
of MMT [MTM]. That is,
1 T 1
(wgl) = — (M3 ) = —(o;| Muwi) =0, (97)

J J

and similarly (v;|v;) = 0, where the index ¢ [j] runs over the eigenvectors corresponding to the
zero [nonzero| eigenvalues. Thus, we can define the singular values of a real matrix M to be

13



the simultaneous solutions (with real nonnegative my,) of
Muwy, = myvy vf M = myw, . (98)

The corresponding vy (wy), normalized to have unit norm, are called the left (right) singular
vectors of M.

The real singular value decomposition of a general 2 x 2 real matrix can be performed fully
analytically. Let us consider the non-diagonal real matrix,

M = (CC‘ Z) , (99)

where at least one of the two quantities c or ¢ is nonzero. The real singular value decomposition
of the real matrix M is
0
L"™MR = (ml ) : (100)
0 mo
where L and R are real 2 x 2 orthogonal matrices and m;, mo are nonnegative. In general, one
can parameterize L and R in eq. (I00) by

cosfy sinfy, 1 0 cosfp sinfp 1 0

L= ( —sinfy; cosfy, ) (O aL) ' f= ( —sinfr cosfg ) (O 53) » (10D
where —%7‘(‘ <Orr < %7‘(‘, and €, g = £1. Note that det L = ¢, and det R = e, which implies
that e egdet M = mymy. Since my, mo > 0, it follows that sgn(det M) = ereg. Thus, only
the product of €, and e, is fixed by eq. (I00).

The parameterization of L and R given in eq. (I01)) is related to that of eqs. (7)) and (ES)
as follows. When M is a real matrix, the quantities e’’L = sgn(ac¢+ bc) and €% = sgn(ac+ bc).
Hence, we can set ¢, = ¢r = 0 and redefine 0, — 01 sgn(ac¢ + bc) and 0 — Ogsgn(ac + bé),
thereby extending the range of these angular variables to —%W <OLr< %7‘(‘ as indicated above.
Finally, it is convenient to replace the phase matrix P in eqs. (1) and (@8] with diag(1,ez)
and diag(1,eg), respectively, so that the matrices L and R are real orthogonal matrices (rather
than the more general unitary matrices).

The singular values m; » of the matrix M can be determined by taking the positive square
root of the nonnegative eigenvalues, m7 ,, of the real orthogonal matrix MM,

mi, =3[a® +0*+ 7+ FA], (102)

in a convention where 0 < m; < my (i.e., A > 0), with

A= [(a®=b =+ &)+ 4(ac + be)?] 12
— [(>+0* + &+ &) — d(ab— cd)*]*. (103)
Note that
mi+mi=a’>+b+F+ &, mimy = epegr(ab — cc) . (104)

90ne can always find a solution to eq. (@) such that the my are real and nonnegative. Given a solution
where my, is complex, we simply write my = |mk|619 and redefine v, — vie? to remove the phase 6.

14



Moreover, m; = my if and only if a = +b and ¢ = F¢ (where the signs are correlated as
indicated), which imply that ac 4+ b¢ = 0 and A = 0.

We first assume that m; # ms. Then, if we rewrite eq. ([I00) in the form MR = LMp,
where Mp = diag(m; , ms), then we immediately obtain,

my cosfr, = acosfr — csinfp, erEgpMosinfy = asinfp + ccosby, (105)

mysinfl;, = bsinfr — ¢cosby, €rLERMo cosfy = ¢sinfg + bcos by . (106)

It follows that

m3 cos? 0, + misin 0 = a® + ¢, m?sin® 07, + m2cos® 0, = b* + . (107)

Subtracting these two equations, and employing eq. (I03) yields,

22— 242 P2t
cos 20, = ¢ x cre , cos20r = a4 ZC ¢ (108)
In obtaining cos 20, it is sufficient to note that egs. —(I07) are valid under the interchange
of ¢ ¢+ ¢ and the interchange of the subscripts L <+ R
We can also use eqgs. (I05]) and (I0G) to obtain,
m7 cos O, sin 0, = (acosOr — csinfg)(bsin O — écosOr), (109)
m3 cos 0, sin 0, = (asin O + ccos Og)(Esin fg + beos ) . (110)
Subtracting these two equations yields
2(ac+0b 2 bc
sin 20, — W, sin 20 — W, (111)

