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Abstract

Two-component spinors are the basic ingredients for describing fermions in quantum field
theory in 3 + 1 spacetime dimensions. We develop and review the techniques of the two-
component spinor formalism and provide a complete set of Feynman rules for fermions using
two-component spinor notation. These rules are suitable for practical calculations of cross-
sections, decay rates, and radiative corrections in the Standard Model and its extensions,
including supersymmetry, and many explicit examples are provided. The unified treatment
presented in this review applies to massless Weyl fermions and massive Dirac and Majorana
fermions. We exhibit the relation between the two-component spinor formalism and the more
traditional four-component spinor formalism, and indicate their connections to the spinor
helicity method and techniques for the computation of helicity amplitudes.
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1 Introduction

A crucial feature of the Standard Model of particle physics is the chiral nature of fermion quan-
tum numbers and interactions. According to the modern understanding of the electroweak
interactions, the fundamental degrees of freedom for quarks and leptons are two-component
Weyl-van der Waerden fermions , i.e. two-component Lorentz spinors that transform as irre-
ducible representations under the gauge group SU(2),xU(1)y. Furthermore, within the context
of supersymmetric field theories, two-component spinors enter naturally, due to the spinorial na-
ture of the symmetry generators themselves, and the holomorphic structure of the superpoten-
tial. Despite this, most pedagogical treatments and practical calculations in high-energy physics
continue to use the four-component Dirac spinor notation, which combines distinct irreducible
representations of the Lorentz symmetry algebra. Parity-conserving theories such as QED and
QCD are well-suited to the four-component fermion methods. There is also a certain perceived
advantage to familiarity. However, as we progress to phenomena at and above the scale of elec-
troweak symmetry breaking, it seems increasingly natural to employ two-component fermion
notation, in harmony with the irreducible transformation properties dictated by the physics.
One occasionally encounters the misconception that two-component fermion notations are
somehow inherently ill-suited or unwieldy for practical use. Perhaps this is due in part to a
lack of examples of calculations using two-component language in the pedagogical literature. In
this review, we seek to dispel this idea by presenting Feynman rules for fermions using two-
component spinor notation, intended for practical calculations of cross-sections, decays, and
radiative corrections. This formalism employs a unified framework that applies equally well to
Dirac fermions such as the Standard Model quarks and charged leptons, and to Majorana
fermions [3] such as the light neutrinos of the seesaw extension of the Standard Model or
the neutralinos of the minimal supersymmetric extension of the Standard Model (MSSM) [6H10].
Spinors were introduced by E. Cartan in 1913 as projective representations of the rotation
group ,, and entered into physics via the Dirac equation in 1928 . In the same year,
H. Weyl discussed the representations of the Lorentz group , including the two-component
spinor representations, in terms of stereographic projective coordinates . The extension
of the tensor calculus (or tensor analysis) to spinor calculus (or spinor analysis) was given
by B.L. van der Waerden [1], upon the instigation of P. Ehrenfest. It is in this paper that
van der Waerden (not Weyl as often claimed in the literature) first introduced the notation of
dotted and undotted indices for the irreducible (3,0) and (0,3) representations of the Lorentz
group. Both Weyl and van der Waerden independently considered the decomposition of
the Dirac equation into two coupled differential equations for two-component spinors. In the
1930s, more pedagogical presentations of two-component spinors were given in refs. . In
particular, ref. was the first paper in English to employ the dotted and undotted index



notation. Ref. also presents the first two-component spinor analysis for general relativity.
In the early 1950s, comprehensive reviews of two-component spinor techniques were published
in English by Bade and Jehle and in German by Cap . Shortly thereafter, Bergmann
reintroduced two-component spinors into the formalism of general relativity , which was
followed by significant developments by Penrose El Two-component spinor techniques in
curved space are reviewed in refs. , with an extensive bibliography given in ref. .
A recent mathematical treatment of two-component spinors and their geometry can be found
in ref. . Two-component spinors also play a central role in the covariant formulation of
relativistic wave equations .

The formalism of two-component spinors has also been discussed in many textbooks on
relativistic quantum mechanics, quantum field theory, elementary particle physics, group the-
oretical methods in physics, general relativity, and supersymmetry. For a guide to the non-
supersymmetric literature, see for example, refs. . Among the early books, we would
like to draw attention to ref. , which has an extensive discussion of two-component spinor
methods. Scheck includes a short discussion of the field theory of two-component spinors,
including the propagator. A more extensive field theoretic treatment, including Feynman rules
and applications, is given by Ticciati . A modern textbook on quantum field theory by Sred-
nicki includes a comprehensive treatment of two-component fermions and their quantization.
Most textbooks and introductory reviews of supersymmetry include a discussion of
two-component spinors on some level, with a treatment of dotted and undotted indices and a
collection of identities involving two-component spinors and the sigma matrices. Particularly
extensive and useful sets of identities can be found in refs. [69,[73,[75,[78,[84,[86]. Finally, some
mathematically sophisticated textbook treatments of spinors can be found in refs. .

The standard technique for computing scattering cross-sections with initial and final state
fermions involves squaring the quantum S-matrix amplitude, summing over the spin states and
then computing the traces of products of gamma matrices (in the four-component spinor for-
malism), or products of sigma matrices (in the two-component spinor formalism). We employ
this latter technique throughout this paper (with a translation to the four-component formalism
provided in an appendix). However, the computational effort rises rapidly as the number of
interfering diagrams increases. The standard techniques typically become impractical with four
or more particles in the final state. One approach to make such extensive calculations man-
ageable is the helicity amplitude technique. Here the scattering process is decomposed into the
scattering of helicity eigenstates. Then the individual amplitudes are computed analytically in
terms of Lorentz scalar invariants, i.e. a complex number that can be readily computed. It is

then a simple numerical task to sum all the contributing amplitudes and compute the square of

IFor typographical reasons, Penrose replaced the dotted indices with primed indices, a notation still employed
by most general relativists today.



the complex magnitude of the resulting sum. Such methods were first explored in refs. ,
using four-component spinors (see also refs. |[984102]). Spinor techniques in the helicity for-
malism were also developed in ref. . In fact, the natural spinor formalism for the helicity
amplitude techniques makes use of the two-component Weyl-van der Waerden spinors, which
we discuss in detail in this review. They were implemented in the helicity amplitude technique
in refs. . Recently, the two-component formalism has been implemented in a computer
program for the numerical computation of amplitudes and cross-sections for event generators
multi-particle processes .

This review is outlined as follows. In Section 2, we present our conventions and notation
(with some additional discussion of our conventions in Appendix A). We also establish numerous
identities involving sigma matrices, epsilon symbols and two-component spinors. In Section 3,
we derive the basic properties of the quantized two-component fermion fields. For a generic
collection of N two-component fermion fields with identical conserved quantum numbers, the
corresponding mass matrix is an N x N complex symmetric matrix. To identify the corresponding
mass eigenstates, one must perform a fermion-mass diagonalization that differs from the usual
unitary similarity transformation of an hermitian matrix that is employed for a collection of
scalar fields. In Section 4, we derive the Feynman rules for two-component spinors and describe
how to write down amplitudes in our formalism. We demonstrate how to employ the two-
component formalism for both tree-level and loop-level processes. In Section 5, we establish
a naming convention for fermion and antifermion particle states and the corresponding fields.
This is important as it provides an unambiguous procedure for obtaining the amplitudes for a
given physical process, and for comparing these computations in the two-component and four-
component spinor formalisms. In Section 6 we provide an extensive number of examples of
computations using the two-component spinor formalism. This is the central part of our review.

We have relegated many details to a set of twelve appendices. In Appendix A, we summa-
rize our metric and sigma matrix conventions and indicate how to translate between conventions
with opposite metric signature. With our definition of the sigma matrices, one can switch easily
between the two conventions by computing one overall sign factor. In Appendix B, we provide
a comprehensive list of sigma matrix identities, and indicate which of these identities can be
generalized to d # 4 dimensions required for loop computations that employ dimensional regu-
larization. Explicit forms for the two-component spinor wave functions are given in Appendix C
(where we exhibit two of the most common phase conventions employed in the literature). The
mathematics of fermion mass diagonalization is discussed in Appendix D. In contrast to the uni-
tary similarity transformation of the scalar squared-mass matrix, fermion mass diagonalization
involves the Takagi diagonalization of a complex symmetric matrix (for neutral fermions)
or the singular value decomposition of a complex matrix (for charged fermions). In Appendix E,

we review some of the basic facts of Lie groups and Lie algebras needed in the treatment of gauge



theories. The two-component fermion propagators (derived in Section 4 using canonical field
theory techniques) can also be obtained by path integral methods, as exhibited in Appendix F.

As most textbooks on quantum field theory and elementary particle physics employ the
four-component spinor formalism for fermions, we provide in Appendix G a dictionary that
allows one to translate between the two-component and four-component spinor techniques. We
use the two-component spinor methods developed in this review to establish a generalization
of the standard four-component spinor Feynman rules that incorporate Majorana fermions in a
natural way. In Appendix H, we develop a method for computing helicity amplitudes in terms
of Lorentz-invariant scalar quantities. This method, which makes use of the Bouchiat-Michel
formulae (originally established in the four-component spinor formalism) is developed in
the language of two-component spinors. However, these methods are somewhat limited in scope
and must be generalized in the case of multi-particle final states. This was accomplished by
Hagiwara and Zeppenfeld (HZ) based on a two-component spinor treatment [106]. In Appendix I,
we provide a translation between the HZ formalism and the two-component spinor formalism of
this review. We also demonstrate that the spinor helicity method that is now commonly used
in obtaining compact expressions for helicity amplitudes of multi-particle processed has a very
simple development within the two-component spinor formalism. Finally, the two-component
spinor Feynman rules for the Standard Model, the seesaw-extended Standard Model (which
incorporates massive neutrinos), the minimal supersymmetric extension of the Standard Model

(MSSM), and the R-parity-violating extension of the MSSM are given in Appendices J, K and L.
2 Essential conventions, notations and two-component spinor
identities
We begin with a discussion of necessary conventions. The metric tensor is taken to beﬂ
G = g = diag(+1,-1,—-1,-1), (2.1)

where p,v = 0,1,2,3 are spacetime vector indices. Contravariant four-vectors (e.g. positions
and momenta) are defined with raised indices, and covariant four-vectors (e.g. derivatives) with

lowered indices:

= (15 ). (2.2)
P =(E;p), (2.3)
0 -
Ou= 50 = (0/01: V), (2.4)
®The published version of this paper employs the (+,—,—,—) Minkowski space metric. An otherwise

identical version, using the (—,4+,+,+) metric favored by one of the authors (SPM), may be found at
http://www.niu.edu/spmartin/spinors/. It can also be constructed by changing a single macro at the begin-
ning of the ETEX source file , in an obvious way. You can tell which version you are presently reading from
eq. . See Appendix A for further details and rules for translating between metric conventions.
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in units with ¢ = 1. The totally antisymmetric pseudo-tensor 7 is defined such that
12 = —¢)03 = +1. (2.5)

More details on our conventions can be found in Appendix A.

The irreducible building blocks for spin-1/2 fermions are fields that transform either under
the left-handed (%, 0) or the right-handed (0, %) representation of the Lorentz group. Hermitian
conjugation interchanges these two representations. A Majorana fermion field can be constructed
from either representation; this is the spin-1/2 analogue of a real scalar field. A Dirac fermion
field combines two equal mass two-component fields into a reducible representation of the form
(%,0) @ (0, %), this is the spin-1/2 analogue of a complex scalar field. It is also possible to
use four-component notation to describe a Majorana fermion by imposing a reality condition
on the spinor in order to reduce the number of degrees of freedom in half. Details of this

construction are given in Appendix G.1. However, in this review, we shall focus primarily on

two-component spinor notation for all fermions. In the following, (%, 0) spinors carry undotted
indices a, 3,... = 1,2, and (0, %) spinors carry dotted indices &, 3,... =1, 2.

We first provide a brief introduction to the Lorentz group and its two-dimensional spinor
representations. Under an active Lorentz transformation, a contravariant four-vector z# trans-

forms as

ot — 't =AM (2.6)
where A € 50(3,1) satisfies A", g,,A”x = gyx. It then follows that the transformation of the
corresponding covariant four-vector x, = g,,x" satisfies:

x, =z, A, (2.7)

The most general proper orthochronous Lorentz transformation (which is continuously connected
to the identity), corresponding to a rotation by an angle # about an axis n [5 = On] and a boost

vector ¢ = ®tanh ™' 3 [where & = @/|@] and 8 = |#]], is a 4 x 4 matrix given by:

A = exp (—Li07S,,) = exp (—zﬁ Sl 16) , (2.8)
where 07 = —0°? and S,; = —S;,. In particular, 9 = %eijkéjk, (=60 =_-9% S = %eiijjk,
Ki=8% = -8 and

(SPU)#V = Z((S;; Jov — Of qu) . (2.9)

Here, the indices i,j,k = 1,2,3 and €'?3 = +1.

Thus, an infinitesimal orthochronous Lorentz transformation is given by

AP, ~ 0k — %iepa(spa)#y =+ %9””(55 Gov — 08 gpv) = 0 + %(9"1, —0,1). (2.10)
Since 0", = ga, 0" = —ga, 0" = —0,/, it follows that
AP, ~ 68+ 01, (2.11)



Moreover, the infinitesimal boost parameter is f = dtanh ™' ~ B = 5, since § < 1 for an
infinitesimal boost. Hence, the actions of the infinitesimal boosts and rotations on the spacetime

coordinates are

Rotations: B (2.12)
t— t'~t,

Z— & ~ &+,
Boosts: (2.13)

t Vet + (o3,
with exactly analogous transformations for any contravariant four-vector.
With respect to the Lorentz transformation A, a general n-component field ¢ transforms
according to a representation R of the Lorentz group as ®(z#) — ®'(2'#) = Mpg(A) @(z#),
where Mp(A) is the corresponding (finite) dr-dimensional matrix representation. Equivalently,

the functional form of the transformed field ® obeys
' (a) = Mp(A)@([A™]02"), (2.14)

after using eq. (2.6]). For proper orthochronous Lorentz transformations,

Mpg = exp (=i, J") ~ 1apxay, —i0-J —il- K, (2.15)
where 14, xqp, is the dg x dg identity matrix and 6, parameterizes the Lorentz transformation
A [eq. (2.8))]. The six independent components of the matrix-valued antisymmetric tensor J#”

are the dgr-dimensional generators of the Lorentz group and satisfy the commutation relations:
[J,uz/’ J)\H] — Z-(g,un Jl/)\ _|_gzx)\ JHE _g,u)\ JVE _gw@ J,u)\) . (216)

We identify J and K as the generators of rotations parameterized by 6 and boosts parameterized
by f, respectively, where
Ji= Lk Ki=J%. (2.17)
Here we focus on the simplest non-trivial irreducible representations of the Lorentz algebra.
These are the two-dimensional (inequivalent) representations: (3,0) and (0, 3). In the (3,0)
representation, J = & /2 and K = —i& /2 in eq. , which yields

Mg =M ~ lgyo —i0-3/2 — {-3/2, (2.18)
27

where & = (0!, 02, 0?) are the Pauli matrices [cf. eq. ] By definition M carries undotted
spinor indices, as indicated by M,”. A two-component (%,O) spinor is denoted by 1, and
transforms as ¢, — Maﬁwg, omitting the coordinate arguments of the fields, which are as in
eq. . In our conventions for the location of the spinor indices, we sum implicitly over a

repeated index pair in which one index is lowered and one index is raised.

10



In the (0, %) representation, J = —&6%* /2 and K = —i6/2 in eq. , so that its repre-
sentation matrix is M™, the complex conjugate of eq. . By definition, the indices carried
by M* are dotted, as indicated by (M *)dﬁ . A two-component (0, %) spinor is denoted by 1/12
and transforms as wj; — (M *)dﬂ.wt, again suppressing the coordinate arguments of the fields,
which are as in eq. . We distinguish between the undotted and dotted spinor index types
because they cannot be directly contracted with each other to form a Lorentz invariant quantity.

It follows that the (3,0) and (0, 3) representations are related by hermitian conjugation.
That is, if ¥, is a (3,0) fermion, then (¢,)" transforms as a (0,1) fermion. This means that
we can, and will, describe all fermion degrees of freedom using only fields defined as left-handed
(%,O) fermions 1),, and their conjugates. In combining spinors to make Lorentz tensors [as in

eq. ([2.40)], it is useful to regard @bg as a row vector, and 1), as a column vector, WithEl

vl = (), (2.19)

The Lorentz transformation property of @ZJJ; then follows from (1o)" — (¥5)T(M T)B & [with coor-
dinate arguments of the fields again suppressed], where (M T)B a=(M *)dB reflects the definition
of the hermitian adjoint matrix as the complex conjugate transpose of the matrix. Again the
coordinate arguments of the fields have been suppressed, and are as in eq. .

In this review, we shall employ the dotted-index notation in association with the dagger
to denote hermitian conjugation, as specified in eq. . This is the notation for hermitian
conjugation of spinors found in most field theory textbooks (e.g., see refs. [66l[89/[115]). However,
it should be noted that many references in the supersymmetry literature (e.g., see refs. )
employ the bar notation made popular by Wess and Bagger where v, = w:; = (d)a)T.

Spinors labeled with one undotted or one dotted index are sometimes called spinors of
rank one [or more precisely, spinors of rank (1,0) or (0, 1), respectively]. One can also define
spinors of higher rank, which possess more than one spinor index, with Lorentz transformation
properties that depend on the number of undotted and dotted spinor indices ,,

. In particular, for a spinor of rank (m,n) denoted by S, . . 25 5,

each lowered undotted a-index transforms separately according to Mago"' in eq. 1} and each

lowered dotted S-index transforms according to (M*) B’-B L
There are two additional spin-1/2 irreducible representations of the Lorentz group, (M ~1)T

3In the early literature that employed the van der Waerden spinor index notation (surveyed in Section, no
dagger was used in conjunction with the dotted index. The advantage to attaching the dagger to the dotted spinor
field is that it permits the development of a spinor-index-free notation for Lorentz-covariant spinor products [see
eqs. f and the accompanying text].

4Other conventions for the dotted spinor are possible. For example, in ref. , the hermitian conjugate of ¥,
yields a spinor with a raised dotted index, i.e. 9% = (1)f, which the authors rewrite as 7% = 7*%(15)" in an
attempt to maintain the same index structure on both sides of the equation. Here, 3° = T2 [defined in eq. ]
appears as a formal device. This latter convention leads to a number of complications; e.g., (M,®)* # (M*)4”,
etc. (see ref. for further details). Although this alternative convention seems self-consistent, we have adopted

the more convenient egs. (2.19) and (2.20) in this review.

11



and (M~1)T, but these are equivalent representations to the (%, 0) and the (0, %) representations,
respectively. The spinors that transform under these representations have raised spinor indices,
¢ and 91, with transformation laws 1 — [(M~1)T]%59% and ¢ — [(M*I)T]‘j‘ﬁ-ww., respec-
tively (with coordinate arguments of the fields again suppressed). It is convenient to rewrite the
transformation law for the undotted spinor as ¢® — % (M~1) 3. In combining spinors to make
Lorentz tensors [as in eq. ], it is useful to regard ¥ as a row vector, and ¥T% as a column
vector, with:
gte = ot (2:20)

The Lorentz transformation property of 1T then follows from (y®)f — [(M’l)T]dB(@/Jﬁ)T.

The spinor indices are raised and lowered with the two-index antisymmetric epsilon symbol
with non-zero componentsEl

2=l = = —€p=1, (2.21)

and the same set of sign conventions for the corresponding dotted spinor indices. In particular,
we formally define €% = (€*7)* and e 5 = (€ap)". Viewed as a 2 x 2 matrix, the epsilon symbol
with lowered undotted [dotted] indices is the inverse of the epsilon symbol with raised undotted

[dotted] indices. Thus, consistent with eqgs. (2.19) and (2.20]), one can Writeﬂﬂ

Yo =capt?, W =ePys,  pl =0l =Pyl (2.22)

which respects Lorentz covariance due to the properties of M given in eqgs. and .
The epsilon symbols €** (e,3) and €SB (€44), first introduced in this context in ref. || are also
called the spinor metric tensors, as they raise (lower) the undotted and dotted spinor indices,
respectively. Note that in raising or lowering an index of a spinor quantity, adjacent spinor

indices are summed over when multiplied on the left by the appropriate epsilon symbol.