after again noting the symmetry under ¢ — ¢ and the interchange of the subscripts L < R.
Thus, employing eqs. (I08]) and (I11]), we have succeeded in uniquely determining the angles
01, and Og (where —%7‘(‘ <Orr< %71’) As noted below eq. (I01]), the individual signs €7, and eg
are not separately fixed (implying that one is free to set one of these two signs to +1); only the
product e e = sgn(det M) is determined by the singular value decomposition of M.
A useful identity can now be derived that exhibits a simple relation between the angles 6;,
and 0. First, we note two different trigonometric identities for the tangent function,
1—cos20, mi—mi—0V+ad*+F—-3 a®+E—mi

tanfy, = = = 112
anvr sin 207, 2(ac + be) ac+be (112)

sin 2605 2(ac + bc) ac + bc
tan Oy = - - , 113
R 1+cos20g mi—m?+02—a?+c2— m3—a?— 2 (113)

where we have made use of egs. (I04)), (I08) and (III)). It then follows that

tanf,  (a®+ ¢ —mi)(m3 —a* — &)
tanfp (a¢ + be)(ac + be)

(114)

100ne can verify this by rewriting eq. (I00) in the form LTM = MpRT, which yields equations of the form
given by eqs. (I05) and ([I06]) with ¢ <> ¢ and the interchange of the subscripts L <> R. Note that A and hence
miQ are unaffected by these interchanges.
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The numerator of eq. (IT4)) can be simplified with a little help from eq. (I04]) as follows,
(a® + & —mi)(m3 — a® — &) = a®*(m} +m3) + *mj — &@mi — (a® + 2)(a® + &) — mim}
=ad*(@®+ V' ++ ) — (a® + ) (a® + &)
+c®m3 + &mi — (ab — cé)?
= Zmj + &m: + 2(ab — cé)cé = (cmy + epepémy)?. (115)
Likewise, the denominator of eq. (IT14]) can be simplified as follows,
(ac + be)(ac + bé) = (ab — c&)( + &) + cé(a® + b* + & + &)
= 5L5Rm1m2(c2 + 52) + cé(m% + mg)
= (emg + eLeptmy ) (Ema + epegemy) . (116)
Hence, we end up with a remarkably simple result,
tanf  cmg +epercmy

= — ) (117)
tanflg  ¢mo + eregemy

The case of m; = 0 is noteworthy. This special case arises when det M = ab — ¢¢ = 0, in
which case there is one singular value that is equal to zero. If ¢ # 0 then inserting ¢ = ab/¢

into eq. ([03) yields A = (a® + &)(b? + &) /. It then follows that[]
. N

c
tanf = % tanfp = b (118)
In particular, after using ab = c¢, eq. (I18) yields
tanf; ¢
= - f = 0. 11
tanfp ¢’ or my =0 (119)

This is indeed the correct limit of eq. (IT7) when m; = 0, as expected. In this case, the signs
er, and eg are arbitrary, and one can choose €, = eg = 1 without loss of generality.

The case of m = my = my # 0 must be treated separately. In this case, a = +b and ¢ = F¢,
which yields m = (a? + ¢?)'/2. Since eq. (I00) implies that MR = mL, one can take R to be
an arbitrary 2 x 2 real orthogonal matrix. Using eq. (I0I]), the matrix L is now determined,

acosfp — csinfp " i(ccosﬁg—l—asin@}g)
, sin 0y, = ,
N - N
subject to e egr = 1, which determines the sign factor appearing in the expression for sin ;.
Applying the above results to M = (9}), we have a = b =0,c=¢ =1, m = 1 and

cosf = (120)

ereg = —1. Using eq. (I20), it follows that cosf;, = —sinfg and sinf, = —cosfg. The
corresponding singular value decomposition is given by,
—sinfg cosfpr 0 1 cosfp  epsindg) (1 0 (121)
epcosfr  epsinfp /) \1  0) \—sinfp egcosfp/) \O 1)’
which is valid for an arbitrary choice of 0 and an arbitrary choice of sign eg = —e; = +1.

Eq. (I21)) provides yet another possible form for the singular value decomposition of M = (9}),
to be compared with the result of eq. (02).

1 One can repeat this calculation by dividing the equation ab — c¢é = 0 by a different nonzero parameter. For
example, if ¢ # 0 then inserting ¢ = ab/c into eq. (I03) yields A = (a® + ¢?)(b? +¢?)/c?, in which case it follows
that tanéy, = ¢/b and tanfr = a/c, and we again recover eq.