SFor related earlier work on the epsilon symbol and its properties, see refs. . Various subsets of
the subsequent identities in this section involving commuting and anticommuting two-component spinors, as well
as the e symbol and the sigma matrices appear in many books and reviews (e.g., see refs. ) and
in papers (e.g., see refs. )

5In the general relatwlty hterature (seee.g., refs \.
for the epsilon symbol (also adopted in refs. 30113
similarly for the epsﬂon symbol with dotted splnor 1ndlces In thls conventlon one writes ¥ = eD‘B ng as above
but in contrast to eq. , o = Pepn, and similarly for the corresponding equations with dotted spinor
indices. That is, in raising [lowering] an index of a spinor quantity, adjacent spinor indices are summed over
when multiplied on the left [right] by the appropriate epsilon symbol. The various identities involving the epsilon
symbols given in this review must then be modified by a minus sign for every epsilon symbol with lowered spinor
indices. There are some benefits for this alternative convention; e.g., the minus signs appearing in eq.
are absent. However, one must keep track of other minus signs that arise because enp is the negative of the
inverse of €. In this review, we have adopted the convention of eq. , which is consistent with most of the
supersymmetry literature.

"In refs. , one finds yet another convention in which the spinor indices are raised and lowered by a

0
i

, ), the more common convention

two-index antisymmetric quantity, Cys = —C*? = Cup = —C%F = ( 73), which play the role of the epsilon
symbols. As in footnote EI, Clap is the negative inverse of C*? in which case ¥ = C*?1p5 whereas 1o = ¢¥°Cpsa,
and similarly for the corresponding equations with dotted spinor indices. However, in this convention where C' is
pure imaginary, if 7% = (*)" as in eq. , then w; = —(1a)" in contrast to eq. ‘ We choose not to

pursue the alternative epsilon symbol conventions of footnotes ﬁorm in this review.
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The epsilon symbols can also be used to raise or lower undotted or dotted indices of spinors

of higher rank. For example, for an object with two undotted indices it is natural to define
AMS = €7a65ﬂAaﬁ’ A75 = E,yae(;ﬁAaB . (2.23)

In the special case that A*? = ¢*y? is a product of rank-one spinors, eq. is not just
natural but necessary, as it follows directly from eq. . However, in other cases there can be
a different sign associated (by convention) with raising and lowering spinor indices, because of
the antisymmetry of the epsilon symbols (in contrast to the symmetry of the spacetime metric
used to raise and lower spacetime indices). This sign convention can be defined independently
for distinct higher-rank spinors (even in the case where the higher-rank spinors possess the same
index structure). Indeed, as a consequence of our epsilon symbol conventions of eq. , the

epsilon symbols themselves satisfy:

6’76 = *€7a€§ﬁ€a@, 675 = 76704666604[3’ (224)

in contrast to eq. . The above results (and similar ones with dotted indices) show that
some care is required , since the extra overall minus signs of eq. in comparison to
eq. might otherwise have been unexpected [e.g., see eqgs. (2.42) and (?2.43)) below]ﬁ This
reflects an awkwardness imposed by the epsilon symbol conventions of eq. , rather than

an inconsistency. Practitioners of spinor algebra in the conventions used in this review should
be wary of this sign issue when using the epsilon symbols to explicitly raise or lower two or
more spinor indices of higher-rank spinorsﬂ Fortunately, such manipulations are quite rare in
practical calculations.

We also introduce the two-index symmetric Kronecker delta symbol,

h=02=1, bs=01=0, (2.25)

and 55 = (5§)* Eq. (2.25) implies that the numerical values of the undotted and dotted

Kronecker delta symbols coincide. The epsilon symbols with undotted and with dotted indices

respectively satisfy:

cape’® = —678% + 8057, %ﬁwz—@%+ﬁ%, (2.26)

81t would be perhaps more transparent to simply replace the symbol e,5 with E;BI, in which case €*? is used
to raise spinor indices and e;é is used to lower spinor indices (cf. ref. ) Although this convention avoids an
apparent conflict between egs. and 7 it doubles the number of distinct epsilon symbols. We shall not
adopt such an approach in this review.

9In the alternative convention mentioned in footnote EI, this particular awkwardness is absent; the minus signs
in the analogue of eq. do not occur, in which case the rules for raising and lowering the spinor indices in
eqs. and are identical. More generally, in the convention of footnote@ the indices of all higher-rank
spinors can be raised [lowered] via multiplication on the left [right] by the appropriate epsilon symbol, including
the epsilon symbols themselves, with no extra signs.
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from which it follows that:
€ap’’ = Pegy = 67, ed5657 = JBGB@ = (5;, (2.27)
€aB€ys + €ar€ss + €as€py =0, €a€ss T €ai€ip T €a5€55 = 0. (2.28)

In the literature, eq. ([2.28) is often referred to as the Schouten identitiesEl
To construct Lorentz invariant Lagrangians and observables, one needs to first combine

products of spinors to make objects that transform as Lorentz tensors. In particular, Lorentz
vectors are obtained by introducing the sigma matrices T and & defined by |

0 —i 1 0
== ', o3 =37 = . (2.29)
) 0 0 -1

The sigma matrices are hermitian, and have been defined above with an upper (contravariant)
index. We denote the 2 x 2 identity matrix by lsyo and the three-vector of Pauli matrices by
& = (o', 02, 0®). Hence, eq. (2.29) is equivalent to:

ot = (]lgxg; E), ot = (]lgxg; —5") . (230)
We also define the corresponding quantities with lower (covariant) indices:
o = 9o’ = (lax2; —0), Ou = guwo = (laxa; &). (2.31)

The relations between o* and o* are

O-gd = eaﬂedﬂ.aﬂﬁﬁ , E,LL ao _ €aﬁ€a50'gﬁ~ , (232)
eo‘ﬁagd = edﬂﬁ“ﬁa , edﬁUZB = eagﬁ’“j‘ﬁ ) (2.33)
Consider a spinor of rank (n,n) denoted by S, frfo.. - The object obtained by multi-

plying S by o#! Brar ... gHn fnon has the transformation properties of an nth rank contravariant
Lorentz tensor 116]. For example, there is a one-to-one correspondence between each

bi-spinor V| 3 and the associated Lorentz four-vector V# H

%The Schouten identities also follow from the observation that a rank-four spinor must vanish if it is antisym-
metric with respect to more than two undotted or dotted two-component spinor indices.

11n the general relativity literature , the more common normalization is V# = %E“'EQVQB, which

yields V5 = %V”a In this context, the ﬁag 5 are often called the Infeld-van der Waerden symbols.

pafB*
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In particular, if V# is a real four-vector then Vaﬁ' is hermitian (and vice versa). To clarify this

last remark, consider the bi-spinor V_ 4 regarded as a 2 X 2 matrix. Thenm

(Vs = Vaa (Vg = (Vo)™ (VNp = (Vaa)®- (2.35)

An hermitian bi-spinor satisfies V = V1, or equivalently Vs = (Va)*.
Rank-two spinors (with two undotted or with two dotted indices) can also be interpreted

as 2 x 2 matrices. In the case of the rank-two spinor W, 2, it is convenient to define:
(W8, = W7, (W)a? = (W5)* (WHPs = (W) = (W, (2.36)

Note that the matrix transposition of W,? interchanges the rows and columns of W without
altering the relative heights of the o and 3 indices. Similar results hold for W,z and WeB by
either lowering or raising the relevant spinor indices with the appropriate epsilon symbol.
When constructing Lorentz tensors from fermion fields, the heights of spinor indices must
be consistent in the sense that lowered indices must only be contracted with raised indices. As

a convention, descending contracted undotted indices and ascending contracted dotted indices,
% and &, (2.37)

can be suppressed. In all spinor products given in this paper, contracted indices always have

heights that conform to eq. (2.37)). For example, in an index-free notation, we define:

&n = €M a, (2.38)
gyt = gln'e, (2.39)
¢lotn = §Lﬁ“d5n5, (2.40)
pt — ca_p 18
ol =¢ UL (2.41)

All the spinor-index-contracted products above have natural interpretations as products of ma-
trices and vectors by regarding 7, and 1'% as column vectors and flé and £ as row vectors of the
two-dimensional spinor space. However, the reader is cautioned that in the index-free notation
(with undotted and dotted indices suppressed), the undaggered and daggered spinors cannot be
uniquely identified as column or row vectors until their locations within the spinor product are
specified. Nevertheless, the proper identifications are straightforward, as any spinor on the left
end of a spinor product can be identified as a row vector and any spinor on the right end of a
spinor product can be identified as a column vector.

For an anticommuting two-component spinor v, the product ¥*¢? is antisymmetric with

respect to the interchange of the spinor indices a and 8. Hence, this product of spinors must be

. interchanges its rows and columns without altering the fact
that the first spinor index is undotted and the second spinor index is dotted. Moreover, it is often useful to further
simplify the notation by defining V; 5 = (v, B)*. In this notation, an hermitian bi-spinor satisfies V5 = Vj,,.

12 A5 stressed in ref. , taking the transpose of V.

15



proportional to €*?. Similar conclusions hold for the corresponding spinor products with raised

undotted indices and with lowered and raised dotted indices, respectively. Thus,

vyt = =5y, Yaths = eaptt), (2.42)
phoyls = Lesdytyf, phol = —Jeulyl, (2.43)

where 1) = ¥*), and iyt = ¢L¢Td as in egs. 1} and ([2.39)). Note that the minus signs

above can be understood to be a consequence of the extra minus sign that arises when the indices
of the epsilon symbol are lowered or raised [cf. egs. (2.23]) and (2.24])].

The behavior of the spinor products under hermitian conjugation (for quantum field oper-

ators) or complex conjugation (for classical fields) is as follows:

()t =ntet, (2.44)
(&t ") = note?, (2.45)
(Tt = nlore, (2.46)
(o)t = nig”otet (2.47)

where we have used the hermiticity properties, (o) = o# and () = @*. More generally,

€Syt =S¢, (€St =0z, o)t =9S¢, (2.48)

where in each case ¥ stands for any sequence of alternating ¢ and @ matrices, and i, is obtained
from X by reversing the order of all of the ¢ and @ matrices, since the sigma matrices are
hermitian. Eqs. f are applicable both to anticommuting and to commuting spinors.
The properties of the two-component spinor fields under the discrete C, P and T transfor-
mations are elucidated in refs. . The corresponding behaviors of the spinor products
under C, P and T are easily obtained (and are left as an exercise for the reader).
The following identities can be used to systematically simplify expressions involving prod-

ucts of o and & matrices{s

05d56,8 _ 25a656a : (2.49)
Ugdguﬂﬂ' = 26a5€d5, (2.50)
6“‘“656 — 2B B (2.51)
[0"5" + ngu]aﬁ = 29"5.7 (2.52)
[GHa” + E”U“]O"B- _ 29“”(50"3 7 (2.53)

13Since the Kronecker delta symbol is symmetric under the interchange of its two indices, naively there is nothing
gained in writing 6,” and 6”4, with the spinor indices staggered as shown, instead of 672 and ég, respectively.
Nevertheless, we often prefer to employ the former rather than the latter as it provides some insight into the
spinor index structure of the equation. For example, in eq. , « labels the row and S labels the column of
the product of sigma matrices. Neither o#3” nor ¢”g" is symmetric under the interchange of the (suppressed)
spinor indices (although the sum of the two is symmetric). By writing 6,” on the right-hand side of eq. ,

one formally maintains the index structure of each of the separate terms of the equation.

16



In the literature, one sometimes sees eqs. and rewritten using the identity €y p€cq =
0acObd — Oaddpe- However, as this latter result does not formally respect covariance with respect
to the dotted and undotted indices, we shall not make use of it here. Products of three or
more sigma matrices can be reduced to sums of terms involving at most two sigma matrices by

employing the identities,
otc’ ol = g™ ol — g*"Pa” + g"Pot + i P o, (2.54)
Fho'aP = g"'EP — gMPE + gVPet — ie'VPRG,, . (2.55)

Computations of cross-sections and decay rates generally require traces of alternating prod-
ucts of o and & matrices (e.g., see ref. [105]):

Tr[o#5"] = Tr[c"0”] = 29", (2.56)
Tr[o"T"o?T"| = 2 (" g*" — g"Pg"" + gH"g"P + ie"P") | (2.57)
Tr[cta"a’c"| = 2 (g"" g™ — gHPg"" + gH"g"P — ie"P") . (2.58)

Traces involving a larger even number of o and @ matrices can be systematically obtained from
eqs. f by repeated use of eqs. and and the cyclic property of the trace.
Traces involving an odd number of ¢ and & matrices cannot arise, since there is no way to
connect the spinor indices consistently.

In addition to manipulating expressions containing anticommuting fermion quantum fields,
we often must deal with products of commuting spinor wave functions that arise when evaluating
the Feynman rules. In the following expressions we denote the generic spinor by z;. In the
various identities listed below, an extra minus sign arises when interchanging the order of two

anticommuting fermion fields of a given spinor index height. It is convenient to introduce the

notation: _ _
(C1)h = { +1, commuting spinors, (2.50)
—1, anticommuting spinors.
The following identities hold for the z;:
21z = —(—1)221, (2.60)
zJ{z; = —(—1)’42;21, (2.61)
zla“zg = (—1)‘42:;5“21 ) (2.62)
2101 29 = —(—1)Azga”5“zl , (2.63)
zIE“a”z; = —(—1)Azgﬁ”0“zi , (2.64)
AoHoPe" 29 = (—1) 20075 0t 2] (2.65)

and so onIEl The hermiticity properties of the spinor products given in eqs. (2.44)—(2.48) hold

for both commuting and anticommuting spinors, with no additional sign factor.

Y1y particular, if z is a commuting spinor, then zz = 212" = 0, as emphasized in refs. .
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Two-component spinor products can often be simplified by using Fierz identities. Due to the
antisymmetry of the suppressed two-index epsilon symbol [or equivalently, using the Schouten
identities given in eq. (2.28))], the following identities are obtained:

(212’2)(2‘32’4) = —(2123)(2422) — (212’4)(222’3), 2 66)
(123 (ehed) = (el ) (=]23) — (d=D) (d0) (2:67)

where we have used eqs. (2.60) and (2.61)) to eliminate any residual factors of (—1)4. Similarly,
egs. (2.49)—(2.51) can be used to derive additional Fierz identities,

(210" 2) (247 424) = —2(2124) (232 (2.68)
(215" 29) (27 124) = 2(202) (2420) (2.69)
(zla“z;)(zgauzl) = 2(z123)(z1zg) : (2.70)

Having eliminated all factors of (—1)4, egs. (2.66)(2.70) hold for both commuting and anti-
commuting spinors.

From the sigma matrices, one can construct the antisymmetrized productsﬂ

(O_Mu)aﬁ % ( gnyV’YB _ O-Z;yali’yﬂ) , (271)

- . v/ o
()% 4 Z(MQVJ;B—UW(;%). (2.72)

Equivalently, we can use eqs. (2.52) and (2.53)) to write:

(c"")o” = g™ 0.° — 2i(0") ", (2.73)

(") 5 = g™ 6% 5 — 2i(@"™)% 5.

The components of ¥ and " are easily evaluated:
o'l =5 = Leikgk oV =—0"=-5"=5" = lio". (2.75)
The matrices o and " satisfy self-duality relations,
ot = —%ie””p“ap,i, gt = %ie””"”{ﬁpﬁ. (2.76)

The self-duality relations can be used to obtain the following two identities:

gt — g"Pott 4 ghPatr — ie“”'“)\a)‘p =0, (2.77)

GEPEHY — gUPGHE | ghPGVE | jehR GA — (). (2.78)

5The reader is cautioned that o*¥ and 7" are sometimes defined in the literature without the factor of 4 in

egs. (2.71) and (2.72)) (as in ref. ), or with an overall factor of i (as in ref. ) instead of 1i.
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A number of useful properties and identities involving o and " can be derived. For

example, eq. (2.26)) implies that:

(U“”)aﬁ = €,r€

em(JW)aB — EBW(UW)VT’

615(0")a = car ("),

()T

T

: (@)% 5 = “Tey ()75,
6+a(5”l')d3 = Ggﬁ(ﬁw)&r‘,

eﬁﬁ(auy)dﬁ_ _ Ed%(ayz/)"y+ .

Using eqgs. ([2.49)—(2.55)), the following identities can be obtained:

(0o’ (o), =

(@)

€ary €

i (g"Pot —

(9
i (g"P5" — gMPE — i

(g"'5" — g5
i(g"o? — g'Po? +ie"P oy
(9" g""

(g"Pg""

1,
2
1,
2
Fhov = L
1,
2

o GPE —

NN

— ghPg¥

ﬁT _I_ 5a7—(5’yﬁ — 26057'5"/6 _
() s = e eg, +8% 075 = 26% 67 — %507,

gtPa” + et oy,

— gMPgrE 4 iePR) 4 %Z (g"P oM + ghhighP — ghP gV

K _ ,L-e,uupn) + %’L (gupa;m + g'LmEVp

Be T
5.5,

- glmaﬂp) )

_ g:U‘PEV"‘C _ gV“EIJP) .

(2.79)
(2.80)
(2.81)

Eqgs. (2.89) and (2.90) and the antisymmetry of o and " yield the following trace formulae:

Tr o =Tr o =0,

Tr[o"" o] =

Tr[c"c""| =

K UV N VPR
— gMhghP — ivPR]

VK g;mgup + Z-Eul/pn] )

(2.91)
(2.92)
(2.93)

The properties of spinor products involving o#” and ** are easily derived. Under hermitian

conjugation (for quantum field operators) or complex conjugation (for classical fields),

(ot )T =niervel,

(2.94)

due to the hermiticity relation, (o#)" = "*. Next, we use eqs. (2.63)) and (2.64) to obtain:

210" 29 =

(—1)A220“”z1 ,

zIE‘“’z; = (—1)142;5’“’21[ .

One can also derive additional Fierz identities, which follow from egs. (2.82))—(2.84)),

(zlawzQ)(z;;aw,zq) =

(5 2) (2T, 2)) =

(210" 20) (24T 2)) =
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where we have again used egs. (2.60)) and (2.61]) to eliminate any residual factors of (—1)4. Thus,
eqs. f hold for both commuting and anticommuting spinors. A more comprehensive
list of sigma matrix identities and their associated Fierz identities are given in Appendix B.1
(see also Appendix B of ref. [78]).

The o and G satisfy the commutation relations of the J* [cf. eq. (2.16)], and thus
can be identified as the generators of the Lorentz group in the (%, 0) and (0, %) representations,
respectively. That is, for the (%,0) representation with a lowered undotted index (e.g. ,),
JH = gt while for the (0, %) representation with a raised dotted index (e.g. %), J# =G,

In particular, the infinitesimal forms for the 4 x 4 Lorentz transformation matrix A [cf. eq. (2.11))]

1
29

and the corresponding matrices M and (M 1) that transform the (3,0) and (0, 3) spinors,

respectively, are given by:

AP, ~ 6 401, (2.100)
M =~ 1oyo — 5ib,,0" (2.101)
(M~ 1gy0 — Li6,,5" . (2.102)

The inverses of these quantities are obtained (to first order in ) by replacing § — —6 in the

above formulae. Using eqs. (2.79), (2.101) and (2.102), it follows that:

(M1)," =™ Moey, (2.103)
(M) = erg (MT)% 577 (2.104)

These results can be used to demonstrate the covariance (with respect to Lorentz transfor-

mations) of the spinor index raising and lowering properties of the epsilon symbols defined in

eq. (2.22). The infinitesimal forms given by egs. (2.100)—(2.102) can also be used [with the
assistance of egs. (2.85)—(2.87)] to establish the following two results:

MIghM = A", 5", (2.105)
Mot (MY = A*, o7 (2.106)

Using the Lorentz transformation properties of the undotted and dotted two-component spinor
fields, eqs. and can be used, respectively, to prove that the spinor products £1a#n
and £otn! transform as Lorentz four-vectors.

As an example, consider a pure boost from the rest frame to a frame where p* = (Ep, p),
which corresponds to ¢;; = 0 and ¢t =00 = —p%. We assume that the mass-shell condition
is satisfied, i.e. p = Ez = (|p]> + m?)"/2. The matrices M,” and [(M*I)T]dﬂ- that govern the

Lorentz transformations of spinor fields with a lowered undotted index and spinor fields with a
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raised dotted index, respectively, are given by:

exp (—1i0,, J") = (2.107)

where

(Ep + m) ]].QXQ — 3-17
Q(Ep +m)

(2.108)

VP

E 1 5.5
oz = Eptmlaatdp (2.109)
2(Ep +m)

These matrix square roots are defined to be the unique non-negative definite hermitian matri-

ces (i.e., with non-negative eigenvalues) whose squares are equal to the non-negative definite
hermitian matrices p-o and p-o, respectivelym
According to eq. ([2.107)), the spinor index structure of /p-c and /p-@ corresponds to that
of M,? and [(M_I)T]dg, respectively. In this case, we can rewrite eqs. (2.108]) and (2.109) as:
(p-Gac)7° % + mds

vpol,’=[Vpoa®] = : (2.110)

2(Ep+m)

=60 0 &
(p-o )0a5+m5ﬁ

2(Ep +m)

[Vp7] (2.111)

[VpTo®]"; =

0

since 0¥ = 7" = 1ax2. Using eqs. (2.54) and (2.55)), one can easily verify that:

(Vo] [Vea] = o), (2.112)
Vo7 ]% Ve = e, (2.113)

where implicit factors of ° and ¢ inside the square roots of eq. have been suppressed.

Due to the fact that p-o and p-& are hermitian, we could have defined their hermitian
matrix square roots by the hermitian conjugate of eq. . In this case, the spinor index
structure of \/p-o and /p-G would correspond to that of [(MT]% 5 and [M 1.5, respectively.
That is, instead of egs. and (2.111]), we would now rewrite egs. (2.108) and (2.109) in

the following form:

. 0B (p-o,s) + mod
(Vo0 p-o]®y = iy (2.114)
2(Ep +m)

N

0’3~(p'55ﬁ) + mdh

[VoOp5] P =22 : (2.115)

2(Ep+m)

[Vp7],’

Note that p-o and p-& are non-negative matrices due to the implicit mass-shell condition satisfied by p.
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Using eqs. and , one can again confirm that:
Vool [vpa) s =@ po)®y, Vo)) Vo] f=(0"pa)”  (2116)

where implicit factors of @° and ¢ inside the square roots of eq. have been suppressed.
The proper choice of the spinor index structure for \/p-o and \/p-@ can always be determined
for any covariant expression. That is, if we employ the spinor index-free notation (and suppress
the factors of 0¥ and &), it will always be clear from the context which spinor index structure
for \/p-o and \/p-7 is implicit.
As an example that will prove valuable later on, consider an arbitrary four-vector S*,
defined in a reference frame where p# = (E; p), whose rest frame value is S%, i.e.
St =A",Sh, with A= pip . (2.117)

im0t E )

Then, using egs. (2.7), (2.106) and (2.107), it follows that:

Vp-0S-0\/p-c =mSg-7, \/p-@S-0+/p-@=mSg-0o. (2.118)
The spinor index structures of eq. are easily established:
Via]’s s a0 [pa) f = mSpa?, (2.119)
(VP 7], S-00a VD7) 5 = mSheogy. (2.120)
Using egs. f and 7, one can directly verify the above results.

The two-component spinor formalism established in this section will be applied to the

quantum field theory of fermions in Minkowski space of one time and three space dimensions
in this review. We also direct the reader’s attention to Appendices G.1 and G.2, which provide
details of the correspondence between the two-component and four-component spinor notation.

For certain applications, the spinor formalism in four-dimensional Minkowski space is not
sufficient. For example, in order to obtain instanton solutions , it is necessary to for-
mulate quantum field theory in Euclidean space. One also needs the Euclidean space formalism
for a rigorous definition of the path integral ,. The Green functions derived from the
Fuclidean path integral can be related to the Green functions of the Minkowski space theory
by a Wick rotation . In addition, to evaluate the loop-corrected Green functions of the
theory, it is often most convenient to apply a regularization scheme that involves dimensional
continuation away from d = 4 spacetime dimensions . Thus, we also need to generalize the
spinor results of this section to d # 4.

The treatment of fermions in Euclidean space is subtle . Here, we focus briefly
on the mathematics of fermions in d = 4 Euclidean dimensions, where the relevant space-

time symmetry group is SO(4) rather than SO(3,1). The two-dimensional representations of
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SO(3,1)=SL(2,C), denoted in this section by (%,O) and (0, %), respectively, are complex repre-
sentations that are related by hermitian conjugation. In contrast, the two-dimensional represen-
tations of SO(4)=SU(2)xSU(2), also denoted by (%, 0) and (0, %), respectively are independent
pseudo-real representations, i.e. not related by hermitian conjugation. A two-component spinor
notation can be formulated for fields that transform respectively under the (4,0) and (0, 3)
representations of SO(4). Details can be found in refs. [120][130}[131].

In Feynman diagram calculations, one can adopt the standard procedure for the Wick
rotation in order to evaluate the loop integrals in Euclidean space. We shall employ the standard
Fuclidean metric §*¥ in computing scalar products of four-vectors. Moreover, one can define
Euclidean sigma matrices, of, = (—ié, 0},) and o5 = (i&, o4), where 0% = 54 = laxo. In
this convention, the Wick-rotated versions of eqs. f are preserved [after making the
replacements g* — " and i€tk _y eijk‘l, with €!23% = €994 = +1] Further details of our
Euclidean space conventions are provided at the end of Appendix A.

The generalization of the spinor results of this section to d # 4, useful for dimensional
continuation regularization schemes, is discussed in Appendix B.2. In particular, the identities
of Appendix B.1 used to derive Fierz identities [cf. egs. (2.66)~(2.70) and (2.97)-(2.99)] and any
identities involving the four-dimensional Levi-Civita e-tensor are not valid unless p is a Lorentz
vector index in exactly four dimensions. In our treatment of two-component spinor identities in
d # 4 dimensions given in Appendix B.2, we take the Lorentz vector indices to formally run over
d values, whereas the undotted and dotted spinor indices continue to take on two possible values.
This is sufficient when used as a regularization procedure for divergent integrals that arise in
loop computations. However in generic d-dimensional field theories where d is an integer greater
than 4, the two-component spinor formalism of this review is no longer applicable. Suitable

methods for treating spinors in diverse spacetime dimensions and signatures are
briefly presented in Appendix G.3.

3 Properties of fermion fields

In this review, we refer to spin-1/2 particles as Majorana or Dirac fermions depending on the
nature of the global symmetry@ that governs the fermion Lagrangian and dictates the form of the
fermion mass terms. A Majorana fermion is a two-component massive field that is completely
neutral (i.e. a singlet with respect to the symmetry group) or transforms as a non-trivial real

representation of the symmetry group (cf. footnote [31)). A Dirac fermion consists of a pair

"These SO(4) representations transform as a doublet under one of the SU(2) groups and as a singlet under the
other SU(2) group.

18In practical computations of one-loop matrix elements, one can carry out all the sigma matrix algebra in
Minkowski space before Wick-rotating to Euclidean space in order to perform the loop integrals.

19 A subgroup of the global symmetry group may be gauged (and hence promoted to a local symmetry). Degrees
of freedom not associated with the gauged subgroup are typically referred to as flavor degrees of freedom.
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of two-component massive fields that are oppositely charged with respect to a conserved O(2)
symmetry. As shown in Section Dirac fermions arise when a multiplet of two-component
fermions transforms as a complex or pseudo-real representation of the symmetry groupm

The case of a massless fermion is special, as the absence of mass terms leads to an enhanced
global symmetry group. Each physical spin-1/2 zero-mass eigenstate is fundamentally a two-
component spinor. Thus, following the standard nomenclature used for massless neutrinos, it is

common to employ the term massless Weyl fermion to describe any massless spin-1/2 particlelﬂ

3.1 The two-component fermion field and spinor wave functions

We begin by describing the properties of a free neutral massive anticommuting spin-1/2 field,
1
2
describes a Majorana fermion . The free-field Lagrangian density is :

denoted &, (x), which transforms as (5,0) under the Lorentz group. The field &, therefore

& =igla" 0,6 — ym(gE+£1eh). (3.1.1)
On-shell, ¢ satisfies the free-field Dirac equation ,,,
i=pi3 — T
10" 0,8 = m&'™ . (3.1.2)

Consequently after quantization, &, can be expanded in a Fourier series |145]:

D 5, 5)a(P, s)e P 5 = )i
2/ 2m)3/2(2E,) /2 Lo (P, 8)a(F, s)e P 4 yo (P, s)a' (7, s)e™ } 7 (3.1.3)

where E, = (|p]? + m?)1/2, and the creation and annihilation operators a' and a satisfy anti-

commutation relations:
{a(P,s), a'(P',s)} = 03P — P")0ss (3.1.4)

and all other anticommutators vanish. It follows that

el(@) Z/ o) 3/2 2E )1/2 [ wL (5, 5)al (B, 5)e™ ™ + yl (B, s)a(, s)e 7| . (3.1.5)

We employ covariant normalization of the one-particle states, i.e., we act with one creation

operator on the vacuum with the following convention

1, s5) = (2m)*(2Ep) "2l (5. 5) |0) | (3.1.6)

29Majorana and Dirac fermions can also be described in terms of four-component Majorana and Dirac spinor
fields, as in Appendix G. However, keep in mind that the terms Majorana spinor and Dirac spinor are defined
strictly in the context of the four-component spinor formalism as in Appendix G.1, or in the more general context
of a d-dimensional spacetime as in Appendix G.3.

2! Two-component fermions are often called Weyl fermions, due to thelr association with the two-dimensional
spinor representations of the Lorentz group introduced by Weyl in refs. . It is now common practlce to
define a Weyl spinor as the left or right-handed projection of a four-component spinor [as in eq. (G.1.9)].
course, there is a one-to-one correspondence between these two definitions.
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so that (F, s|p”,s') = (2m)*(2Ep)63(F — P’)dss . Therefore,

It should be emphasized that &,(x) is an anticommuting spinor field, whereas x, and y, are
commuting two-component spinor wave functions. The anticommuting properties of the fields
are carried by the creation and annihilation operators.

Applying eq. (3.1.2) to eq. (3.1.3)), we find that the z, and y, satisfy momentum space
Dirac equations. These conditions can be written down in a number of equivalent ways:

(p-0) s = my™ (p-0)osy™ = maa | (3.1.9)
(p-0) oz’ = —mya | (p-7)%Pys = —ma'® | (3.1.10)
2 (po)yp = —my; , yg(p‘ﬁ)dﬁ = —ma® (3.1.11)
xL(p-E)dﬂ =my? Y (p0)up = mmg . (3.1.12)

Using the identities [(p-0)(p-7)]o” = p?d.” and [(p-&)(p-a)]dg = p? 5‘5‘5, one can check that

2

both z, and y, must satisfy the mass-shell condition, p? = m? (or equivalently, p° = E,). We

will later see that eqs. f are often useful for simplifying matrix elements.

The quantum number s labels the spin or helicity of the spin-1/2 fermion. We shall examine
two approaches for constructing the spin-1/2 states. In the first approach, we consider the
particle in its rest frame and quantize the spin along a fixed axis specified by the unit vector
§ = (sinfcos¢, sinfsin ¢, cosf) with polar angle § and azimuthal angle ¢ with respect to a
fixed z—axis@ The corresponding spin states will be called fixed-axis spin states. The relevant

basis of two-component spinors x, are eigenstates of %&'-é, ie.,

(3.1.13)

N[

08X, = SXs, s=d=

D=

Explicit forms for the two-component spinors x, and their properties are given in Appendix C.

The fixed-axis spin states described above are not very convenient for particles in relativistic
motion. Moreover, these states cannot be employed for massless particles since no rest frame
exists. Thus, a second approach is to consider helicity states and the corresponding basis of

two-component helicity spinors x, that are eigenstates of %5’ -p, i.e.,
38P X\ = Ay A==+l (3.1.14)

Here p is the unit vector in the direction of the three-momentum, with polar angle ¢ and

azimuthal angle ¢ with respect to a fixed z-axis. That is, the two-component helicity spinors

22Tn the literature, it is a common practice to choose § = 2. However in order to be somewhat more general,
we shall not assume this convention here.
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can be obtained from the fixed-axis spinors by replacing § by p and identifying 6 and ¢ as the
polar and azimuthal angles of p.

For fermions of mass m # 0, one can define a spin four-vector S*, which reduces to (0; §)
in the rest frame. For fixed-axis spin states, the unit three-vector § corresponds to the axis of
spin quantization. In an arbitrary reference frame, the spin four-vector satisfies S-p = 0 and
S-S = —1. Boosting from the rest frame to a frame where p* = (E, p) [using eq. (2.117))] yields

St = (ﬁ'g; 3+ W) . (3.1.15)
m m(E 4+ m)
If necessary, we shall write S#(§) to emphasize the dependence of S* on 8.

The spin four-vector for helicity states is defined by taking § = p. Eq. then

reduces to

g — %(ym; Ep) . (3.1.16)
In the non-relativistic limit, the spin four-vector for helicity states is S* ~ (0; p), as expected@
In the high energy limit (£ > m), S = p*/m + O(m/E). For a massless fermion, the spin
four-vector does not exist (as there is no rest frame). Nevertheless, one can obtain consistent
results by working with massive helicity states and taking the m — 0 limit at the end of the
computation. In this case, one can simply use S* = p*/m+ O(m/FE); in practical computations
the final result will be well-defined in the zero mass limit. In contrast, for massive fermions at
rest, the helicity state does not exist without reference to some particular boost direction as
noted in footnote 23

Using eq. with S% = (0; 8), two important formulae are obtained:

VpoS-c\/pog=mé&-§, \/pcS-o+\/poT=-—-mac-§. (3.1.17)
These results can also be derived directly by employing the explicit form for the spin vector S*

leq. (3.1.15)] and the results of egs. (2.108]) and (2.109).

The two-component spinor wave functions x and y can now be given explicitly in terms of
the x, defined in eq. . First, we note that eq. when evaluated in the rest frame
yields z1 = y! and 29 = 32, That is, as column vectors, z,(p = 0) = y'*(5 = 0) can be
expressed in general as some linear combination of the x, (s = :I:%) Hence, we may choose
zo(P = 0,5) = y'*(p = 0,s) = \/mxs, where the factor of \/m reflects the standard relativistic
normalization of the rest frame spin states. These wave functions can be boosted to an arbitrary
frame using eq. . The resulting undotted spinor wave functions are given byF_z‘-l

(P, s) = /PO Xy, (P, s) = —QSXT_S P, (3.1.18)
Ya(D,5) = 25\/P0 X_, y* (P, s) = xI/pT, (3.1.19)

23Gtrictly speaking, p is not defined in the rest frame. In practice, helicity states are defined in some moving
frame with momentum p. The rest frame is achieved by boosting in the direction of —p.

24Explicit forms for two-component spinor wave functions have been exhibited a number of times in the litera-
ture. For example, see refs. and Appendix I.1.
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and the dotted spinor wave functions are given by

2P, s) = —2s\/pTX_, ol (B,s) = xIvpa, (3.1.20)
$) = \V/PT X, b7, s) =2sx" _po, (3.1.21)

where \/p-o and /p-G are defined either by egs. (2.110) and (2.111) or by eqgs. (2.114) and
(2.115]), respectively (as mandated by the spinor index structure). Note that egs. (3.1.18)—
(3.1.21)) imply that the x and y spinors are related:

y(P, s) = 2s2(p, —s) y' (P, s) = 2521 (P, —s). (3.1.22)

The phase choices in egs. f are consistent with those employed for four-
component spinor wave functions [see Appendix G]. We again emphasize that in egs. f
(3.1.21)), one may either choose x, to be an eigenstate of & -3, where the spin is measured in the
rest frame along the quantization axis 8, or choose x, to be an eigenstate of &-p (in this case
we shall write s = \), which yields the helicity spinor wave functions.

The following equations can now be derived:

($-)* m(p, 5) = 25" (B 5) | (5-0)5 (B, 5) = —2570(B,s) . (3.1.23)
(S-0)55" (B.5) = ~259a(B.5) . (5-3)"ys(B,s) = 2s2'%(B,s) . (3.1.24)
(P, s)(s.a)ag = —2syl(B.s) | YL (B, 5)(S7)% =257 (F,s) . (3.1.25)
2l (B.9)(5-7) = 2597 (B s) . Y (B.8)(S-0),5 = —2s2l(Bis) . (3.1.26)

For example, using eq. (3.1.17) and the definitions above for z(p,s) and y'%(5,s), we find

(suppressing spinor indices),

VD0 S-Tx(P,s) =/p-0S-T\pox,=mFEx, =2smX,. (3.1.27)
Multiplying both sides of eq. (3.1.27)) by /p-@ and noting that \/p-a/p-6 = m, we end up with
ST x(p,s) =25/pT X, =2sy1 (P, s). (3.1.28)

All the results of eqs. (3.1.23)—(3.1.26]) can be derived in this manner.
The consistency of egs. (3.1.23))—(3.1.26)) can also be checked as follows. First, each of these

equations yields
(S-0)aa(S-7)% = =67, (8-7)%(5-0) 5 = =05, (3.1.29)

after noting that 4s% = 1 (for s = :l:%) From egs. 1) and 1' it follows that S-S = —

as required. Second, if one applies

(poS-T+S-0p7)” =2p-56,°, (3.1.30)
(pdS-o+Sapo) ﬁ—2p-55dﬁ, (3.1.31)

27



to eqs. (3.1.9)—(3.1.12)) and eqgs. (3.1.23)—(3.1.26)), it follows that p-S = 0.
It is useful to combine the results of egs. (3.1.9)—(3.1.12]) and eqs. (3.1.23)—(3.1.26)) as follows:

(pt — 287715“)52‘695,3( p,s) =0, (pp — 2smS )a JETB( p,s) = (3.1.32)
(P + 2smS") 7 ys (P, s) = 0, (P + 25mS),)0" yw (B.s) =0, (3.1.33)
(P, s)o 5(pﬂ —2smS,) =0, .%g(p, s)T 5(1)" —2smS*) =0, (3.1.34)
y* (P, s)o B(p“ +2smS,) =0, yl(ﬁ, s)o O‘B(p +2smS*) =0. (3.1.35)

Egs. (3.1.18)—(3.1.35) also apply to the helicity wave functions z(p, \) and y(p, A) simply by
replacing s with A and S*(8) [eq. (3.1.15))] with S*(p) [eq. (3.1.16))].
The above results are applicable only for massive fermions (where the spin four-vector S*

exists). We may treat the case of massless fermions directly by employing helicity spinors in
egs. (3.1.18)—(3.1.21). Putting F = |p] and m = 0, we easily obtain:

za(FN) = V2E (3 = M) xy, 27N = V2E (3 — )X, (3.1.36)
Ya(BLN) = V2E (3 +X)x_y, ¥ (BN = V2E (3 +A)xh, (3.1.37)
or equivalently,
(BN = V2E (3 - A)x_y, 2L (BN = V2E (3 — M, (3.1.38)
Y4B, \) = V2E (5 + ) xy yh(BA) = V2E (3 +0xT, . (3.1.39)
It follows that
(3 + ) z(P ) =0, (3 +N) (BN =0, (3.1.40)
(3 =N y@ N =0, (2 =N yi@ N =0. (3.1.41)

The significance of egs. and is clear; for massless fermions, only one helicity
component of z and y is non-zero. Applying this result to neutrinos, we find that massless
neutrinos are left-handed (A = —1/2), while antineutrinos are right-handed (A = +1/2).

Egs. and can also be derived by carefully taking the m — 0 limit of
eqs. and applied to the helicity wave functions z(p, A) and y(p, A) [i.e., replacing
s with A]. We then replace mS* with p*, which is the leading term in the limit of E > m.
Using the results of eqgs. and and dividing out by an overall factor of m (before
finally taking the m — 0 limit) reproduces eqgs. (3.1.40) and (3.1.41]).