16



7 The Autonne-Takagi factorization of a complex 2 X 2
symmetric matrix

For any complex symmetric n x n matrix M, there exists a unitary matrix U such that
UM U = Mp = diag(my,mg, ..., my), (122)

where the my are real and non—negative. This is the Autonne-Takagi factorization of the
complex symmetric matrix M [4], 5], although this nomenclature is sometimes shortened to
Takagi factorization. Henceforth, we shall refer to eq. (I22) as the Takagi diagonalization of
a complex symmetric matrix to contrast this with the diagonalization of normal matrices by
a unitary similarity transformation treated in Sections PHAl A proof of eq. (I22]) is given in
Appendix D of Ref. [2] (see also Ref. [I]).
In general, the my, are not the eigenvalues of M. Rather, the my are the singular values of
the complex symmetric matrix M. From eq. (122)) it follows that,
UMTMU = M} = diag(m?,m3,...,m2). (123)

n

If all of the singular values m;, are non-degenerate, then one can find a solution to eq. (122
for U from eq. (I23). This is no longer true if some of the singular values are degenerate.
For example, if M = (% %), then the singular value |m| is doubly-degenerate, but eq. (I23)
yields UTU = 15,9, which does not specify U. That is, in the degenerate case, the Takagi
diagonalization cannot be determined by the diagonalization of MTM. Instead, one must make
direct use of eq. (122)).

Eq. (I2Z2) can be rewritten as MU = U*Mp, where the columns of U are orthonormal. If
we denote the kth column of U by vy, then,

Muvy, = myvy, (124)

where the my are the singular values and the vectors v, are normalized to have unit norm.
Following Ref. [7], the vy are called the Takagi vectors of the complex symmetric nxn matrix M.

For a real symmetric matrix M, the Takagi diagonalization [eq. (I22)] still holds for a
unitary matrix U, which is easily determined as follows. Any real symmetric matrix M can be
diagonalized by a real orthogonal matrix 7,

ZTMZ = diag(symy , egmy, ..., exmy), (125)

where the m; are real and nonnegative and the epm; are the real eigenvalues of M with

corresponding signs €, = +1. Then, the Takagi diagonalization of M is achieved by taking

Uij = 83/222-- (no sum over z)

12Tn this section, M can be either a real or complex symmetric matrix. In the case of a real symmetric
matrix M, there exists a real orthogonal matrix @ such that QTMQ = diag(m1, ma, ... ms), where the m; are
the eigenvalues of M. The eigenvalues m; must be real, but in general they can be either positive, negative
or zero. Only in the case of a nonnegative definite real symmetric matrix M, where the eigenvalues m; are
nonnegative, does the decomposition QTMQ = diag(my, ma,...ms) constitute a Takagi diagonalization of M
in the space of real n x n matrices.

13In the case of my = 0, we conventionally choose the corresponding e, = +1.
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The Takagi diagonalization of a 2 x 2 complex symmetric matrix can be performed analyt-
ically. Consider the non-diagonal complex symmetric matrix,

M = (Z Z) , (126)

where ¢ # 0. Following Ref. [6], one can parameterize the unitary 2 x 2 matrix U in eq. (122)

as follows,
cosf €' sin @ et 0
U=VP= <—e‘i¢ sin 6 cosf ) ( 0 e‘iﬁ) ’ (127)

where 0 < 0 < %w and 0 < «, B, ¢ < 2m. However, we may restrict the angular parameter
space further. The Takagi diagonalization equation is

UTMU =D = (m1 0 ) , (128)
0 mo

where the singular values, m; and ms are nonnegative. One can derive expressions for the angles

0, ¢, a and 3 by setting ¢ = ¢, 0, = g = 0 and ¢, = ¢ = ¢ in all results obtained in Section [5l

However, for pedagogical purposes, a separate derivation of the Takagi diagonalization will be

presented in this section. Using eq. (I27), one can rewrite eq. (I28)) as follows,

VIMV = P*DP*. (129)

However, P*D P* is unchanged under the separate transformations, « - a+ 7 and § — [+ .
Hence, without loss of generality, one may restrict o and  to the range 0 < o, 8 < 7.
Using eq. (I27), we can rewrite eq. (I29) as follows:

_ 1+ [ 01 0
MV =V (O 02) , (130)
where
o1 = my e, and oy = Mg 2P (131)

with real and nonnegative m; and msy. The singular values of M can be derived by taking the
nonnegative square roots of the eigenvalues of MM,

m?y = lowal? = § [la* + |bf? + 2/el* ¥ 3] (132)
in a convention where 0 < m; < ms (i.e., A > 0), with
A= [(|a\2 —[6*)? + 4|a*c + bc*ﬂ 1/2

1/2

= [(|a\2+ b]2 + 2|c]*)? —4|ab—02\2} (133)

To evaluate the angles ¢ and € (which determine the matrix V'), we multiply out the matrices
in eq. (I30). The end result is,

or=a—ce Ptanf =be ? —ce P coth, (134)

oy =b+cetanf = ae* +cecoth. (135)
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We first assume that m; # ms, corresponding to the case of nondegenerate singular values
of M. Using either eq. (I34]) or (I33]), and making use of the trigonometric identity,

tan 20 = 2(cot § — tan )~ (136)

one obtains a simple equation for tan 26,

2c

Since tan 20 is real, it follows that
Im(bc* e~ — ac* e'?) = 0. (138)
One can then use eq. (I38) to obtain an expression for %%,

2ip _ a*c + bc* 139
© ac* + b*c’ (139)
or equivalently,

i Ela”c+bc)

=—* h = +1. 140
la*c+ ber| where € (140)

The choice of sign in eq. ([I40) is determined by our convention that m; < mgy (in the nonde-
generate case) or equivalently, |o1|? < |oo|?. Thus, to determine &, we make use of eqs. (I34)
and (I35) to obtain two different expressions for |o3]? — |01 /?,

02> = |1 |* = [b]* = |af® + [(ac® + b*c)e’® + (a*c + bc*)e™*?] tan
= la|®> — [b]* + [(ac* + b*c)e’ + (a*c + bc*)e ] cot 6. (141)
Using eq. (I40) to eliminate ¢, it follows that
loa|? — |1 |* = |b]? — |a|* + 2e|a*c 4 bc*| tan 8 = |a|* — |b]* + 2¢|a*c + bc*| cot 6. (142)
Adding the two expressions given in eq. (I42) for |oy|? — |o1|?, we end up with
|o9|? — |o1|* = ela*c + bc*|(tan 6 + cot 6) . (143)

Since |o2|? > |o1]? and 0 < 6 < i, it follows that ¢ = 1. Moreover, eq. ([43) implies that
in the case of nondegenerate singular values, a*c + bc* # 0. This latter condition ensures that
none of the denominators in eqs. (I37), (I39) and (I40) vanish.

We can now obtain an explicit form for tan26 by either subtracting the two expressions
given in eq. (I42)) for |o3|* — |o1]? or by inserting the result for e back into eq. (I37). Taking
into account that € = 1, both methods yield the same final result,

2|a*c + bc*|

tan 26 = .
o B2 — [af?

(144)
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Using egs. (I36) and (I44), it follows that

2 n2 LA 2 112 LA
tan® = |a2‘|a*c|li b;|A  ootf= |b‘2|a*c|ci b;|A (145)
If we now insert the results of eq. (I43]) into eq. (I43]) with € = 1, it then follows that,
02> = |ou > = A (146)
One can quickly compute |o1]? + |o2]? by noting that,
1| + |oa|* = mT +m3 = Te(MTM) = |a]> + |b]* + 2|c|*. (147)

Adding and subtracting eqs. (I46) and (I47) reproduces the expressions of mi, = |oy|* ob-
tained in eq. (I32)).

It is sometimes more convenient to rewrite eq. (I45) in another form,

Z 2 (pl2
tan®0 = = + la]” ~ [0 . (148)
A —[af? + |b]?

If we now make use of the trigonometric identity, cos 20 = (1 — tan®#)/(1 + tan?®#), we end up

with a rather simple expression,
b — |al?