Having defined explicit forms for the two-component spinor wave functions, we can now
write down the spin projection matrices. Noting that 2(1+2568)x, = 5(1+4ss')xs = dssXs
(since s, s’ = £1), one can write:

XXl =31+255-8)Y xxl =51+256-3) (3.1.42)

S/
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where at the second Step, we have employed the completeness relation given in eq. (C.1.21)).
Making use of eq. for -8, it follows that

2
Xsxh = <1 + nj«ﬁp-oS-aW) . (3.1.43)
Hence, with both spinor indices in the lowered position,
z(p, 8)zT (P, s) = \/po szl VP o
2s

— 4 |1+ 2 s Tyia) Vi

2
=1 [p-O' + sp'O'S'O'p~O':|

m
=1[p-o—2smS-o] . (3.1.44)

In the final step above, we simplified the product of three dot products by noting that p-S =0
implies that S-@ p-c = —p-7@ S-0. The other spin projection formulae for massive fermions can

be similarly derived. The complete set of such formulae is given belowﬁ

xa(ﬁ: S)xg(ﬁ; 8) - %( - 23mSM)UZB 5 (3145)

B, )y’ (B s) = 50 + 2smSH)7”, (3.1.46)
2a(P,5)y" (P, 5) = 3 (méaﬂ - 2s[S~ap-E]aﬁ) , (3.1.47)
Y@, 5)2l(B5) = 5 (mo®; + 258 T p-al*;) (3.1.48)

By taking the hermitian conjugate of the above results, one obtains an equivalent set of formulae,

1P, 8)a’ (P, s) = L(p" — 2smS")7," (3.1.49)
Ya (B, )y} (B, 5) = 3(pu + 2smS, )", (3.1.50)
va (. )2 (B5) = — 5 (mda + 25[S-7p 7]”) . (3.0151)

(B 8)y(Bls) = —3 (mé“B — 25[5-6p-a]‘5‘3) : (3.1.52)

For the case of massless spin-1/2 fermions, we must use helicity spinor wave functions. The

corresponding massless projection operators can be obtained directly from the explicit forms for
the two-component spinor wave functions given in eqs. (3.1.36))—(3.1.39)):

2@ NTLFN) = (5~ N oys, 1B N2 (B N) = (3~ Npa®, (3.1.53)
Y@ Ny BN = (5 + N, YalB VYL BN = (5 + Npgs, (3.1.54)
2a(B, Ny’ (B, ) = 0, Yo (B, NP (F,\) = 0, (3.1.55)
Y (BN (B N) = 0, BNy BN = 0. (3.1.56)

25Similar formulae for the products of two-component spinor wave functions are given in ref. \\
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As a check, one can verify that the above results follow from eqgs. —, by replacing
s with A, setting mS* = p*, and taking the m — 0 limit at the end of the computation.
Having listed the projection operators for definite spin projection or helicity, we may now
sum over spins to derive the spin sum identities. These arise when computing squared matrix
elements for unpolarized scattering and decay. There are only four basic identities, but for
convenience we list each of them with the two-index height permutations that can occur in
squared amplitudes by following the rules given in this paper. The results can be derived by
inspection of the spin projection operators, since summing over s = :l:% simply removes all terms

linear in the spin four-vector S*.

> el s)al(Bs) = poy;, > al (P, s)a’ (P, s) = p-a®,  (3.1.57)
> Yt s)y’ (B, s) = p-o*?, > a5yl (B,s) = po,y,  (3.158)
Y wa(B.5)y’ (B, s) = mda” > ya(B,9)a" (B, s) = —md.”,  (3.1.59)
>y, S)x}g(ﬁ, s) =md®y, > 2t(p, s)y;(ﬁ, s)=-—md%;.  (3.1.60)

These results are applicable both to spin sums and helicity sums, and hold for both massive and
massless spin-1/2 fermions.

One can generalize the above massive and massless projection operators by considering
products of two-component spinor wave functions, where the spin or helicity of each spinor can
be different. These are the Bouchiat-Michel formulae , which are derived in Appendix H.3.

3.2 Fermion mass diagonalization in a general theory

Consider a collection of free anticommuting two-component spin-1/2 fields, ém-(:r), which trans-

1

form as (5,0) fields under the Lorentz group. Here, « is the spinor index, and ¢ labels the

distinct fields of the collection. The free-field Lagrangian is given by (e.g., see ref. ):
L =i€"519,E — IMIEE; — LM €N ET (3.2.1)

where

M;; = (MY)*, (3.2.2)

Note that M is a complex symmetric matrix, since the product of anticommuting two-component
fields satisfies éléj = fjéz [with the spinor contraction rule according to eq. (2.37))].

In eq. , we have employed the U(V)-covariant tensor calculus for “flavor-
tensors” labeled by the flavor indices ¢ and j. Each left-handed (%, 0) fermion always has an
index with the opposite height of the corresponding right-handed (0, %) fermion. Raised indices

can only be contracted with lowered indices and vice versa. Flipping the heights of all flavor
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indices of an object corresponds to complex conjugation, as in eq. (3.2.2)). In particular, we

generalize eq. (2.19)) as followsF_Hl
Pl = Wai) (3.2.3)

If M = 0, then the free-field Lagrangian is invariant under a global U(NN) symmetry. That is,

for a unitary matrix U, with matrix elements U;/, and its hermitian conjugate defined by:
N = (U =07, (3.2.4)
with UF(UT)7 = 6{ , the massless free-field Lagrangian is invariant under the transformations:
& — UAE;, £ — Uél. (3.2.5)

For M # 0, eq. remains formally invariant under the global U(NN)-symmetry if M acts
as a spurion field with the appropriate tensorial transformation law, M% —s Ut,UT, M.

Expressions consisting of flavor-vectors and second-rank flavor-tensors have natural inter-
pretations as products of vectors and matrices. As a result, the flavor indices can be suppressed,
and the resulting expressions can be written in an index-free matrix notation. To accomplish
this, one must first assign a particular flavor index structure to the matrices that will appear in
the index-free expression. For example, given the second-rank flavor-tensors introduced above,
we define the matrix elements of M to be M%* and the matrix elements of U to be U;7. Note
that (UT);7 has the same flavor-index structure as Um

As a simple example, in an index-free notation eq. reads: é — U é and éT — é’TUT.

A slightly more complicated example is exhibited below:
Uty MM = (U, I M* = (U M)*, (3.2.6)

where we have used (UT)T = U* in obtaining the final result. That is, in matrix notation with
suppressed indices, U, M* corresponds to the matrix U*M. Thus, in an index-free notation,
the tensorial transformation law for the spurion field M is given by M —s U*MUT.

We can diagonalize the mass matrix M and rewrite the Lagrangian in terms of mass eigen-

states £,; and (real non-negative) masses m;. To do this, we introduce a unitary matrix €2,

& = Q¢ (3.2.7)

2In the case at hand, we have more specifically chosen all of the left-handed fermions to have lowered flavor
indices, which implies that all of the right-handed fermions have raised flavor indices. However, in cases where
a subset of left-handed fermions transform according to some representation R of a (global) symmetry and a
different subset of left-handed fermions transform according to the conjugate representation R*, it is often more
convenient to employ a raised flavor index for the latter subset of left-handed fields.

2"The reader should not be tempted to substitute U' for U in eq. , as the resulting flavor-index structure
for U and U' would then disagree with the original flavor-index assignments.
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and demand that M¥ Qiije = myokt (no sum over k), where the my, are real and non-negative.

Equivalently, in matrix notation with suppressed indices, é = Q¢ an
QM Q = m = diag(my, my, ...). (3.2.8)

This is the Takagi diagonalization of an arbitrary complex symmetric matrix, which
is discussed in more detail in Appendix D.2. To compute the values of the diagonal elements
of m, note that

QTMTMQ = m?. (3.2.9)

Indeed MTM is hermitian and thus it can be diagonalized by a unitary matrix. Hence, the
elements of the diagonal matrix m are the non-negative square roots of the corresponding
eigenvalues of MTM. However, in cases where MTM has degenerate eigenvalues, eq. (3.2.9)
cannot be employed to determine the unitary matrix {2 that satisfies eq. . A more general
technique for determining ) that works in all cases is given in Appendix D.2.

In terms of the mass eigenstates,
& = ielgha,6 — Imi(gi& + €hiety | (3.2.10)

where the sum over ¢ is implicit. If the m; # 0 are non-degenerate, then the corresponding field
&; describes a neutral Majorana fermion consisting of two on-shell real degrees of freedom. The
case of mass degeneracies will be treated explicitly below. If m; = 0, then we shall denote the
corresponding field &; as a massless Weyl fermion [15].

Each &,; can now be expanded in a Fourier series, exactly as in eq. :

d3ﬁ — — —ip.l' — T — ip~x
sam=§;/@mw@EyNFMn@mnw3 + yalB.s)al (B, 5)e" | . (3.2.11)
s pi

where Ep; = (|p]? + m?)'/2, and the creation and annihilation operators, aZT and a; satisfy

anticommutation relations:
{ai(P,s),al(B’,s)} = 0°(F — P)0ssrij - (3.2.12)

We employ covariant normalization of the one-particle states, i.e., we act with one creation

operator on the vacuum with the following convention
5., 5) = (2m)¥2(2E:) " 2al(F, 5) |0) | (3.2.13)

so that <ﬁ: i, | ﬁ/aja S,> = (2W>3(2Ep1)53(ﬁ7 ﬁ,)éij(sss“

28In general, the m; are not the eigenvalues of M. Rather, they are the singular values of the matrix M, which
are defined to be the non-negative square roots of the eigenvalues of M fM. See Appendix D for further details.
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In the case of two mass-degenerate massive fermion fields, m; = mo # 0, eq. (3.2.10)
possesses a global internal O(2) flavor symmetry, & — O;9¢; (i = 1,2), where OTO = Tayo.

Corresponding to this symmetry is a conserved hermitian Noether current:
JH =i(eMhare, — e%are)) (3.2.14)

with a corresponding conserved charge, @ = [ J' Od3z. In the &-& basis, the Noether current is

off-diagonal. However, it is convenient to define a new basis of fields:

i L
X:\/?<fl+§)7 —\/>

With respect to the x—n basis, the Noether current is diagonal:

(&1 —i&). (3.2.15)

JH =Xty —niahy. (3.2.16)

That is, the fermions y and 7 are eigenstates of the charge operator () with corresponding
eigenvalues £1. In terms of the fermion fields of definite charge, the free-field fermion Lagrangian
leq. (3.2.10) with i = 1,2 and my = mg = m] is given by F_-gl

£ = iXTE“ﬁux + inTE“ﬁun —m(xn+x'n"). (3.2.17)
On-shell, x and n satisfy the free-field Dirac equations:
it 0ux — mn’ =0, iot0,n — mx' =0. (3.2.18)

In the y—n basis, the global internal SO(2) symmetry (which is continuously connected to the
identity) is realized as the U(1) symmetry x — ey and n — e~%, where 6 is the rotation
angle that defines the SO(2) rotation matrix.

Together, y and n' constitute a single Dirac fermion. We can then write:

3= ' ‘
9= / (QW)g/f(ﬁEp)l/Q (205, 5)a(B.5)e ™7 + ya (B 56T (5, 5)e7 |, (3.2.19)

d3_’ = = —ip-x = = ip-T
Z/ REEICTRIE [xa(p, $)b(B, s)e P T 4 yo (P, s)al (B, s)e™ ] , (3.2.20)

where Ep = (|p]> + m 2)1/2 the creation and annihilation operators, af, b, a and b satisfy

anticommutation relations:

{a(B.5),a'(F", ")} = {b(B. 5),0"(B",s')} = (B~ B")dss0 (3.2.21)

29 Although the fermion mass matrix is not diagonal in the -7 basis, this is not an obstacle to the subsequent
analysis, as one only needs a diagonal squared-mass matrix, MM, to ensure that the denominators of propagators
are diagonal. Eq. (3.2.15) provides the explicit Takagi diagonalization of the Dirac fermion matrix (9}). See

Appendix D.3 for the mathematical interpretation of this special case.
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and all other anticommutators vanish. We now must distinguish between two types of one-

particle states, which we can call fermion (F) and antifermion (F):

1B, 5: F) = (2m)¥*(2E,) /%! (5, 5) |0) . B, F) = (2m)*(2E,) /20 (5,5) 0) . (3.2.22)

Note that both n(x) and xf(z) can create |p, s; F) from the vacuum, while 5 (z) and x(z) can

create | D, S;F>. The one-particle wave functions are given by:

(0 Xa(2) |, 5 F) = 20 (B, s)e P, (O n () |B, 5 F) = yL (B, s)e ™, (3.2.23)
(F; 5, 5| 1a(2) [0) = ya (B, 5)e™" (F; 5, s| XL (2)0) = 2l (5, s)e™ ™, (3.2.24)
(0] 7a(@) |5, 5: F) = wa(F, s)e ™77, (0| x5 () |7, s: F) = yL(B.s)e ™", (3.2.25)
(F: . 5| Xa(2) [0) = ya (B, 5)e™ ", (F; 5, s|nl(2)[0) = 2l (B, s)e™ ™, (3.2.26)

and the eight other single-particle matrix elements vanish.

More generally, consider a collection of free anticommuting charged Dirac fermions, which
can be represented by pairs of two-component fields Xai(x), 7% (z). These fields transform in
(possibly reducible) representations of the unbroken symmetry group that are conjugates of each
other. This accounts for the opposite flavor index heights of ¥; and 7’ [cf. footnote . The
free-field Lagrangian is given by

L = ix 10X + oo’ — My — MR (3.2.27)
where M is an arbitrary complex matrix with matrix elements M ij, and
M = (M%)*. (3.2.28)

If M = 0, then the free-field Lagrangian is invariant under a global U(N)xU(N) symmetry.
That is, for a pair of unitary matrices Uy, and Up, with matrix elements given respectively by

(UL)i? and (Ug)‘;, and the corresponding hermitian conjugates defined by:
(UD' = [(Un)d) = (Un)',  UR:=[Un)]" = (UR) (3229)

the massless free-field Lagrangian is invariant under the transformations:

i — UIx;, X — U)X, i — (Ur) . 0l — UR)A). (3.2.30)

For M # 0, eq. remains formally invariant under the U(N)xU(N) symmetry if M acts as
a spurion field with the appropriate tensorial transformation law, M?; — (Up)'(Ug);* M*y
(or equivalently, in an index-free matrix notation with suppressed flavor indices, M — U; M U]T_z).

In order to diagonalize the mass matrix, we introduce the mass eigenstates x; and n° and

unitary matrices L and R, with matrix elements given respectively by L;® and R, such that
& _ 1k . pto ok
Xi = Li" Xk, 0= Ryn", (3.2.31)
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and demand that M ijLikRj ¢ = mkdéf (no sum over k), where the my, are real and non-negative.

Equivalently, in matrix notation with suppressed indices, x = Ly, 7 = Rn and
LTMR = m = diag(my,ma, ...), (3.2.32)

with the m; real and non-negative (cf. footnote . The singular value decomposition of linear
algebra, discussed more fully in Appendix D.1, states that for any complex matrix M, unitary
matrices L and R exist such that eq. (3.2.32) is satisfied. It then follows that:

LT (MM")L* = RI(MTM)R = m?. (3.2.33)

That is, since MM and MTM are both hermitian, they can be diagonalized by unitary matrices.
The diagonal elements of m are therefore the non-negative square roots of the corresponding

eigenvalues of MM (or equivalently, MTM). In terms of the mass eigenstates,

L = iXTiE“auxi + inf&“@uni - mi(xmi + XTin;-f) . (3.2.34)

The mass matrix now consists of 2 x 2 blocks (721 "81) along the diagonal. More importantly,

the squared-mass matrix is diagonal with doubly degenerate entries m? that will appear in the
denominators of the propagators of the theory. For m; # 0, each ;7' pair describes a charged
Dirac fermion consisting of four on-shell real degrees of freedomm In addition, eq.
yields an even number of massless Weyl fermions.

Given an arbitrary collection of two-component left-handed (3, 0) fermions, the distinction
between Majorana and Dirac fermions depends on whether the Lagrangian is invariant under a
global (or local) continuous symmetry group G, and the corresponding multiplet structure of the
fermion fields . If no such continuous symmetry exist, then the fermion mass eigenstates
will consist of Majorana fermions. If the Lagrangian is invariant under a symmetry group G,
then the collection of two-component fermions will break up into a sum of multiplets that
transform irreducibly under GG. As described in Appendix E, a representation R can be either
a real, pseudo-real, or complex representation of G. If a multiplet transforms under a real
representation of GG, then the corresponding fermion mass eigenstates are Majorana fermionslfl If
a multiplet transforms under a complex representation of G, then the corresponding fermion mass
eigenstates are Dirac fermions. In particular [as noted above eq. ], if the x; transform

under the representation R, then the 1’ transform under the conjugate representation R*.

300f course, one could always choose instead to treat the Dirac fermions in a non-charge-eigenstate basis
with a fully diagonalized mass matrix, as in eq. . Inverting eq. for each Dirac fermion yields
€1 = (i +1")/V2 and &; = i(n; — x')/V2. However, it is rarely, if ever, convenient to do so; practical
calculations only require that the squared-mass matrix MM is diagonal, and it is of course more convenient to
employ fields that carry well-defined charges.

31This is a slight generalization of the more restrictive definition that requires Majorana fermions to transform
trivially under the group G. Gluinos, which transform under the (real) adjoint representation of the color SU(3)
group, are Majorana fermions according to our more general definition.
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The case where a multiplet of two-component left-handed fermions transform under a
pseudo-real representation of G has not been explicitly treated above. The simplest exam-
ple of this kind is a model of 2n multiplets (or “flavors”) of two-component SU(2)—doublet|f|
fermions, 1[1m (where ¢ = 1,2,...,2n labels the flavor index and a labels the SU(2) doublet
index). The free-field Lagrangian is given by:

L = 1T 1) — L (Mijea%aqﬁjb n h.c.) , (3.2.35)

where €% is the antisymmetric SU(2)-invariant tensor, defined such that €' = —! = +1. As
e“bzﬁmd}jb is antisymmetric under the interchange of flavor indices 7 and j, it follows that M is
a complex antisymmetric matrix. To identify the fermion mass eigenstates 14, we introduce a

unitary matrix U (with matrix elements U;/) such that @ia = Uy 1jq and demand that:

T _ — 1 0 m 0 mo 0 my
U]\JU—N_dlaug{<_m1 o)\ m 0)° A\, 0 , (3.2.36)

where IN is written in block-diagonal form consisting of 2 x 2 matrix blocks appearing along the
diagonal, and the m; are real and non-negative. Eq. (3.2.36)) corresponds to the reduction of a
complex antisymmetric matrix to its real normal form [151], which is discussed in more detail

in Appendix D.4. In order to compute the my, we first note that

UTMTMU = diag(m?, m?, m3, m2, ..., m2, m?). (3.2.37)

no n

Hence, the m; are the non-negative square roots of the corresponding eigenvalues of M fAr.
Since the dimension of the doublet representation of SU(2) provides an additional degeneracy
factor of 2, eq. (3.2.37)) implies that the mass spectrum consists of 2n pairs of mass-degenerate

two-component fermions, which are equivalent to 2n Dirac fermions. In particular,
2n n
2 =3 W, — S (mie%m_l,aw,b n h.c.) . (3.2.38)
i=1 i=1
In the general case of a pseudo-real representation R (of dimension dg), the SU(2)-invariant

e-tensor is replaced by a more general dp x dp unitary antisymmetric matrix, C' [defined in
eq. (E.1.9)]. Thus, the analysis above can be repeated virtually unchanged. By defining

XiaE¢2i—1,aa niazcabwm’b’ i:1,2,...,n; a:1,2,...,dR, (3239)

with an implicit sum over the repeated index b, the resulting Lagrangian given by

n
Z = Z X195 0y X i + i), T D' — m (Xm??m + XTMUZT@> , (3.2.40)
i=1

32The doublet representation of SU(2) is pseudo-real.
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describes a free field theory of ndr Dirac fermions [cf. eq. ] Therefore, if a multiplet of
two-component left-handed fermions transforms under a pseudo-real representation of G, then
the corresponding fermion mass eigenstates are Dirac fermions . If eq. contains
an odd number of pseudo-real fermion multiplets, then the (antisymmetric) mass matrix M is
odd-dimensional and thus has an odd number of zero eigenvalues [according to eq. ] But
as dr must be even, it follows that the pseudo-real fermion multiplet contains an even number
of massless Weyl fermions.

In conclusion, the mass diagonalization procedure of an arbitrary field theory of fermions
yields (in general) a set of massless Weyl fermions, a set of massive neutral Majorana fermions
[as in eq. (3.2.10])], and a set of massive charged Dirac fermions [as in eq. (3.2.34])]. The Feynman
rules for these mass eigenstate two-component fermion fields are given in Section [4]

For completeness, we review the squared-mass matrix diagonalization procedure for scalar
fields. First, consider a collection of free commuting real spin-0 fields, @;(x), where the flavor

index i labels the distinct scalar fields of the collection. The free-field Lagrangian is given byP|
& = 50ui0" i — sM50i0; (3.2.41)

where M? is a real symmetric matrix. We diagonalize the scalar squared-mass matrix by
introducing mass eigenstates ¢; and the orthogonal matrix ) such that ¢; = Q;j¢;, with
ijQikQﬂ = miékg (no sum over k). In matrix form,

QTM?Q = m? = diag(m?,m2,...), (3.2.42)
where the squared-mass eigenvalues mz are reallg_zl This is the standard diagonalization problem
for a real symmetric matrix.

Next, consider a collection of free commuting complex spin-0 fields, <i>z(ac) For complex
fields, we follow the conventions for flavor indices enunciated below eq. e.g. & = (9;)1].
The free-field Lagrangian is given by

Z = 9,00"D; — (M?)' ;0,07 (3.2.43)

where M? is an hermitian matrix [i.e., (M?)’; = (M?);" in the notation of eq. (3.2.29)].
We diagonalize the scalar squared-mass matrix by introducing mass eigenstates ®; and the
unitary matrix W such that ®; = W;*®, (and &' = Wi,®F), with (M%) WiFWi, = m26E (no

sum over k). In matrix form,
WIM?W = m? = diag(m?,m3,...). (3.2.44)

where the squared-mass eigenvalues mi are real (cf. footnote . This is the standard diago-

nalization problem for an hermitian matrix.

33Since the scalar fields are real, there is no need to distinguish between raised and lowered flavor indices.
341f the vacuum corresponds to a local minimum (or flat direction) of the scalar potential, then the squared-mass
eigenvalues of M? are real and non-negative.
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4 Feynman rules with two-component spinors

In order to systematically perform perturbative calculations using two-component spinors, we
present the basic Feynman rules. The Feynman rules for the Standard Model (and its see-
saw extension) and the MSSM (including possible R-parity-violating interactions) are given in

Appendices J, K and L. Feynman rules for two-component spinors have also been treated in

refs. [50,[107,[110].

4.1 External fermion and boson rules

Consider a general theory, for which we may assume that the mass matrix for fermions has been
diagonalized as discussed in Section The rules for assigning two-component external state

spinors are then as follows:

e TFor an initial state (incoming) left-handed (3, 0) fermion:
e For an initial state (incoming) right-handed (0, 3) fermion: y!
e For a final state (outgoing) left-handed (3, 0) fermion: zf

e Tor a final state (outgoing) right-handed (0, ) fermion: y

where we have suppressed the momentum and spin arguments of the spinor wave functions.

These rules are summarized in the mnemonic diagram of Fig.

L (},0) fermion

X xT

Initial State Final State

R (0,1) fermion

Figure 4.1.1: The external wave function spinors should be assigned as indicated here, for
initial state and final state left-handed (%,0) and right-handed (0, §) fermions.

In general, the two-component external state fermion wave functions are distinguished by
their Lorentz group transformation properties, rather than by their particle or antiparticle status
as in four-component Feynman rules. This helps to explain why two-component notation is

especially convenient for (i) theories with Majorana particles, in which there is no fundamental
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distinction between particles and antiparticles, and (ii) theories like the Standard Model and
MSSM in which the left and right-handed fermions transform under different representations of
the gauge group and (iii) problems with polarized particle beams.

In contrast to four-component Feynman rules (given in Appendix G.5), the direction of
the arrow does not correspond to the flow of charge or fermion number. The two-component

Feynman rules for external fermion lines simply correspond to the formulae for the one-particle

wave functions exhibited in egs. (3.1.7) and (3.1.8) [with the convention that |p,s) is an initial

state fermion and (P, s| is a final state fermion]|. In particular, the arrows indicate the spinor
index structure, with fields of undotted indices flowing into any vertex and fields of dotted
indices flowing out of any vertex.

The rules above apply to any mass eigenstate two-component fermion external wave func-
tions. It is noteworthy that the same rules apply for the two-component fermions governed by
the Lagrangians of eq. [Majorana] and egs. (3.2.34) or (3.2.40|) [Dirac]|.

The corresponding rules for external boson lines are well-known (see, e.g ref. [115]).

e For an initial state (incoming) or final state (outgoing) spin-0 boson : 1
e For an initial state (incoming) spin-1 boson of momentum & and helicity A : (K, N
e For a final state (outgoing) spin-1 boson of momentum k and helicity A : et (E , A

The explicit form of the helicity £1 (massless or massive) spin-1 polarization vector e is given
in eq. ([.2.41)). The helicity zero massive spin-1 polarization vector is given in eq. ([.2.43)).

4.2 Propagators

Next we turn to the subject of fermion propagators for two-component fermions. A derivation of
the two-component fermion propagators using path integral techniques is given in Appendix F.
Here, we will follow the more elementary approach typically given in an initial textbook treat-
ment of quantum field theory.

Fermion propagators are the Fourier transforms of the free-field vacuum expectation values
of time-ordered products of two fermion fields. They are obtained by inserting the free-field
expansion of the two-component fermion field and evaluating the spin sums using the formulae
given in eqs. and . For the case of a single neutral two-component fermion field
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Figure 4.2.1: Feynman rules for propagator lines of a neutral two-component fermion with
mass m. (For simplicity, the +ie terms in the denominators are omitted in all propagator rules.)

&(z) of mass m, egs. (3.2.11)) and (3.2.12)) yield [50,[107,[109}[110}[145/[152):

f _ ‘ 5 )zt (F.s) — : .
(0] Tga(x)fﬂ.(y) 0)pr = 2 —m2 +ie ; Ta(P, 3)375(17; s) = mp'aaﬁa (4.2.1)

O1TE (@) () 0 = s Dy (B9 (Bos) =

- pT¥ (422

Pomitiel " ( )
() et N e )l (Bs) = mo®,

<0’ T§ (x)éﬁ(y) ’0>FT p2 o m2 1+ e ES: Yy (pa S).’L'ﬁ(p, 8) pg _ mQ +ie mao B8 (423)

0| Tea @ (1) ) pr = ———— 3 20l 8)y° (5. ) L st (42.4)

p? —m? +ie T P2 —m?+ie

where FT indicates the Fourier transform from position to momentum spaceﬂ These results
have a clear diagrammatic representation, as shown in Fig. Note that the direction of the
momentum flow p* here is determined by the creation operator that appears in the evaluation
of the free-field propagator. Arrows on fermion lines always run away from dotted indices at a
vertex and toward undotted indices at a vertex.

There are clearly two types of fermion propagators. The first type preserves the direction of
arrows, so it has one dotted and one undotted index. For this type of propagator, it is convenient
to establish a convention where p* in the diagram is defined to be the momentum flowing in the
direction of the arrow on the fermion propagator. With this convention, the two rules above for
propagators of the first type can be summarized by one rule, as shown in Fig. Here the

choice of the ¢ or the & version of the rule is uniquely determined by the height of the indices

35The Fourier transform of a translationally invariant function f(z,y) = f(z — y) is given by

~

4 . ~ .
fen) = [ GE T where )= [ d'e e

~

In the notation of the text above, f(z,y)pr = f(p).
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p > ip-O'aB —Z'p-EBO‘

or
B «

p2—m2 — p2—m2

Figure 4.2.2: This rule summarizes the results of both Figs. |4.2.1(a) and (b) for a neutral
two-component fermion with mass m.

on the vertex to which the propagator is connectedﬂ These heights should always be chosen
so that they are contracted as in eq. (2.37)). It should be noted that in diagrams (a) and (b)
of Fig. [£.2.1] as drawn, the indices on the o and & read from right to left. In particular, the
Feynman rules for the propagator can be employed with the spinor indices suppressed provided
that the arrow-preserving propagator lines are traversed in the direction parallel [antiparallel]
to the arrowed line segment for the & [o] version of the rule, respectively.

The second type of propagator shown in diagrams (c) and (d) of Fig. does not preserve
the direction of arrows, and corresponds to an odd number of mass insertions. The indices on §¢ B
and 6,” are staggered as shown to indicate that & and a are to be contracted with expressions
to the left, while ﬁ and [ are to be contracted with expressions to the right, in accord with
eq. (237 7]

Starting with massless fermion propagators, one can also derive the massive fermion propa-
gators by employing mass insertions as interaction vertices, as shown in Fig. By summing
up an infinite chain of such mass insertions between massless fermion propagators, one can
reproduce the massive fermion propagators of both types.

By o P a

—imdaﬁ —imédﬂ-

Figure 4.2.3: Fermion mass insertions (indicated by the crosses) can be treated as a type of
interaction vertex, using the Feynman rules shown here.

The above results for the propagator of a Majorana fermion can be generalized to a mul-
tiplet of mass eigenstate Majorana fermions, {,q(z) [such as a color octet of gluinos|, which
transforms as a real representation R of a (gauge or flavor) group G (where a = 1,2,...,dg for
a representation of dimension dg). In this case, the Feynman graphs given in Figs.
are modified simply by specifying a group index a and b at either end of the propagator line.

The corresponding Feynman rules then include an additional Kronecker delta factor in the group

36The second form of the rule in Fig. [4.2.2| arises when one flips diagram (b) of Fig. m around by a 180°
rotation (about an axis perpendicular to the plane of the diagram), and then relabels p — —p, & — ﬁ and 8 — a.

3TAs in Fig. alternative and equivalent versions of the rules corresponding to diagrams (c) and (d) of
Fig. can be given for which the indices on the Kronecker deltas are staggered as 6”5 and 63*. These versions
correspond to flipping the two respective diagrams by 180° and relabeling the indices & — [3 and 8 — a.
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indices. In particular, if we associate the index a with the spinor indices o, & and the index b
with the spinor indices 3, 3, then the rules exhibited in Fig. a) and (b) would include the

following Kronecker delta factors:
(a) o2, (b) dy (4.2.5)
and the factors of m in the rules exhibited in Fig. |4.2.1{c) and (d) would be replaced by

(¢) 62mesY = mao?, (d) 65mead = madap (4.2.6)

(with no sum over the repeated index a), where m®® and m.q = m®

are diagonal matrices with
real non-negative diagonal elements m.. Here, we have introduced the separate symbol m.; in
order to maintain the convention that two repeated group indices are summed when one index
is raised and one index is lowered. Of course, if the Lagrangian is invariant under the symmetry
group G, then a multiplet of Majorana fermions corresponding to an irreducible representation
R has a common mass m = m,,.

It is convenient to treat separately the case of charged massive fermions. Consider a charged

Dirac fermion of mass m, which is described by a pair of two-component fields x(x) and n(x)

[cf. eq. (3.2.17)]. Using the free-field expansions [egs. (3.2.19) and (3.2.20)] and the spin sums
[egs. (3.1.57)—(3.1.60])], the two-component free-field propagators are obtained:

1

O X0 O)er = O T} ) O)er = oy (420)
O T @ 0) O = 01 TH @) O = 0™, (429
01X ) [0 = O Tha @) Oy = —mda® (1.29)
Q1T @ () O = O TH @) Oher = g mé®s. (4210)

For all other combinations of fermion bilinears, the corresponding two-point functions vanish.
These results again have a simple diagrammatic representation, as shown in Fig. Note that
for Dirac fermions, the propagators with opposing arrows (proportional to a mass) necessarily
change the identity (x or 1) of the two-component fermion, while the single-arrow propagators
are diagonal in the fields. In processes involving such a charged fermion, one must of course
distinguish between the y and 7 fields.

The above results for the propagator of a Dirac fermion can be generalized to a multiplet of
mass eigenstate Dirac fermions, x,,, 773, which transform under a (gauge or flavor) group G. In
this case, the Feynman graphs given in Fig. are modified simply by specifying a group index
i and j at either end of the propagator line. The corresponding Feynman rules then include an

additional Kronecker delta factor in the group indices. In particular, if we associate the group
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Figure 4.2.4: Feynman rules for propagator lines of a pair of charged two-component fermions
with a Dirac mass m. As in Fig. the direction of the momentum is taken to flow from the
dotted to the undotted index in diagrams (a) and (b).

index ¢ with the spinor indices «, & and the index j with the spinor indices 3, B, then the rules

exhibited in Fig. [4.2.4(a) and (b) would include the following Kronecker delta factors:

(a) & (b) &

7

(4.2.11)
and the factors of m in the rules exhibited in Fig. [.2.4|c) and (d) would be replaced by

(c) 6%my"o) = mzéf , (d) 5§m£n6}1 = mlé; , (4.2.12)

where m?,, and m," = m*

n are diagonal matrices with real non-negative diagonal elements my,
and there is no sum over the repeated index i. (Here, we have introduced the separate symbol
my™ in order to maintain the convention that two repeated group indices are summed when one
index is raised and one index is lowered.) As before, if the Lagrangian is invariant under the
symmetry group G, then an irreducible multiplet of Dirac fermions has a common mass m = m;.

For completeness, we exhibit in Fig. the Feynman rules for the propagators of the
(neutral or charged) scalar boson and gauge boson in the R¢ gauge, with gauge parameter £ .

1

2?2 —m2
—1i pt'p” b
VAV VAVAVAV - g — (1 =& ———— | §¢
i, a v,b p2 —m? I ( §)p2 —&m?

Figure 4.2.5: Feynman rules for the (neutral or charged) scalar and gauge boson propagators,
in the R¢ gauge, where p# is the propagating four-momentum. In the gauge boson propagator,
& = 1 defines the 't Hooft-Feynman gauge, £ = 0 defines the Landau gauge, and £ — oo defines
the unitary gauge. For the propagation of a non-abelian gauge boson, one must also specify the
adjoint representation indices a, b.
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4.3 Fermion interactions with bosons

We next discuss the interaction vertices for fermions with bosons. Renormalizable Lorentz-
invariant interactions involving fermions must consist of bilinears in the fermion fields, which
transform as a Lorentz scalar or vector, coupled to the appropriate bosonic scalar or vector field
to make an overall Lorentz scalar quantity.

Let us write all of the two-component left-handed (%, 0) fermions of the theory as 1/31, where
i runs over all of the gauge group representation and flavor degrees of freedom. In general, the
(%, 0)-fermion fields @Zz consist of Majorana fermions éi, and Dirac fermion pairs x; and 7" after
mass terms (both explicit and coming from spontaneous symmetry breaking) are taken into
account. Likewise, consider a multiplet of scalar fields <;31, where I runs over all of the gauge
group representation and flavor degrees of freedom. In general, the scalar fields QZB] consist of

real scalar fields ¢; and pairs of complex scalar fields ®; and &/ = (®;)!. In matrix form,

(4.3.1)

<
Il
oA
RS
Il

o KB 6>

7
By dividing up the fermions into Majorana and Dirac fermions and the spin-zero fields into real
and complex scalars, we are assuming implicitly that some of the indices I and 7 correspond to

states of a definite (global) U(1)-charge (denoted in the following by ¢; and g;, respectively).
The most general set of Yukawa interactions of the scalar fields with a pair of fermion fields

is then given by:

L = — Y IFG by, — LV ptig TR (4.3.2)
where ijk = (ijk)* is symmetric under the interchange of j and k. We have suppressed the

spinor indices; the product of two-component spinors is always performed according to the index

convention indicated in eq. (2.37). The Yukawa Lagrangian [eq. (4.3.2))] must be invariant under:

G—&,  Xi— €%, it e g g, B e, O e 1fPT
(4.3.3)
where the ¢; are the U(1)-charges of the corresponding Dirac fermions and the ¢; are the U(1)-

charges of the corresponding complex scalars. Consequently, the form of the Y13k is constrained:

YUk =0, unless q7+ ¢ +qr.=0. (4.3.4)

Of course, any other conserved symmetries will impose additional selection rules on the Yukawa
couplings Y17k,

The hatted fields are the interaction eigenstate fields. However, in general the mass eigen-
states can be different, as discussed in Section 3.2 The computation of matrix elements for

physical processes is more conveniently done in terms of the propagating mass eigenstate fields.
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Figure 4.3.1: Feynman rules for Yukawa couplings of scalars to two-component fermions in
a general field theory. The choice of which rule to use depends on how the vertex connects to
the rest of the amplitude. When indices are suppressed, the spinor index part is always just
proportional to the identity matrix.

The mass eigenstate basis v is related to the interaction eigenstate basis 1) by a unitary rotation

U;? on the flavor indices. In matrix form:

gi Qij 0 0 fj
b=|x, | =Uv=|0 L7 0 X | (4.3.5)
i’ 0 0 Ry)\W

where Q, L, and R are constructed as described previously in Section [see egs. (3.2.8)) and
(3.2.32)]. Likewise, the mass eigenstate basis ¢ is related to the interaction eigenstate basis (JAS

by a unitary rotation V7’ on the flavor indices. In matrix form,

851 QIJ 0 0 Ly
op=|®,|=ve=| 0 W/ o o, |, (4.3.6)
ol 0 o wi;) \&/

where W ; = (W;7)*, and Q and W are constructed according to eqs. (3.2.42)) and (3.2.44).
Thus, we may rewrite eq. (4.3.2]) in terms of mass eigenstate fields:

Lint = =2V TR G ppiapy — SYpptptiapte (4.3.7)

where

yiik = yiki = v, 1y, iU,y Tmn (4.3.8)
Note that eq. implies that Y/7% = 0 unless ¢; + ¢j +qr = 0. The corresponding Feynman
rules that arise from the Yukawa interaction Lagrangian are shown in Fig. If the scalar
¢r is complex, then one can associate an arrow with the flow of analyticity, which would point
into the vertex in (a) and would point out of the vertex in (b). That is, the arrow on the scalar

line keeps track of the height of the scalar flavor index entering or leaving the vertex.
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In Fig. two versions are given for each Feynman rule. The choice of which rule to use
is dictated by the height of the indices on the fermion lines that connect to the vertex. These
heights should always be chosen so that they are contracted as in eq. . However, when all
spinor indices are suppressed, the scalar-fermion-fermion rules will have an identical appearance
for both cases, since they are just proportional to the identity matrix of the 2 x 2 spinor space.

To provide a more concrete example of the above results, consider a real neutral scalar field
¢ and a (possibly) complex charged scalar field ¢ (with U(1)-charge g4) that interact with a
multiplet of Majorana fermions &; and Dirac fermion pairs x; and 7’ (with U(1)-charges ¢; and
—gj, respectively). We assume that all fields are given in the mass eigenstate basis. The Yukawa

interaction Lagrangian is given by:
Lt = —3 (N6 + MigTE0)d — K pan’ @ + ki x ) @
—[(k1) &m0 + (K2)i€ X V@ — [(52) T€ix; + (k1) €Tl @7, (4.3.9)

where A is a complex symmetric matrix, and «, k1 and kg are complex matrices such that x'; = 0

unless g = ¢; — ¢; and (k1)"j = (k2)i; = 0 unless qq = g; [flavor index conventions are specified

in egs. (3.2.2)) and (3.2.28)]. The corresponding Feynman rules of Fig. [4.3.1(a) are obtained by
identifying Y79 = A k%, (k1)!; and (k2)¥ for the undotted fermion vertices ¢&;¢;, ®x;n, P&’
and (Iﬂ&xj, respectively The corresponding Feynman rules of Fig. (b) for the dotted

fermion vertices are governed by the complex-conjugated Yukawa couplings, Y7, = (Y1ikyx,

The renormalizable interactions of vector bosons with fermions and scalars arise from gauge
interactions. These interaction terms of the Lagrangian derive from the respective kinetic energy

terms of the fermions and scalars when the derivative is promoted to the covariant derivative:
(Du)e) = 890, -+ i AL(T%)7 (4310

where the index a labels the real (interaction eigenstate) vector bosons Af and is summed over.
The index a runs over the adjoint representation of the gauge groupﬂ and the (T%);/ are
hermitian representation matrices of the generators of the Lie algebra of the gauge group acting
on the left-handed fermions (for further details, see Appendix E). For a U(1) gauge group, the
T are replaced by real numbers corresponding to the U(1) charges of the left-handed (%,O)

fermions. There is a separate coupling g, for each simple group or U(1) factor of the gauge
group G [

38For the ®'¢;x; vertex, we should reverse the direction of the arrow on the scalar line in Fig. a) [and
likewise for the corresponding hermitian-conjugated vertex of Fig. b)]7 in which case all arrows on the charged
scalar and fermion lines would represent the direction of flow of the conserved U(1)-charge.

39Gince the adjoint representation is a real representation, the height of the adjoint index a is not significant.
The choice of a subscript or superscript adjoint index is based solely on typographical considerations.

49That is, the generators T'® separate out into distinct classes, each of which is associated with a simple group
or one of the U(1) factors contained in the direct product that defines G. In particular, g, = gy if T® and T are
in the same class. If GG is simple, then g, = g for all a.
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In the gauge-interaction basis for the left-handed (%, 0) two-component fermions the corre-

sponding interaction Lagrangian is given by
Lint = —gaAngi Eu(Ta)z'j&j : (4.3.11)

In the case of spontaneously broken gauge theories, one must diagonalize the vector boson
squared-mass matrix. The form of eq. (4.3.11) still applies where A are gauge boson fields
of definite mass, although in this case for a fixed value of a, g,7* [which multiplies Aj in
eq. (4.3.11)] is some linear combination of the original g,T'* of the unbroken theory. That is,
the hermitian matrix gauge field (4,);/ = AZ(T“)ZJ appearing in eq. {i can always be
re-expressed in terms of the physical mass eigenstate gauge boson fields.

If an unbroken U(1) (global or local) symmetry exists, then the physical gauge bosons will
be eigenstates of the conserved U(l)—chargeﬂ If the U(1) symmetry group is orthogonal to the
gauge group under which the A4 transform, then all the gauge bosons are neutral with respect to
the U(1)-charge. For example, in the case of the interaction of a gluon with a pair of Majorana
fermion gluinos, the gluon is a gauge boson that transforms under the SU(3) color group, which
is orthogonal to the conserved U(1)gy. That is, gluinos are color octet, electrically neutral
fermions. In contrast, in the case of the interaction of a Z° with pair of Majorana neutralinos,
U(1)gy is not orthogonal to the electroweak SU(2)xU(1) gauge group. Nevertheless, the Z°-
gauge boson interactions of the neutralinos are allowed as they conserve electric charge.