A

cos 20 = (149)

One can now use this result to derive,

A — g2 2 A 2 _ |pl2
cosf = \/A \a|~+ 1 , sinf = \/A i \a|~ 1 . (150)
2A 2A

The final step of the computation is the determination of the angles o and /3 from eq. (I31]).
Employing eq. (I45) together with eq. (I40) with ¢ = 1 and eq. (I32), one can establish the
following useful results,

—i¢ B ac* + b*c i6 B a*c + be*
e "Ptanf = , e?tanf = . 151
B + e — [P a7~ [P oy
Inserting eq. (I5])) into eqs. (I34]) and (I35) yields,
2 2 % 2
_ 2l __ —id B a(|b| — |oy| ) —b'c
o =me’* =a—ce Ptanf = et P = o (152)
. . b(|oa|* — |al?) + a*c?
_ 2B _ i¢ —
oy =mee™” =b+ce?tanf = ool — JaE — | (153)
Hence, it immediately follows that,
a = gargla([b]* —m7) —b'c*}, (154)
= Larg{b(mj — |a’) +a*c’}. (155)
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The case of m; = 0 is noteworthy. This special case arises when det M = ab — ¢ = 0, in
which case there is one singular value that is equal to zero. In particular, it then follows that
A = (Ja| + |b])? [cf. eq. [I33)] and m3 = Tr(MTM) = |a|? + |b]* + 2|c|*. Inserting ¢* = ab in the
latter expression yields msy = |a| + |b|. In addition,

tan 6 = |a/b|"/* ¢ = arg(b/c) = arg(c/a), B =jargh. (156)

However, « is undefined, since the argument of eq. (I54)) vanishes. This corresponds to the fact
that for a zero singular value, the corresponding (normalized) Takagi vector is only unique up
to an overall arbitrary phase One can now check that all the results obtained above agree
with the corresponding results of Section [ after making the substitutions, ¢ = ¢, 0 r = 0 and
¢r.r = ¢, as previously noted.

We provide one illuminating example of the above results. Consider the complex symmetric

matrix,
1
M = (z _1) . (157)

The eigenvalues of M are degenerate and equal to zero. However, there is only one linearly inde-
pendent eigenvector, which is proportional to (1, 7). Thus, M cannot be diagonalized by a sim-
ilarity transformation. In contrast, all complex symmetric matrices are Takagi-diagonalizable.
The singular values of M are 0 and 2 (since these are the non—negative square roots of the
eigenvalues of MTM), which are not degenerate. Thus, all the formulae derived above apply in
this case. One quickly determines that 6 = iw, ¢ = %7?, b= %w and « is indeterminate. The
resulting Takagi diagonalization is UT MU = diag(0, 2) with:

B O [ R (=) B

Thus, U is unique up to an overall factor of —1 and an arbitrary phase «. The latter is a
consequence of the presence of a zero singular value. This example illustrates the distinction
between the (absolute values of the) eigenvalues of M and its singular values. It also exhibits
the fact that one cannot always perform a Takagi diagonalization by computing the eigenvalues
and eigenvectors of MTM.

Finally, we treat the case of degenerate nonzero singular values, i.e. m = my; = mg # 0. As
indicated below eq. (I26), we shall continue to assume that ¢ # 0. In light of eq. (I43), the
degenerate case arises when

a‘c+bc* =0. (159)

If eq. (I29) is satisfied, then it follows from eq. (I32) that
m=my =mg=/|b>+ |c|>. (160)

Moreover, ¢ and 6 are indeterminate in light of eqs. (I39) and (I44]). Nevertheless, these two
indeterminate angles are related if a, b # 0. Using eqs. (I34)), (I33) and (I59), it follows that,

tan 26 = [Re(b/c)cy + Im(b/c)sg] - (161)

14The normalized Takagi vectors are unique up to an overall sign if the corresponding singular values are
non-degenerate and non—zero. However, in the case of a zero singular value or a pair of degenerate of singular
values, there is more freedom in defining the Takagi vectors. For further details, see Appendix D of Ref. [2].
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where ¢, = cos¢ and s, = sin¢. In contrast to eq. (I38), the reality of tan26 imposes no
constraint on in the case of degenerate singular values. Consequently, the angle ¢ is indeed
indeterminatel" Since ¢ is indeterminate, eq. (IGI]) implies that @ is indeterminate as well,
except in the special case of a = b = 0. In this latter case, eq. (I59) is satisfied and the singular
values of M are degenerate. However, eq. ([I6I]) does not relate 6 to the indeterminate angle ¢.
Indeed, eq. (I34) yields # = 1, which is also consistent with the b — 0 limit of eq. (IGI).