To obtain the desired Feynman rule, we rewrite eq. in terms of mass eigenstate

fermion fields. The resulting interaction Lagrangian can be rewritten as
Lo = — ALY 5, (GY) by (4.3.13)
where the A% are the mass eigenstate gauge fields (of definite U(1)-charge, if relevant), and
(GY)i? = gaU"(T*)" Uy (4.3.14)

or in matrix form, G* = g,U'T®U (no sum over a). For values of a corresponding to the

neutral gauge fields, the G are hermitian matrices. The corresponding Feynman rule is shown
in Fig. (33

41 In terms of the physical gauge boson fields, A} T* consists of a sum over real neutral gauge fields multiplied
by hermitian generators, and complex charged gauge fields multiplied by non-hermitian generators. For example,
in the electroweak Standard Model, G=SU(2)xU(1) with gauge bosons and generators W, and T* = 7 for
SU(2) and B,, and Y for U(1), where the 7% are the usual Pauli matrices. After diagonalizing the gauge boson
squared-mass matrix [153]:

9

aTa /B Y:i +T+ 7T_
gW,T® 4+ g B, (w, +W, )+COSQW

V2
where Q = T® 4+ Y is the generator of the unbroken U(1)gwm, T =7+ iT?, and e = gsin by = ¢’ cosOy. The
massive gauge boson charge-eigenstate fields of the broken theory consist of a charged massive gauge boson pair,
w* = (W1 F iWZ)/\/i a neutral massive gauge boson, Z = W3 cosfw — Bsinfy, and the massless photon,
A = W3sinOw + B cos 6w .

(T? — Qsin® Ow) Z, + eQA, (4.3.12)

47



—i(GY 5 or  i(GY) 04

Figure 4.3.2: The Feynman rules for two-component fermion interactions with gauge bosons.
The choice of which rule to use depends on how the vertex connects to the rest of the amplitude.
The G* are defined in eq. (4.3.14). The index a runs over both neutral and charged (mass
eigenstate) gauge bosons, consistent with charge conservation at the vertex.

The above treatment of the gauge interactions of (two-component) fermions is general.
Nevertheless, it is useful to consider separately three cases where the gauge bosons couple to
a pair of Majorana fermions, a pair of Dirac fermions, and a fermion pair consisting of one
Majorana and one Dirac fermion.

First, consider the gauge interactions of neutral Majorana fermions. The Majorana fermions
consist of left-handed (4,0) interaction eigenstate fermions & that transform under a real rep-
resentation of the gauge group. After converting from the interaction eigenstates él to the mass
eigenstates &; using eq. , the Lagrangian for the gauge interactions of Majorana fermions
is given by:

Lot = — AL TG (4.3.15)

where the A}, are neutral (real) mass eigenstate gauge fields, and
(GY)i7 = g (T*)™ (4.3.16)

or in matrix form, G% = g,QT?Q (no sum over a). Note that the G® are hermitian matrices.
The corresponding Feynman rule takes the same form as the generalized rule shown in Fig.
with a restricted to values corresponding to the neutral mass eigenstate gauge bosons.

Next, consider the gauge interactions of charged Dirac fermions. The Dirac fermions consist
of pairs of left-handed (%, 0) interaction eigenstate fermions x; and 7’ that transform as conjugate
representations of the gauge group (hence the opposite flavor index heights). The fermion mass
matrix couples x and 7 type fields as in eq. . In the coupling to the interaction eigenstate
gauge fields, if the (T%);7 are matrix elements of the hermitian representation matrices of the
generators acting on the ¥;, then the #* transform in the complex conjugate representation with
the corresponding generator matrices —(T%)* = —(T%)T, i.e. with matrix elements —(T%);".

Hence, the Lagrangian for the gauge interactions of Dirac fermions can be written in the form:
Lint = —9a AR T (T + ga A} 7, (T%) "7 (4.3.17)

We now rewrite eq. (4.3.17) in terms of mass eigenstate fermion fields using eq. (3.2.31)), and

express the hermitian matrix gauge field A* = ALT? in terms of mass eigenstate gauge fields
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Figure 4.3.3: The Feynman rules for the interaction of a gauge boson and a pair of Dirac
fermions (each formed by x and 7 of the appropriate flavor index). The fermion lines are labeled
by the corresponding two-component left-handed ( %, 0) fermion fields. The matrices G} and G,
depend on the group generators for the representation carried by the y; according to egs.
and . The index a runs over both neutral and charged (mass eigenstate) gauge bosons,
consistent with charge conservation at the vertex.

(of definite U(1)-charge, if relevant). The resulting interaction Lagrangian is then given by:
i = = AL TG — 0l Fu(GR) (4.3.18)
where A, G¢ and A, G, are hermitian matrix-valued gauge fields, with:

(G3)i? = gaLFi(T*)" L (4.3.19)
(G%);" = gaR™j(T*) " Ry, (4.3.20)

In matrix form, eqs. (4.3.19) and (4.3.20) read: G¢ = g,L'T%L and G% = g, R'T*R (no sum

over a). For values of a corresponding to the neutral gauge fields, G} and G¢, are hermitian

matrices. The corresponding Feynman rules for the gauge interactions of Dirac fermions are
shown in Fig. Note that y; with its arrow pointing out of the vertex and 7’ with its arrow
pointing into the vertex represent the same Dirac fermion.

Finally, consider the interaction of a charged vector boson W (with U(1)-charge ¢y,) with
a fermion pair consisting of one Majorana and one Dirac fermion. As before, we denote the
Majorana fermion by ¢; and the Dirac fermion pair by y; and 7’ (with U(1)-charges ¢; and
—qj, respectively). All fields are assumed to be in the mass eigenstate basis. The interaction

Lagrangian is given byﬁ
Lt = —Wal(G); X TG — (Ga)ig€liarn’] — Wi(G1): 15" x; — (Ga)nla"s],  (4.3.21)

where G; and G are arbitrary complex matrices, with (Gl)ij = [(G1)]* and (G9)¥ = [(G2)45]",
such that (G1);* = (G2);; = 0 unless gy = ¢;. The interactions of eq. (4.3.21)) yield the Feynman

42The sign in front of G2 is conventionally chosen to match the sign of the term proportional to G% in eq. l} .
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Figure 4.3.4: The Feynman rules for the interactions of a charged vector boson (with U(1)-
charge qy,) with a fermion pair consisting of one Majorana fermion §; and one Dirac fermion
formed by x; and 7/ (with corresponding U(1)-charges g; and —¢;). The fermion lines are labeled
by the corresponding two-component left-handed (%, 0) fermion fields. The matrix couplings G
and Go are defined in eq. . Note that (G1);* = (G2)ij = 0 unless qy;; = ¢;. The arrows
indicate the direction of flow of the U(1)-charges of the fermion and boson fields.

rules exhibited in Fig. Note that rules (c¢) and (d) are the complex conjugates of rules
(a) and (b), respectively, corresponding to a reversal of the flow of the U(1)-charge through the
interaction vertex.

In Figs. two versions are given for each of the boson-fermion-fermion Feynman
rules. The correct version to use depends in a unique way on the heights of indices used to
connect each fermion line to the rest of the diagram. For example, the way of writing the
vector-fermion-fermion interaction rule depends on whether we used 1/}“?“1/@, or its equivalent
form —1/1]-0“1/)“, in eq. 1} Note the different heights of the undotted and dotted spinor
indices that adorn ¢* and @”. The choice of which rule to use is thus dictated by the height of
the indices on the lines that connect to the vertex. These heights should always be chosen so
that they are contracted as in eq. .

The application of the rules of this subsection will be exhibited in Section Many

additional examples involving Standard Model and MSSM processes can be found in Section [6]

4.4 General structure and rules for Feynman graphs

When computing an amplitude for a given process, all possible diagrams should be drawn that
conform with the rules given in Sections for external wave functions, propagators, and
interactions, respectively. Starting from any external wave function spinor (or from any vertex
on a fermion loop), factors corresponding to each propagator and vertex should be written down
from left to right, following the line until it ends at another external state wave function (or at

the original point on the fermion loop). If one starts a fermion line at an x or y external state
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spinor, it should have a raised undotted index in accord with eq. . Or, if one starts with
an ! or y', it should have a lowered dotted spinor index. Then, all spinor indices should always
be contracted as in eq. . If one ends with an = or y external state spinor, it will have a
lowered undotted index, while if one ends with an z' or 4 spinor, it will have a raised dotted
index. For arrow-preserving fermion propagators and gauge vertices, the preceding determines
whether the o or @ rule should be used.

With only a little practice, one can write down amplitudes immediately with all spinor

indices suppressed. In particular, the following must be satisfied:

e For any scattering matrix amplitude, factors of o and @ must alternate. If one or  (4.4.1)
more factors of o and/or @ are present, then = and y must be followed [preceded]
by a o [7], and ' and 3 must be followed [preceded] by a @ [o].
These requirements automatically dictate whether the o or @ version of the rule for arrow-
preserving fermion propagators and gauge vertices are employed in any tree-level Feynman
diagram. In loop diagrams, we must add one further requirement that governs the order of the

o and @ factors as one traverses around the loop.

e Arrow-preserving propagator lines must be traversed in a direction parallel [anti- (4.4.2)
parallel] to the arrowed line segment for the @ [o] version of the propagator ruleﬁ

For fermion lines that are not closed loops, this last requirement is realized automatically
provided that the requirements of eq. are satisfied. However, for closed fermion loops, one
must use the correct fermion propagator corresponding to the direction around the loop one has
chosen to follow in writing down the spinor trace with suppressed indices. For example, having
employed a ¢ [] rule at one vertex attached to the loop, one must then traverse the loop from
that vertex point in a direction parallel [antiparallel] to the arrow-preserving propagator lines
in the loop. Indeed, this rule is crucial for obtaining the correct sign for the triangle anomaly
calculation in Section [6.26

Symmetry factors for identical particles are implemented in the usual way. Fermi-Dirac

statistics are implemented by the following rules:
e Each closed fermion loop gets a factor of —1.

e A relative minus sign is imposed between terms contributing to a given amplitude whenever
the ordering of external state spinors (written left-to-right in a formula) differs by an odd

permutation.

Amplitudes generated according to these rules will contain objects of the form:

a=z1%z9 (4.4.3)

43This rule is simply a consequence of the order of the spinor indices in Fig. , as noted in Section
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where z; and 2y are each commuting external spinor wave functions z, zf, y, or ¢y, and ¥ is a

sequence of alternating ¢ and @ matrices. The complex conjugate of this quantity is obtained

by applying the results of eqs. (2.44])(2.48)), and is given by@
a* = 2%,z (4.4.4)

where Y, is obtained from ¥ by reversing the order of all the o and @ matrices, and using the same
rule for suppressed spinor indices. [Notice that this rule for taking complex conjugates has the
same form as for anticommuting spinors; cf. egs. f.] We emphasize that in principle,
it does not matter in what direction a diagram is traversed while applying the rules. However,
for each diagram one must include a sign that depends on the ordering of the external fermions.
This sign can be fixed by first choosing some canonical ordering of the external fermions. Then
for any graph that contributes to the process of interest, the corresponding sign is positive
(negative) if the ordering of external fermions is an even (odd) permutation with respect to the
canonical ordering. If one chooses a different canonical ordering, then the resulting amplitude
changes by an overall phase (is unchanged) if this ordering is an odd (even) permutation of the
original canonical orderingﬁ This is consistent with the fact that the S-matrix element is only
defined up to an overall sign, which is not physically observable@

Note that different graphs contributing to the same process will often have different external
state wave function spinors, with different arrow directions, for the same external fermion.
Furthermore, there are no arbitrary choices to be made for arrow directions, as there are in some
four-component Feynman rules for Majorana fermions (as discussed in Appendix G.) Instead,

one must add together all Feynman graphs that obey the rules.

4.5 Basic examples of writing down diagrams and amplitudes

Some simple examples will help clarify the rules of Section [f.4] In the tree-level Feynman graphs
of this subsection, we label all two-component fermion lines by their corresponding left-handed
(%,0) fields. (We shall propose a slightly different labeling convention in Section ) A larger

number of examples, drawn from practical calculations, are given in Section [6]

4 For Lorentz-scalar quantities of the form given by eq. , there is no distinction between complex conju-
gation and hermitian conjugation.

45For a process with exactly two external fermions, it is convenient to apply the Feynman rules by starting from
the same fermion external state in all diagrams. That way, all terms in the amplitude have the same canonical
ordering of fermions and there are no additional minus signs between diagrams. However, if there are four or more
external fermions, it often happens that there is no way to choose the same ordering of external state spinors for
all graphs when the amplitude is written down. Then the relative signs between different graphs must be chosen
according to the relative sign of the permutation of the corresponding external fermion spinors. This guarantees
that the total amplitude is antisymmetric under the interchange of any pair of external fermions.

#6The S-matrix element is related to the invariant matrix element M ; by St = 65 + (27)*6™ (ps — ps) iM i
where py (p;) is the total four-momentum of the final (initial) state. If f # ¢ (i.e. the final and initial states are
distinct), then df; = 0 in which case the invariant matrix element is only defined up to an overall (unphysical)
sign. However, if f = ¢, the most convenient choice for the canonical ordering of external fermions is the one that
yields (f|i) = d; (with no extra minus sign), which then fixes the absolute sign of the invariant matrix element.
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4.5.1 Scalar boson decay to fermion pairs

Let us first consider a theory with a multiplet of uncharged, massive (%, 0) fermions &;, and a

real scalar ¢, with interaction
Lo = —3 (Aijgigj + Aijg“gfj) ®, (4.5.1)

where \;; = (A¥)* and \Y = M’ Consider the decay ¢ — & (5, s1)&;(P2, s2) [for a fixed choice
of i and j], where by &;(p, s) we mean the one particle state given by eq. (3.2.13)).

£j(p2, s2) §j(p2, s2)

&i(p1,s1) &i(p1, s1)

Figure 4.5.1: The two tree-level Feynman diagrams contributing to the decay of a neutral
scalar into a pair of Majorana fermions.

Two diagrams contribute to this process, as shown in Fig. The matrix element is:
iM = y(By,51)* (=AY 007 y(By, 52)p + 2 (B, 51)a(—iij8% 3)a' (B, 52)”
= —iXy(By, 51)y(Ba, 52) — idijat (B, 51)2" (B, s2) (4.5.2)

The second line could be written down directly by recalling that the sum over suppressed spinor
indices is taken according to eq. (2.37). Note that if we reverse the ordering for the external
fermions, the overall sign of the amplitude changes sign. This is easily checked, since for the

commuting spinor wave functions (x and y), the spinor products in eq. (4.5.2)) change sign when

the order is reversed [see egs. (2.60]) and (2.61f)]. This overall sign is not significant and depends

on the order used in constructing the two particle state. One could even make the choice of

starting the first diagram from fermion 1, and the second diagram from fermion 2:
iM = =Ny (B, 1)y (By, 2) — (—1)idiga" (B, 52)2T (5, 51) (4.5.3)

Here, the first term establishes the canonical ordering of fermions (12), and the contribution from
the second diagram therefore includes the relative minus sign in parentheses. Indeed, egs.
and are equal. In the computation of the total decay rate for the case of i = j, one must
multiply the integral over the total phase space by 1/2 to account for the identical particles.
Next, we consider a theory of a massive neutral scalar boson that couples to a multiplet of
Dirac fermions. We denote the corresponding two-component fields by ; and 5. For simplicity,
we take all the U(1)-charges of the y; to be equal (and opposite to the charges of the n°). The

corresponding U(1)-invariant interaction is:

Lo = — (5 + wIxT]), (4.5.4)
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xj (P2, 52) 7’ (p2, s2)

n'(p1, s1) Xi(p1, 51)

Figure 4.5.2: The two tree-level Feynman diagrams contributing to the decay of a neutral
scalar into a pair of Dirac fermions. The x;-n' and x;—n’ pairs, each with oppositely directed
arrows, comprise Dirac fermion states with flavor indices ¢ and j, respectively.

where x;/ = (k';)*. Consider the decay ¢ — fi(Py,s1)f? (P2, s2) [for a fixed choice of i and j],
where by f(5,s) and f(p, s) we mean the one particle states given by eq. . Two diagrams
contribute to this process, as shown in Fig. Note that the outgoing fermion lines are
distinguished by their U(1)-charges. The matrix element is then given by

iM = —in! iy By, 51)y(By, 52) — ik (B, 51)2" (B, 52) - (4.5.5)

The matrix element for ¢ — f; (), 51) 7 (P2, s2) is identical to that of ¢ — & (P, 51)&; (P2, s2)
after replacing A with /{ij. However for fixed i = j, the rate for scalar boson decay to f;f*
is twice that of &;&; due to the final state identical particles in the latter case, as noted above.
One also arrives at the same conclusion if one treats a single Dirac fermion as a pair of mass-
degenerate two-component fields & and & [cf. eq. (3.2.15)]. Due to the U(1)-symmetry, the
scalar Yukawa interactions are diagonal in the £;—&» basis, so the rate for scalar decay into the

Dirac fermion pair is equal to the incoherent sum of the rate for decay into £1&; and &2&s.

4.5.2 Fermion pair annihilation into a scalar boson

It is also instructive to consider the corresponding 2 — 1 scattering (annihilation) processes

(P, 81)E(P2, s2) — ¢ and f(P, s1)f (P2, s2) — ¢, respectively. The corresponding amplitudes

are given by eqs. (4.5.2) and (4.5.5) with y — 2 and x7 — y' (for simplicity, we neglect flavor).

In the computation of the cross-sections, there is no extra factor required to account for the case
of identical particles in the initial state. That is, the cross-section for f(5y,s1)f(D2,52) — ¢ is
equal to the cross-section for £(p, s1)&(P2, s2) — ¢ after replacing A with x.

This may at first seem puzzling given that a Dirac fermion can be represented by a pair
of mass-degenerate two-component fields x; and y2. But, recall the standard procedure for the
calculation of decay rates and cross-sections in field theory—average over unobserved degrees of
freedom of the initial state and sum over unobserved degrees of freedom of the final state. This
mantra is well-known for dealing with spin and color degrees of freedom, but it is also applicable
to degrees of freedom associated with global internal symmetries. Thus, the cross-section for the

annihilation of a Dirac fermion pair into a neutral scalar boson can be obtained by computing the
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average of the cross-sections for &1 (P, s1)&1 (P2, s2) — ¢ and & (P, $1)E2(P2, S2) — ¢. Since the
annihilation cross-sections for £1&; and £2&5 are equal, we confirm the annihilation cross-section
for the Dirac fermion pair obtained above in the y—n basis. Since the latter is conceptually
simpler, subsequent computations involving Dirac fermions will be performed in the x—n basis.

The annihilation rate of fermions enters in the analysis of the event flux due to the anni-
hilation of dark matter in the halo of our galaxy. Let us compare the rates in the case that
the dark matter is either a Majorana or a Dirac fermion. Suppose the annihilation involves two
fermions whose number densities are ni and ngy respectively. Then the observer on Earth who

integrates along the line of sight to the annihilation events that are detected sees a flux of events

proportional to [154]
dNevents

dAdt

where v, is the relative velocity of the annihilating initial state particles, o,n, is the annihilation

~ /77,177,2 <Uannvrel> d@, (4.5.6)

cross-section and (---) refers to a thermal average over the velocity distribution of dark
matter particles in the halo. We now compare the case of the annihilation of a single species of
Majorana particles and the annihilation of a Dirac fermion-antifermion pair (assumed to have
the same mass and couplings). We assume that the number density of Dirac fermions and
antifermions and the corresponding number density of Majorana fermions are all the same (and
denoted by n). Above, we showed that oy, is the same for the annihilation of a single species of
Majorana and Dirac fermions. For the Dirac case, niny = n?. For the Majorana case, because
the Majorana fermions are identical particles, given N initial state fermions in a volume V', there
are N(N — 1)/2 possible scatterings. In the thermodynamic limit where N, V' — oo at fixed
n = N/V, we conclude that njny = %n2 for a single species of annihilating Majorana fermionsm
Hence the event flux rate for the annihilation of a Dirac fermion-antifermion pair is double that
of a single species of Majorana fermions@ The extra factor of 1/2 can also be understood by
noting that in the case of annihilating dark matter particles (in the large N limit), all possible
scattering axes occur and are implicitly integrated over. But, integrating over 47 steradians
double counts the annihilation of identical particles (in the same way it does in the computation
of the decay rate of a scalar into identical fermions discussed above). Hence, one must include
a factor of % in this case by replacing nins = n? by %nz in eq. (4.5.6).

The relic abundance of primordial dark matter particles in the universe is inversely propor-
tional to (TannUrel) . By similar arguments to the ones just presented, it follows that the
relic abundance of a single species of Majorana fermions would be twice that of a single species

of Dirac fermions.

4"The factor of 1 /2, which has been erroneously omitted in many papers in the literature, was correctly employed
and explained in footnote 1 of ref. [156].

48This is also consistent with the interpretation of a Dirac fermion as a pair of mass-degenerate Majorana
fermions.
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4.5.3 Vector boson decay into fermion pairs

Consider next the decay of a massive neutral vector boson A, into a pair of Majorana fermions,

Ay — &(PY, 51)&(Dy, 52), following from the interaction,
Lnp = G AT ¢ (4.5.7)

where GG is an hermitian coupling matrix. The two diagrams shown in Fig. contribute.

&i(p1,s1) &i(p1,s1)

& (p2, s2) &i(p2, s2)

Figure 4.5.3: The two tree-level Feynman diagrams contributing to the decay of a massive
neutral vector boson A, into a pair of Majorana fermions.

We start from the fermion with momentum p; and spin vector s; and end at the fermion
with momentum po and spin vector ss, using the rules of Fig. The resulting amplitude
for the decay is

iM=el [_iGiij(ﬁlv 51)@34(15’2, 52) + Z'Gjiy(ﬁD Sl)quT(ﬁza 32)} ) (4.5.8)

where e is the vector boson polarization vector. We have used the @-version of the vector-
fermion-fermion rule [see Fig. for the first diagram of Fig. and the o-version for the
second diagram of Fig. as dictated by the implicit spinor indices, which we have suppressed.
However, we could have chosen to evaluate the second diagram of Fig. using the o-version
of the vector-fermion-fermion rule by starting from the fermion with momentum ps and spin
vector s. In that case, the term iG;'y (P, sl)aMwT(ﬁQ, s9) in eq. is replaced by

(71)[72.Gjilj(ﬁ2vSZ)Euy(ﬁla51)] : (459)

In eq. , the factor of —iGji arises from the use of the @-version of the vector-fermion-
fermion rule, and the overall factor of —1 appears because the order of the fermion wave functions
has been reversed; i.e. (21) is an odd permutation of (12). This is in accord with the ordering
rule stated at the end of Section Thus, the resulting amplitude for the decay of the vector

boson into the pair of Majorana fermions now takes the form:
iM=e [—iGz‘jﬂfT(ﬁuSl)ﬁuy(ﬁza@) +iGjixT(ﬁ’z,Sz)@y(ﬁlaSl)} ; (4.5.10)

which coincides with eq. (4.5.8)) after using yotz! = z'aty [cf. eq. (2.62) with commuting
spinors]. Eq. (4.5.10) explicitly exhibits the property that the amplitude is antisymmetric under
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the interchange of the two external identical fermions. Again, the absolute sign of the total

amplitude is not significant and depends on the choice of ordering of the outgoing states.
Next, we consider the decay of a massive neutral vector boson into a pair of Dirac fermions.

Each Dirac fermion is described by the two-component fields x,; and n', which possess equal and

opposite U(1)-charges, respectively. The corresponding interaction Lagrangian is given by:

Lo = —AP(GL) XTu0x — (Gr)i nlTu’ ], (4.5.11)

i
where G, and G are hermitian. There are two contributing graphs, as shown in Fig.
Xi(p1, 1) 7' (p1, 51)

A, A,

Xj (P2, 52) 7’ (pa, $2)

Figure 4.5.4: The two tree-level Feynman diagrams contributing to the decay of a massive
neutral vector boson A, into a pair of Dirac fermions. The ;7' and x;—n’ pairs, each with
oppositely directed arrows, comprise Dirac fermion states with flavor indices 7 and 7, respectively.

To evaluate the amplitude, we start with the fermion of momentum p; and spin vector sq,
and end at the fermion with momentum po and spin vector so. Note that the outgoing y; with
the arrow pointing outward from the vertex and the outgoing 7’ with the arrow pointing inward
to the vertex both correspond to the same outgoing Dirac fermion. The amplitude for the decay

is given by:
iM = [<i(GL)Ia (B, 51)7 (B 52) = 1(GR) Y (B, 1) (B 52)]
= [=i(GL) 2 (B 57, By, 52) = i(GR)a! (B s2)ouy(Brosn)| - (45.12)

As in the case of the decay to a pair of Majorana fermions, we have exhibited a second form
for the amplitude in eq. in which the o-version of the vertex Feynman rule has been
employed in both diagrams. Of course, the resulting amplitude must be the same in each method
(up to a possible overall sign of the total amplitude that is not determined).

The computation of the amplitude for the decay of a charged vector boson to a fermion
pair consisting of one Majorana fermion and one Dirac fermion, due to the interactions given in

eq. (4.3.21)), is straightforward and will not be given explicitly here.

4.5.4 Two-body scattering of a boson and a neutral fermion

The next level of complexity consists of diagrams that involve fermion propagators. In the
examples that follow in this and in the next subsection, we shall ignore the flavor index and

consider scattering processes that involve a single flavor of Majorana or Dirac fermion. For our
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Figure 4.5.5: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a Majorana fermion. There are four more diagrams, obtained from these by crossing
the initial and final scalar lines.

first example of this type, consider the tree-level matrix element for the scattering of a neutral
scalar and a two-component neutral massive fermion (¢ — ¢¢), with the interaction Lagrangian
given above in eq. . Using the corresponding Feynman rules, there are eight contributing
diagrams. Four are depicted in Fig. there are another four diagrams (not shown) where
the initial and final state scalars are crossed (i.e., the initial state scalar is attached to the same
vertex as the final state fermion).

We shall write down the amplitudes for the four diagrams shown in Fig. starting with

the final state fermion line and moving toward the initial state fermion line. Then,

. { . . R _ ~ ~ R
iM = M{(—M)(—M ) 27 (By, 52) Tk (B, 1) +y(P2,82)0'k?JT(P1,81)}
€

+me {(—M)%y(ﬁ?, 52)2(By, 51) + (—iN) 2zt (By, s0)yT (7, 51)] } + (crossed) , (4.5.13)

where k* is the sum of the two incoming (or outgoing) four-momenta, (p1, s1) are the momentum
and spin four-vectors of the incoming fermion, and (p2, s2) are those of the outgoing fermion.
The notation “(crossed)” refers to the contribution to the amplitude from diagrams which have
the initial and final scalars interchanged. Note that we could have evaluated the diagrams above
by starting with the initial vertex and moving toward the final vertex. It is easy to check that
the resulting amplitude is the negative of the one obtained in eq. ; the overall sign change
simply corresponds to swapping the order of the two fermions and has no physical consequence.
The overall minus sign is a consequence of eqs. f and the minus sign difference
between the two ways of evaluating the propagator that preserves the arrow direction.

Next, we compute the tree-level matrix element for the scattering of a neutral vector boson
and a neutral massive two-component fermion £ with the interaction Lagrangian of eq. .
Again there are eight diagrams: the four diagrams depicted in Fig. 4.5.6| plus another four (not
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Figure 4.5.6: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral

vector boson and a Majorana fermion. There are four more diagrams, obtained from these by
crossing the initial and final scalar lines.

A S
A

shown) where the initial and final state vector bosons are crossed.

Starting with the final state fermion line and moving toward the initial state, we obtain

M= M{(_zG)2$T(p2> 52) 0-&, o-koeg z(Py, s1) + (ZG)2?/(P2, 52) -, ok U'%Z/T(pu s1)
A

+(—1G) (iG)me [?J(ﬁQa $2) 0506 (P, 51) + 2t (P, $2)0 €506 v (P1, 31)] }
+(crossed) , (4.5.14)

where €, and ¢, are the initial and final vector boson polarization four-vectors, respectively. As
before, k* is the sum of the two incoming (or outgoing) four-momenta, (p1,s1) and (p2, s2) are
the momentum and spin four-vectors of the incoming and outgoing fermions, respectively, and
“(crossed)” indicates the terms from diagrams in which the initial and final vector bosons are
interchanged. Alternatively, if one starts with an initial state fermion and moves toward the final
state, the resulting amplitude is the negative of the one obtained in eq. , as expected.
The computation of the amplitude for the scattering of a charged scalar or vector boson

and a Majorana fermion is straightforward and will not be given explicitly here.

4.5.5 Two-body scattering of a boson and a charged fermion

We first consider the scattering of a Dirac fermion with a neutral scalar. We denote the Dirac
mass of the fermion by mp. The left-handed fields x and 7 have opposite charges (which we
take to be @ = +1 and —1 respectively), and interact with the scalar ¢ according to

Ly = —0[rxn + kX', (4.5.15)

where k is a coupling parameter. Then, for the elastic scattering of the () = +1 fermion and a

scalar, the diagrams of Fig. contribute at tree level plus another four diagrams (not shown)
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Figure 4.5.7: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral
scalar and a charged fermion. There are four more diagrams, obtained from these by crossing
the initial and final scalar lines.

where the initial and final state scalars are crossed. Now, these diagrams match precisely those
of Fig. Thus, applying the Feynman rules yields the same matrix element, eq. ,
previously obtained for the scattering of a neutral scalar and neutral two-component fermion,
with the replacement of A with x and m¢ with mp.

We next examine the scattering of a Dirac fermion and a charged scalar, where both the
scalar and fermion have the same absolute value of the charge. As above, we denote the charged
@ = +1 fermion by the pair of two-component fermions x and 1 and the (intermediate state)
neutral two-component fermion by &. The charged () = +1 scalar is represented by the complex

scalar field ® and its hermitian conjugate. The interaction Lagrangian takes the form:
Lt = —P[r1n€ + kEXTET — DT [kaxé + winTeT]. (4.5.16)

Consider the scattering of an initial boson-fermion state into its charge-conjugated final state via
the exchange of a neutral fermion. The relevant diagrams are shown in Fig. plus the cor-
responding diagrams with the initial and final scalars crossed. We define the four-momentum k&
to be the sum of the two initial state four-momenta as shown in Fig. 4.5.8 The derivation of
the amplitude is similar to the ones given previously, and we end up with

—1

iM= M{@@W(ﬁz; $2) Tk a (P, 51) + y(Po, 2) ok y' (By, 1))
13

mg [ (B, 52)a(By, 91) + (520 (B, )y (1) } + (crossed) . (4.5.17)

The scattering of a charged fermion and a neutral spin-1 vector boson can be similarly
treated. For example, consider the amplitude for the elastic scattering of a charged fermion of
mass mp and a neutral vector boson. Again taking the interactions as given in eq. (4.5.11)),

the relevant diagrams are those shown in Fig. [4.5.9, plus four diagrams (not shown) obtained
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Figure 4.5.8: Tree-level Feynman diagrams contributing to the scattering of an initial charged
scalar and a charged fermion into its charge-conjugated final state. The unlabeled intermediate
state is a neutral fermion. There are four more diagrams, obtained from these by crossing the

initial and final scalar lines.

X} }
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Figure 4.5.9: Tree-level Feynman diagrams contributing to the elastic scattering of a neutral

vector boson and a Dirac fermion. There are four more diagrams, obtained from these by
crossing the initial and final vector lines.

S
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from these by crossing the initial and final state vector bosons. Applying the Feynman rules of

Fig. one obtains the following matrix element:

M = Ry {G%xT(pZ,SQ) o-ey0-ko-e  x(Py,51) + Gy(Py, 52) 0-52a-k0~51yT(p1,51)
D

+mpGrGr [y(ﬁz, s2) 0-£,0-€; 2(Py,51) + 21 (P, 59) Ge5006 y (7Y, 31)} } + (crossed) ,
(4.5.18)

and the assignments of momenta and spins are as before.
The computation of the amplitude for the scattering of a charged fermion and a charged

vector boson is straightforward and will not be given explicitly here.
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4.5.6 Two-body fermion—fermion scattering

Finally, let us work out an example with four external state fermions. Consider the case of
elastic scattering of two identical Majorana fermions due to scalar exchange, governed by the
interaction of eq. . The diagrams for scattering initial fermions labeled 1,2 into final state
fermions labeled 3,4 are shown in Fig.

St e ek Dk

1 3 I .3 1 .3 I 3
[ [ [ [
[ [ [ [
2 b4 2 A 2 b4 2 A
1 1 1 1

N N

Figure 4.5.10: Tree-level Feynman diagrams contributing to the elastic scattering of identical
Majorana fermions via scalar exchange in the s-channel (top row), t-channel (middle row), and
u-channel (bottom row).

The resulting invariant matrix element is:

iM = (=) {W(@ra2)(wan) + V)2 wluh) (whel) + A2 [(era) (@hel) + (o]l (wswe) |}

g A e ) + Ol + VP (D i) + G (o)}
+(=1)~ ::ni {/\2(y49€1)(y39€2) + (A (ahy]) (hl)
HAR [ (s2) + ()@l } (4.5.19)

where z; = x(P}, s:), ¥i = y(P;,si), mg is the mass of the exchanged scalar, s = (p1 + p2)?,
t = (p1 —p3)? and u = (p1 — p4)2. We have chosen the canonical ordering of external fermions
to be 3142 (corresponding to the t-channel contribution). For elastic scattering, this choice of
canonical ordering guarantees that if no scattering occurs then the S-matrix is just equal to the
unit operator with no extraneous minus sign (cf. footnote . The relative minus signs between

the t-channel diagram and the s and u-channel diagrams [shown in parentheses in eq. (4.5.19))]
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are obtained by observing that both 1234 and 4132 are both odd permutations of 3142. Note
that we would have obtained the same relative signs for the u-channel diagrams had we crossed
the initial state fermion lines instead of the final state fermion lines.

Eq. can be factorized with respect to the scalar line:

v —1

M= 7 (Az1zz + X ylyh) Ogays + N afal) + 7 (gser + N alyl) yazz + N alyl)
§— My t— mg
i . .
o (gaz + A eyl s + A alyl) . (4.5.20)
I

This is a common feature of Feynman graphs with a virtual boson. This example also illustrates
that in contrast to the four-component fermion formalism, the two-component fermion Feyn-
man rules typically yield many more diagrams, but the contribution of each of the diagrams is

correspondingly simpler.

4.5.7 Non-relativistic potential due to scalar or pseudoscalar exchange

Consider two distinguishable fermions, and a scalar-fermion-fermion Yukawa interaction given
by eq. (4.3.9). We can compute the force law that the fermions experience due to exchange of
a spinless boson. That is, we shall derive the Yukawa potential as a function of the separation
distance of the two fermions in the static limit.

To carry out this computation, we compute the invariant matrix element for two-body
fermion-fermion elastic scattering in the non-relativistic limit. The relevant diagrams are shown
in Fig.|4.5.10L As our two fermions are distinguishable, only the ¢-channel graphs (shown in the
middle row of Fig. are relevant. As a result, the matrix element for the elastic scattering
of two Majorana fermions is given by the ¢-channel contribution of eq. ,

i

iM= 5
mqut

(Aysx1 + )\*xgyi)()\yycg + )\*x};y;) . (4.5.21)

The choice of the overall sign is fixed by the canonical ordering of the external fermions@ Al-
though the two fermions are distinguishable, we have assumed for simplicity that their (complex)
Yukawa coupling strengths are the same and given by A. For the scattering of two distinguishable
Dirac fermions, the resulting expression for the scattering amplitude is identical to eq. ,
with A replaced by the appropriate complex Yukawa coupling k.

We denote the masses of the distinguishable fermions by m; and ms. In the non-relativistic

limit, p1 >~ (m1; p1) and p3 =~ (m1; Ps), so that

m(gz, —t~ |py — pa|* + mi = |q° + mi , (4.5.22)

49As noted in Section [4.5.6] the canonical ordering of the external fermions in two-body elastic scattering is
determined by the requirement that (f|i) = +1 for f =i (cf. footnote.
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where
§=ps—p1=pP2—Pa (4.5.23)
is the momentum-transfer three-vector. Two separate cases will be considered.
In the first case, X is a real coupling. This corresponds to the exchange of a JF¢ = 0+
scalar. Using the non-relativistic forms of eqs. (C.2.17) and (C.2.23)) for the spinor bilinears, it

is only necessary to keep the leading term. We then find:

41']/\\2m1m2
2 2
g% + my
in agreement with eq. (4.123) of ref. [115].

In the second case, A is purely imaginary, and we will write A = i|\| (the overall sign is

iM = Gsy550sys1 (4.5.24)

not significant). This corresponds to the exchange of a J'¢ = 0~F pseudoscalar. Again, we
use the non-relativistic forms of egs. (C.2.17) and (C.2.23) for the spinor bilinears. However,
in this case the leading term cancels and we must retain the O(|p]/m) terms appearing in the

non-relativistic limit of the spinor bilinears. In this case, we find

N -
m(q-s%ﬁgsl) (§+8°7%,s,) - (4.5.25)

We choose the spin quantization axis to lie along the z-direction. That is, according to eq. (C.1.27)),

we choose

iM =

(81,82, 8%) = (8,9, 2), (4.5.26)
in which case one can rewrite eq. (4.5.25)) in the more traditional way,
i

M= s ——
|q1* +m3

(6'6:8381) (6'65482> Y (4527)

where & = &7 +§72+ 273 are the usual spin-1/2 Pauli matricesm. Thus, pseudoscalar exchange
yields a spin-dependent force law.

The non-relativistic potential that arises from the t-channel scalar or pseudoscalar exchange
is obtained by comparing the relativistic scattering amplitude M with the Born approximation
for scattering off a potential V(&) in non-relativistic quantum mechanics. Taking into account
the difference between the conventions for the normalization of relativistic and non-relativistic

single-particle states, one finds that the static potential is given by [158]

o 1 d3q iq-
V@) = / g M@ (4.5.28)

in a convention where the invariant amplitude is defined as in footnote [46] Inserting the scatter-
ing amplitude for scalar (S) exchange, one obtains the well-known attractive spin-independent

Yukawa potential
‘ )\ ’ 2
—_— e

V(j)s - 47r

T Oy 5505584 5 (4.5.29)

59The subscripted spin labels on & should be interpreted in the same way as outlined in footnote
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where r = |&|. For the case of pseudoscalar (PS) exchange, one can easily evaluate the integral

in eq. (4.5.28)) by writing qjqkei‘f'i = —Vjvkeii'i. The end result is ||

. |>\|2 . o o e Mer
V(Z)pg = m(05351'v)(05452-v) "
|/\|2m§> [ 4x e~ MeT
167myme 3m?b (@) + r Tsasr"Tsas:
1 1 1] [3(Fsysy ) (Fsysn @) . e Mo’
+ _(’ITL¢’I")2 + (mqsr) + 3:| |: 3 7‘2 1 — 03351 °Osys9 y
(4.5.30)
where we have used [160]:
1 4 3,5 — 120;5

V.V <T> = —gaij 5B (&) + # (4.5.31)

4.6 Self-energy functions and pole masses for two-component fermions

In this section, we discuss the self-energy functions for fermions in two-component notation,
taking into account the possibilities of loop-induced mixing and absorptive parts corresponding
to decays to intermediate states. This formalism is useful in the computation of loop-corrected
physical pole masses.

Consider a theory with left-handed fermion degrees of freedom ¥; labeled by an index
i1=1,2,...,N. Associated with each 1[11 is a right-handed fermion 1[1“, where the flavor labels are
treated as described below eq. . The theory is assumed to contain arbitrary interactions,
which we will not need to refer to explicitly. As discussed in Section we diagonalize the
fermion mass matrix and identify the fermion mass eigenstates 1; as indicated in eq. .
In general, the mass eigenstates consist of Majorana fermions & (k= 1,...N — 2n) and Dirac

fermion pairs ypand np (¢ =1,..., n)ﬂ With respect to this basis, the symmetric N x N tree-

0 mg)

level fermion mass matrix, m*, is made up of diagonal elements m;, and 2 x 2 blocks ( me 0

along the diagonal, where the my, and my are real and non-negative. Since m¥ is real, the height
of the flavor indices is not significant. Nevertheless, it is useful to define m,;; = m* in order to
maintain the convention that two repeated flavor indices are summed when one index is raised
and the other is lowered Note that mm;;mF = mikﬁkj = mféf is a diagonal matrix.

The full, loop-corrected Feynman propagators with four-momentum p* are defined by the

Fourier transforms of vacuum expectation values of time-ordered products of bilinears of the

5Tn order to have a unified description, we shall take the flavor index of all left-handed fields (including n;) in
the lowered position (in contrast to the convention adopted in Sections and when considering a collection
of two-component fermion fields that contains both Majorana and Dirac fermions.