In the case of degenerate singular values, eqs. (I54]) and (I55) are no longer valid, as their
derivation relies on the results of eqs. (I40) and (I45]), which are indeterminate expressions when
a*c + bc* = 0. Hence, we need another technique to determine the angles a and 5. Employing
egs. (I34), (I35) and (I59) we can derive the following results after some manipulations,

o1 =me*® = —ce [(1+ A*)Y? +iB] (162)
oy = me*? = ce[(1+ A2 iB], (163)

where m = (|b|? + |c[?)¥/? and
A =Re(b/c)cy +Im(b/c)sy, B =Re(b/c)sy — Im(b/c)cy . (164)

Thus, the angles o and  are separately determined by eqs. (I62) and (IG3]) in terms of the
indeterminate angle ¢. Nevertheless, the sum a + (3 is independent of ¢. This is most easily

seen by employing eqs. (I62]) and (IG3) to obtain,

coy +cfoy =0. (165)
Hence, it follows that,
L (166)
C*

Thus, the matrix U in eq. (I2§)) is now fixed in terms of the quantity c+ /3 and the indeterminate
angle ¢.

We illustrate the above results with the example of M = ((1] 5) In this case MTM = 15,9,
so U cannot be deduced by diagonalizing MTM. Setting a = b = 0 and ¢ = 1 in the above
formulae, it follows that m =1, 0 = 17, 0y = —e~** and 0, = ¢, which yields o = —1(¢ £ )
and = %(ﬁ. Thus, eq. (I27)) yields,

U L@\ (Hie?? 0\ 1 [ Lie? e
e D)0 )=t S
1 i1 +cos(¢/2) sin(¢/2) 167
=2l 1) (Femlen) costor)) (167)

which shows that in the case of degenerate singular values, U is unique only up to multiplication
on the right by an arbitrary orthogonal matrix.

15The same conclusion also follows from eq. (I2Z8). If D = mlaxs then (UO)TM(UO) = OTDO = D for any
real orthogonal matrix O. In particular, ¢ simply represents the freedom to choose O [cf. eq. (IGT)].

16This example is of particular interest to physicists, since the matrix mM (for positive number m) corresponds
to the mass matrix of a Dirac fermion of mass m that arises when expressed in a basis of two-component spinors.
The Takagi diagonalization of mM demonstrates that a Dirac fermion of mass m is physically equivalent to two
mass-degenerate Majorana fermions of mass m. Further details can be found in Ref. [2].

22



For completeness, it is instructive to examine the special case of the Takagi diagonalization
of a non-diagonal real symmetric matrix M = (%§), where ¢ # 0. In this case, the singular
values, m; and my are the nonnegative square roots of

ml, =1 [a2 Lo F A (168)
where B
A = la+b|[(a —b)* + 4¢7] - [(a® + b +2¢°)* — 4(ab — ¢*)?] v (169)

in a convention where 0 < my < msy. Assuming that m; # ma, the latter implies that one must
take € = 1 in eq. (I40), which yields

¢_{O, ifsgn(c a—i—b) +1,

170
T, ifsgn( a—l—b) —1. (170)

It is therefore convenient to redefine # — 0sgn(c(a + b)), in which case —3m < 6 < 27 Then,
the Takagi diagonalization of M is given by eq. (I2§]), where

cosf sind e~ 0
U= (—sin9 cosé’) ( 0 e‘iﬁ) ’ (171)

and the redefined angle 6 is given by,

A+ a? — 12
tanf = ——— . 172
o 2c(a+b) (172)
It then follows that
A—Cﬂ—'—bz &4_@2_[)2
cost) = {| ————, sinf = sgn(c(a+b _—. 173
X gn(c(a+1b)) X (173)
Finally, one can obtain compact expressions for the angles av and 3 using eqs. (I54]) and (I55),
o 0, ifsgn(bdet M —am?) = +1, 5 0, ifsgn(bm3—adet M) =+1,
B im, ifsgn(bdet M —am?) = —1, B im, if sgn(bmj —adet M) = —1.

(174)
In the special case of m; = 0, we have ab = ¢ # 0, in which case the angle « is indeterminate
and 8 =0 [17] for b > 0 [b < 0]. Henceforth, we shall assume that m; > 0.
Considering that det M = ab — ¢ = &myms, where & = sgn(ab — ¢?), it then follows that

o { 0, if sgn(&bms —amy) = +1, 5= { 0, if sgn(bms — amy) = +¢,

im, if sgn(&bmy — amy) = —1, if sgn(&bmy — amy) = —¢.

% i (175)
That is, the matrix U is real and orthogonal (corresponding to o = 8 = 0) if and only if ab > ¢?
and bme > am,. In Appendix B, we show that ab > ¢? and bmy > am; are both satisfied if
and only if det M > 0 and Tr M > 0. In particular, we can identify m; and ms as the two
eigenvalues of M. Hence, in this case the diagonalization of M by a real orthogonal matrix
given in Section [ constitutes a Takagi diagonalization of M [cf. footnote [12].

In the case of my = my, it follows that a = —b, so that det M < 0. Indeed, eq. (I66]) yields
a+fp= %7‘(, which implies that the Takagi diagonalization matrix U is not real, as expected.
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Appendix A Singular value decomposition of a matrix
with degenerate singular values revisited

Recall that the singular value decomposition of the 2 x 2 matrix M = (%§) with two degenerate

singular values given by m = +/|a|? + |c|? is,

L MR =mlyy,. (A1)
In general we can parameterize two 2 X 2 unitary matrices L and R in eq. () by
B B cos;  ersind e~ ()
L=Urh, = (—e‘i‘i’L sinf; cosf; ) ( 0 e‘iﬁL) ’ (A2)
B B cosfp  €’Rsinfg e~or ()
F=Urbr = <—e"¢R sinfp cosfr ) ( 0 e"ﬂﬁ') ’ (A-3)

Here, we will allow the phase matrices P, and Pr to be different, although in the end only
ap + ag and B + Bg are fixed by eq. (A.T).
Consider the case of degenerate singular values treated in Section Bl If P, # Pg, then

eqs. (B0)—(89) are slightly modified,

mcosf; = e Hortar) (a cos O — ce R gin «93) = —C—ei(ﬁﬁﬁ’?) (a cosfp — ce "R gin GR), (A.4)
c
me'®r sin 6, = C—ei(ﬁﬁﬁ’?) (5 cos g — be % sin HR) = —e Mlartanr) (5 cos g — be % sin HR). (A.5)
c

Since both eqgs. (87) and (88) cannot simultaneously vanish, it follows that

ei(aL-i-aR-i-ﬁL-i-BR) — _ ¢ (A6)

-
As previously noted in eq. (([9), degenerate singular values exist if and only if
la| = |b], |c| = |¢|, and a*c = —bé". (A7)

Eq. (A7) also implies that a*¢ = —bc*. By re-expressing b in terms of a, ¢ and ¢, one can cast
the matrix M in the form,

M= |a| e |c| ei®e [ ei%al? 0 |a| |c| gita/2 0
= el eite  —|a|eietecsn | =\ o giesd ) || —af 0 eile—sa/2) |

(A.8)
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where a = |ale’®*, ¢ = |c|e’? and ¢ = |c|e’®® (after making use of |¢| = |¢]).
One possible choice for the singular value decomposition of M [eq. (AJ))] is to employ the
unitary matrices

e—i¢a/2 0 e—id)a/z 0
L = 0 e—i(d)g—d)a/Q) QPa R = 0 e_i(¢c_¢a/2) QP, (Ag)

where () is a real orthogonal matrix and P is a 2 x 2 diagonal phase matrix P = diag(i, 1).
Then, eq. (@) yields

QT( |\Z\| _m )Q = (73 7?1) P = ("Z} 7?1) : (A.10)

m=/|a|*>+ |¢|>. (A.11)

That is, @ is the real orthogonal matrix that diagonalizes the real symmetric matrix, ( “‘Z: _m ) ,

where

whose eigenvalues are A\jo = —m, m (whereas its singular values are degenerate and equal
to m). The explicit form for () can be determined using the results of Section [l

Hence, one possible choice for the singular value decomposition of M takes the following
form in the case degenerate singular values,

mlgws = LTMR = PTQ" <||Z|| _||§||) QP

(i 0 cosf) —sinf la] ¢ cosf sind i 0 (A12)
S \0 1 sinf  cosf le|] —al —sinf cosf ) \O 1) V7

where the rotation angle € of the orthogonal matrix @ is given by [cf. eqgs. (38)—(B9)],

cos@:\/%, \/1+|“|/m (A.13)

It is instructive to check that eqs. (A12) and (AI3) are consistent with the general form
of the singular value decomposition in the degenerate case obtained in eqs. (A4)—(A6). If we
compare eq. (A.9) with the forms for L and R given in egs. (A.2) and (A.3]), we can identify,

0 = 0r, ap = ap = §(¢g — ), BL = ¢z — 3¢, Br = e — 16a,
¢L :¢E_¢a7 ¢R:¢c_¢a- (A14)

Note that by inserting ¢ = |c|e’® and ¢ = |c|e!®® into eq. ([A6), it follows that
ap+ar+PL+Pr=¢c+ ¢:— T, (A.15)

which is consistent with eq. (A.14]).
Finally, we insert eq. (A.14)) into eqs. (A.4)) and (A.5) to obtain,

mcosf = |c|sinf — |a| cos @, (A.16)
msinf = |a|siné + |c| cos b, (A.17)
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where 6 = 6, = 0. Both equations above are consistent, in light of eq. (A1), and yield

/2 — a2
tand = d _ymi—laf_ mla (A.18)

- )
m—lal  m—|al m — |al

which coincides with the result of eq. (A.13]).

Of course, eq. (A.I2) is not the most general singular value decomposition of M in the case
of degenerate singular values, since we are free to choose a more general form for R that would
yield 07, # 6g. For example, it is possible to choose L = T1545. To see that this is a consistent
choice, we plug this result back into eq. to obtain

MR =mlsy,. (A.19)
Multiplying this equation by its adjoint yields,
MM = MM = m*14,,. (A.20)
By explicit computation with M = (%),

MM = MM = (Ja|® + |¢|*)1ax2, (A.21)

after making use of eq. (A.7)). Indeed, eqgs. (A.20) and (A.21]) are equivalent in light of eq. (A.1T]).
Therefore, it follows that MT = m2M~!. Inserting this last result into eq. (A.19), we conclude
that one of the singular value decompositions of M in the case of degenerate singular values is
given by

1
LTMR = mlyy,, where L = 19y and R = — M. (A.22)
m

By a similar argument, one can obtain another singular value decompositions of M in the case
of degenerate singular values by taking R = 1542, which yields

1
LTMR =mlay,, where L = —M* and R = 1,o. (A.23)
m

Appendix B On the Takagi diagonalization of a real 2 X 2
symmetric matrix

At the end of Section [, we considered the Takagi diagonalization of a real symmetric matrix,
UTMU = diag(mq, ms), where m; and my are the singular values of M (which are nonnegative
quantities). Thus the Takagi diagonalization of M = (2¢) differs from the diagonalization
of M treated in Section [ unless the eigenvalues of M are nonnegative. One consequence of
eq. (I73) is that the Takagi diagonalization matrix U is a real orthogonal matrix if and only if
ab > c? # 0 and bmy > am;. In this Appendix, we shall verify this last assertion.

Since ab > ¢ # 0, then a and b are either both positive or both negative. First, assume that
a, b > 0. Then, the condition bmy > am is equivalent to the condition that (mgy/m4)* > (a/b)?.
Employing eq. (I68), it follows that

B la? + 0+ 262 + A] > a?[a® + b + 22 — A, (B.1)
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which yields B

(a® +b)A > (a* — b*)(a* +b* +2¢%). (B.2)
This equality is trivially satisfied if a < b, so let us assume that a > b. Then, one can square
both sides of the inequality above to obtain,

(a® +0°)*[(a® + b* + 2¢°)* — 4(ab— )*] — (a® = b*)*(a® + b* +2¢*) > 0. (B.3)
After some algebraic manipulations, the end result is
4c*(a + b)*[ab(a + b)* + (ab — ¢*)(a — b)?] >0, (B4)

which is manifestly true given that a, b > 0 and ab > 2.

Second, assume that a, b < 0. Then, the condition bmy > am; is equivalent to the condition
that (mg/my)? < (a/b)?. Following the same steps as above, one obtains inequalities that are
never satisfied. Hence, one can conclude that if ab > ¢2, then bmsy > am, is satisfied if and only
if @, b > 0. Finally, the conditions ab > ¢? and a, b > 0 are equivalent to the conditions that
det M > 0 and Tr M > 0. Thus, when these two conditions are satisfied, then the matrix U
can be chosen to be real and orthogonal, in which case the Takagi diagonalization of M reduces
to the standard diagonalization of a real symmetric matrix M by a real orthogonal similarity
transformation.
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