52We will soon be suppressing the indices, so it is convenient to employ the bar on ™, to indicate its lowered
index structure.
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fully interacting two-component fermion fields [cf. footnote [B5]. Following egs. (4.2.1)-(4.2.4)),
we define:

(0] Tbai(@)e) (y) 10)pr = ip-0,5 Ci/ (5). (4.6.1)
(O] Y1 ()45 (9) 10)pr = ip- 77 (CT) i(s), (4.6.2)
(O] T (2)0F (4) |0)pp = 6% D (s) , (4.6.3)
(01 Tebas ()8 (1) 10) gy = ida” Dij(s) (4.6.4)
where s = p? and
chHi, =c;t. (4.6.5)

One can derive eq. (4.6.2)) from eq. (4.6.1)) by first writing
W1 @)y (y) = =" P ()0 (@) (4.6.6)

where the minus sign arises due to the anticommutativity of the fields, and then using eq. ;
the interchange of = and y (after FT) simply changes p* to —p*.

In general, D and D are complex symmetric matrices, and D = D*. The matrix C
satisfies the hermiticity condition [CT]* = C. Here, we have introduced the star symbol to
mean that a quantity Q* is obtained from () by taking the complex conjugate of all Lagrangian
parameters appearing in its calculation, but not taking the complex conjugates of Euclideanized
loop integral functions, whose imaginary (absorptive) parts correspond to fermion decay widths
to multi-particle intermediate states. That is, the dispersive part of C' is hermitian and the
absorptive part of C is anti-hermitian.

The diagrammatic representations of the full propagators are displayed in Fig. where
C,;J, DY and 5@- defined above are each N x N matrix functions. Note that the second diagram
of Fig. when flipped by 180° about the axis that bisects the diagram, is equivalent to the
first diagram of Fig. (with p — —p, @ — 3, 8 = & and i < j). In analogy with Fig. [4.2.2

p p
o B o B @ 5 o p
) J [ J ) J ? J
ip'aa/j’ C,J ip-ah (CT)ij i&dB D% 04 ﬁ,‘j

Figure 4.6.1: The full, loop-corrected propagators for two-component fermions are associated
with functions C(p?);7 [and its matrix transpose], D(p?)"”, and D(p*);;, as shown. The shaded
boxes represent the sum of all connected Feynman diagrams, with external legs included. The
four-momentum p flows from right to left.
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Figure 4.6.2: The first two diagrammatic rules of Fig. can be summarized by a single
diagram. Here, the choice of the ¢ or & version of the rule is uniquely determined by the height
of the spinor indices on the vertex to which the full loop-corrected propagator is connected

(cf. Fig. and the accompanying text).

one could replace the first two diagrammatic rules of Fig. with a single rule shown in
Fig. where we have used eq. to rewrite the second version of the rule in terms of
C'T. Indeed, by using the 7-version of the rule shown in Fig. and flipping the corresponding
diagram by 180° as described above, one reproduces the rule of the second diagram of Fig. [£.6.1]
In what follows, we prefer to keep the first two rules of Fig. as separate entities. This
will permit us to conveniently assemble the four diagrams of Fig. into a 2 x 2 block matrix
of two-component propagators [cf. eq. ] In addition, by choosing the momentum flow in
the two-component propagators from right to left, the left-to-right orderings of the spinor labels
of the diagrams coincide with the ordering of spinor indices that appear in the corresponding
algebraic representations. Thus, we can multiply diagrams together and interpret them as the
product of the respective algebraic quantities taken from left to right in the normal fashion.

Given the tree-level propagators of Fig. the full propagator functions are given by:

Ci/ =067/(s—m2)+... (4.6.7)
DY =m" /(s —m?) + .. (4.6.8)
Dy =myj/(s—m?) +..., (4.6.9)

with no sum on 7 in each case. They are functions of the external momentum invariant s
and the masses and couplings of the theory. Inserting the leading terms [egs. f]
into Fig. and organizing the result in a 2 x 2 block matrix of two-component propagators
reproduces the usual four-component fermion tree-level propagator given in eq. .

The computation of the full propagators can be organized, as usual in quantum field theory,
in terms of one-particle irreducible (1PI) self-energy functions. These are formally defined to be
the sum of Feynman diagrams to all orders in perturbation theory (with the corresponding tree-
level graph ezcluded) that contribute to the 1PI two-point Green function. Diagrammatically,
the 1PI self-energy functions are defined in Fig. As in the case of the full loop-corrected
propagators, € and Q are complex symmetric matrices and the self-energy function satisfy

=T =

hermiticity conditions, [E']* = E and Q@ = Q, where the star symbol was defined in the
paragraph following eq. 1’ and (ET)ij = Eji.
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Figure 4.6.3: The self-energy functions for two-component fermions are associated with func-
tions E(s);/ [and its matrix transpose|, £2(s)", and €(s);;, as shown. The shaded circles repre-

sent the sum of all one-particle irreducible, connected Feynman diagrams, and the external legs
are amputated. The four-momentum p flows from right to left.

We illustrate the computation of the full propagator by considering first the following dia-

grammatic identity (with momentum p flowing from right to left):

a B a B
— <] < = < ‘
1 J { J
a o B ! ) B
+ e+ <
i k l J i k l J
o v ) Jé] @ vy 0 B
+ —— + ——
i k 1 J { k L J

(4.6.10)

Similar diagrammatic identities can be constructed for the three other full loop-corrected prop-

agators of Fig. The resulting four equations can be neatly summarized by:
F=T+TSF, (4.6.11)

where F' is the matrix of full loop-corrected propagators, T is the matrix of tree-level propagators

and S is the matrix of self-energy functions. Expressing eq. (4.6.11)) in terms of diagrams,

~{b <= s 10++Q++O++D*+D+

- )\ <) [\0 1) o~ ~0-) \-T T
(4.6.12)

which, when expanded out, yields eq. (4.6.10) and the corresponding identities for the three
other full loop-corrected propagators of Fig. Note that we have chosen the labeling and

momentum flow in Figs. |4.6.1] and |4.6.3| such that the spinor and flavor labels of the diagrams

appear in the appropriate left-to-right order to permit the interpretation of eq. (4.6.12)) as a
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matrix equation. To solve for F ﬂ we multiply eq. (4.6.11]) on the left by 7—! and on the right
by F~! to obtain T-' = F~1 +S. Thus, F = [T~! — S]~L. In pictures:

-1

_ _ . (46.13)

We evaluate the tree-level propagator matrix and its inverse using eqgs. (4.6.7)—(4.6.9)), keep-

ing in mind that the direction of momentum flow is from right to left:

i 0.8 in-o 8.0
<o < 1 15 0 ip-o_s0;
L (e ! (16.14)
I s —m; Z'p.goéﬁ 5 imi 5016
-1
~ < im0 —ip-o_ ;6%
_ o W) (4.6.15)
- —’ip‘EaB o7 imij 50‘6

where we follow the index structure defined in Figs. [4.6.1) and [4.6.3] Inserting eq. (4.6.15)) into
eq. (4.6.13]), one obtains a 4N x 4N matrix equation for the full propagator functions:

1

( iD ip-aC) (i(m+ﬂ) —z’p'a(l—ET)>
_ , (4.6.16)

ipaCT  iD —ipo(1-8) i(m+ Q)

where 1 is the N x N identity matrix. The right hand side of eq. (4.6.16|) can be evaluated by

employing the following identity for the inverse of a block-partitioned matrix |161]:

P Q\"' [((P-QS'R)! (R-SQlP)!
<R S> - <(Q — PR7S)"t (S-— RP—1Q)_1> ; (4.6.17)

under the assumption that all inverses appearing in eq. (4.6.17)) exist. Applying this result to
eq. (4.6.16|), we obtain

Cl=51-8)-m+Q)1-EN) ' (m+Q), (4.6.18)
Dl=s1-E)(m+Q)'1-2"H-m+Q), (4.6.19)
D' =s1-2"m+Q)1-8) - (m+9Q). (4.6.20)

Note that eq. (4.6.20) is consistent with eq. (4.6.19) as 2* = &T.

53 Alternatively, one can solve eq. (4.6.12)) by iteration and summing the resulting geometric series. This yields:

F=T+TS(T+TS(T+TS(---))=T+TST+TSTST +...=T[1+ ST + (ST)* +..]
=T —-8T) ' =T Y '1-8T ' =[1-8ST)T "' =[1""-8]",

which is equivalent to eq. (4.6.13)).



The pole mass can be found most easily by considering the rest frame of the (off-shell)
fermion, in which the space components of p* vanish. This reduces the spinor index dependence
to a triviality. Setting p* = (y/s; 0), we search for values of s where the inverse of the full
propagator has a zero eigenvalue. This is equivalent to setting the determinant of the inverse of
the full propagator to zero. Here we shall use the well-known formula for the determinant of a

block-partitioned matrix |161]:
P Q L
det R 5 =det P det (S—RP Q). (4.6.21)

The end result is that the poles of the full propagator (which are in general complex),
Spole,j = M —il';M;, (4.6.22)
are formally the solutions to the non-linear equatiorF_Zl
det [s1—(1-EN) ' (m+Q)(1-5)"'(m+Q)] =0. (4.6.23)

Some care is required in using eq. , since the pole squared mass always has a non-
positive imaginary part, while the loop integrals used to find the self-energy functions are complex
functions of a real variable s that is given an infinitesimal positive imaginary part. Therefore,
eq. (4.6.23)) should be solved iteratively by first expanding the self-energy function matrices =, €2
and Q in a series in s about either mj2 +12€ or M ]2 +ie. The complex quantities syl j, Wwhich can
be identified as the complex pole squared masses, are renormalization group and gauge invariant
physical observables. Examples are given in Sections and

The results of this section can be applied to an arbitrary collection of fermions (both
Majorana or Dirac). However, it is convenient to treat separately the case where all fermions
are Dirac fermions (consisting of pairs of two-component fields x; and 7). As discussed in
Section the Dirac fermion mass eigenstates are defined in eq. and are determined
by the singular value decomposition of the Dirac fermion mass matrix. With respect to the mass
basis, we denote the diagonal Dirac fermion mass matrix by M. The elements of this matrix
are real and non-negative. Nevertheless, it will be convenient as before to define M;; = M U to
maintain covariance when manipulating tensors with flavor indices.

At tree level, there are four propagators for each pair of y and 7 fields as shown in Fig. [4.2.4]
The corresponding full, loop-corrected propagators are shown in Fig. [4.6.4] The naming and
sign conventions employed for the full, loop-corrected Dirac fermion propagator functions in

Fig. derives from the corresponding functions used in the more traditional four-component
treatment presented in Appendix G [cf. eq. (G.7.2))].

®The determinant of the inverse of the full propagator [the inverse of eq. (4.6.16)] is equal to eq. (4.6.23)
multiplied by det [—(1—E)(1—E")]. We assume that the latter does not vanish. This must be true perturbatively

since the eigenvalues of E are one-loop (or higher) quantities, which one assumes cannot be as large as 1.
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Figure 4.6.4: The full, loop-corrected propagators for Dirac fermions, represented by pairs
of two-component (oppositely charged) fermion fields y; and 7;, are associated with functions
Sr(s)i’, ST(s)';, Sp(s)¥, and S} (s)ij, as shown. The shaded boxes represent the sum of
all connected Feynman diagrams, with external legs included. The four-momentum p and the
charge of x flow from right to left.

In general, the complex matrices Sp and Sy, satisfy hermiticity conditions [SE]* = Sgr and
[Sz]* = Sr., whereas the complex matrices Sp and Sp are related by Sp = S5, where the
star symbol is defined in the paragraph below eq. . In contrast to the general case of an
arbitrary collection of fermions treated earlier, Sgp and Sp, are unrelated and Sp is a complex
matrix (not necessarily symmetric).

Instead of working in a y—n basis for the two-component Dirac fermion fields, one can
Takagi-diagonalize the fermion mass matrix. In the new 1-basis, the loop-corrected propagators
of Fig. are applicable. It is easy to check that the number of independent functions is the
same in both methods for treating Dirac fermions. In particular, the loop-corrected propagator

functions in the v-basis are given in terms of the corresponding functions in the y—n basis byﬁ

T =T

C = <SOR SOL> : D= <SOD SOD> , D= <SOD SOD) . (4.6.24)

We similarly introduce the 1PI self-energy matrix functions for the Dirac fermions in the

x—7 basis, where the corresponding self-energy functions are defined in Fig. As before, the

naming and sign conventions employed for the Dirac fermion self-energy functions above derives

from the corresponding functions used in the more traditional four-component treatment of
Appendix G [cf. eq. ]

Once again, the complex matrices 31, and ¥ g satisfy hermiticity conditions [ZI]* =3

and [211;(]* = X R, whereas the complex matrices ¥p and Xp are related by Tp = 5,

where the star symbol is defined in the paragraph below eq. . Likewise, X7, and X are

unrelated and X p is a complex matrix (not necessarily symmetric). The self-energy functions

in the ¢-basis are given in terms of the corresponding functions in the y—7 basis by53

<T
= (=L 0 0 Xj =
=— (~L , Q= D) =" *pj. (4.6.25)
0 3R 3D 0 3D 0
5The simple forms of C' in eq. |4.6.24 and 2 in eq. (4.6.25) motivate our definitions of St and X g with the
transpose as indicated in Figs. and 4.6.5[, respectively.
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Figure 4.6.5: The self-energy functions for two-component Dirac fermions, represented by pairs
of two-component (oppositely charged) fermion fields y; and 7;, are associated with functions
Sr(s), E;(s)ij, Sp(s)¥, and fg(s)zj, as shown. The shaded circles represent the sum of
all one-particle irreducible, connected Feynman diagrams, and the external legs are amputated.
The four-momentum p flows from right to left.

In the case of Dirac fermions fields, eq. (4.6.13)) still holds in the y—n basis, which yields:

( iS5 z'p-asR> ) ( i(M + £p) —z‘p-a<1—22>>_1 (16.26)

ipcS]  iSp —ip5(1-3,) i(M+X))

Using eq. , it follows that:
S, !t =5(1-%g)— (M +Sp)(1-]){(M +]), (4.6.27)
Sgp'=s(1-31) - (M+Zp)(1-3F) (M +3p), (4.6.28)
Sp ' =s5(1-S1)(M +3p) '(1-5F) - (M +3]), (4.6.29)
Sy, =s1-SH(M+3p)'(1-Zg) - (M+3L) (4.6.30)

Note that eq. (4.6.30) is consistent with eq. 1’ as EE,R = EE,R'

The pole mass is now easily computed using the technique previously outlined. In particular,

eq. (4.6.23]) becomes:
det [s1—(1-3}) ' (M +3Zp)(1-%,) ' (M+X])] =0, (4.6.31)

which determines the complex pole squared masses, spole, of the corresponding Dirac fermions.
Again, the self-energy functions should be expanded in a series in s about a point with an
infinitesimal positive imaginary part.

Finally, we examine the special case of a parity-conserving vectorlike theory of Dirac
fermions (such as QED or QCD). In this case, the following relations hold among the loop-

corrected propagator functions and self-energy functions, respectivelyﬁ
Sri’ = (S1)'j . Sp” = (Sp)ij» (4.6.32)
S = (3R), Yp = (Zh)i;- (4.6.33)
By imposing eq. on egs. f and recalling that Mij = M it is straight-

forward to verify that eq. (4.6.32) is satisfied.
56These relations are derived using four-component spinor methods in Appendix G [cf. egs. (G.7.10) and

(cxan}
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5 Conventions for fermion and antifermion names and fields

In this section, we establish conventions for labeling Feynman diagrams that contain two-
component fermion fields of the Standard Model (SM) and its minimal supersymmetric extension
(MSSM). In the case of Majorana fermions, there is a one-to-one correspondence between the
particle names and the undaggered (%,0) [left-handed] fields. In contrast, for Dirac fermions
there are always two distinct two-component fields that correspond to each particle name. For
a quark or lepton generically denoted by f, we employ the two-component undaggered (%,0)
[left-handed] fields f and f (where the bar is part of the field name and does not refer to com-
plex conjugation of any kind). This is illustrated in Table which lists the SM and MSSM
fermion particle names together with the corresponding two-component fields. For each particle,
we list the two-component field with the same quantum numbers, i.e., the field that contains
the annihilation operator for that one-particle state (which creates the one-particle state when
acting to the left on the vacuum (0|).

There is an option of labeling fermion lines in Feynman diagrams by particle names or by
field names; each choice has advantages and disadvantagesm In all of the examples that follow,
we have chosen to eliminate the possibility of ambiguity as follows. We always label fermion lines
with two-component fields (rather than particle names), and adopt the following conventions:

e In the Feynman rules for interaction vertices, the external lines are always labeled by the
undaggered (%, 0) [left-handed] field, regardless of whether the corresponding arrow is pointed in
or out of the vertex. Two-component fermion lines with arrows pointing away from the vertex
correspond to dotted indices, and two-component fermion lines with arrows pointing toward the
vertex always correspond to undotted indices. This also applies to Feynman diagrams where
the roles of the initial state and the final state are ambiguous (such as self-energy diagrams).

e Internal fermion lines in Feynman diagrams are also always labeled by the undaggered
(%, 0) [left-handed] field(s). Internal fermion lines containing a propagator with opposing arrows
can carry two labels (e.g., see Fig. [£.5.7).

e Initial state external fermion lines (which always have physical three-momenta pointing
into the vertex) in Feynman diagrams for complete processes are labeled by the corresponding
undaggered (3,0) [left-handed] field if the arrow is into the vertex, and by the daggered (0, 1)
[right-handed] field if the arrow is away from the vertex.

e Final state external fermion lines (which always have physical three-momenta pointing
out of the vertex) in Feynman diagrams for complete processes are labeled by the corresponding
daggered (0, %) [right-handed] field if the arrow is into the vertex, and by the undaggered (%, 0)

[left-handed] field if the arrow is away from the vertex.

5TUnfortunately, the notation for fermion names can be ambiguous because some of the symbols used also
appear as names for one of the two-component fermion fields. In practice, it should be clear from the context
which set of names are being employed.
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Table 5.1: Fermion and antifermion names and two-component fields in the Standard Model
and the MSSM. In the listing of two-component fields, the first is an undaggered (3,0) [left-
handed] field and the second is a daggered (0,3) [right-handed] field. The bars on the two-
component (antifermion) fields are part of their names, and do not denote some form of complex
conjugation. (In this table, neutrinos are considered to be exactly massless and the left-handed
antineutrino 7 is absent from the spectrum.)

Fermion name Two-component fields
¢~ (lepton) ¢, 0t
¢ (antilepton) 7,0t
v (neutrino) v, —
v (antineutrino) —_—
q (quark) q,q'
q (antiquark) g, qt
f (quark or lepton) £, ff
f (antiquark or antilepton) ot
N; (neutralino) X0, X?T
5’,L+ (chargino) Xi XZ'_T
51_ (anti-chargino) X s X;H
g (gluino) g, gt

The rules for labeling external Dirac fermions are summarized in Fig. [5.1] These labeling
conventions differ slightly from the ones employed in Section [4.5 where all internal and external
initial state and final state fermion lines were labeled by the corresponding undaggered (%,O)
left-handed fields. In this latter convention, the conserved quantities (charges, lepton numbers,
baryon numbers, etc.) of the labeled fields follow the direction of the arrow that adorns the
corresponding fermion line in the diagram. In contrast, in the convention of Fig. the
field labels used for external fermion lines always correspond to the physical particle, and the
corresponding conserved quantities of the labeled fields follow the direction of the particle three-
momentum. As an example, for either initial or final states, the two-component fields e and
e’ both represent a negatively charged electron, conventionally denoted by e~, whereas both &
and el represent a positively charged positron, conventionally denoted by et (cf. Table .

The application of our labeling conventions to processes involving Majorana fermions is

completely straightforward. For example, the conventions for employing the neutralino states
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Initial state e™:

Initial state et:

P

Final state e™:

Final state e™:

0006
e

Figure 5.1: The two-component field labeling conventions for external Dirac fermion lines in a
Feynman diagram for a physical process. The top row corresponds to an initial state electron,
the second row to an initial state positron, the third row to a final state electron, and the fourth
row to a final state positron. The labels above each line are the two-component field names.
The corresponding conventions for a massless neutrino are obtained by deleting the diagrams
with € or €, and changing e and e to v and v, respectively.

Initial state ZVZ

X0 C
C X0

Figure 5.2: The two-component field labeling conventions for external Majorana fermion lines
in a Feynman diagram for a physical process. The top row corresponds to an initial state
neutralino, and the second row to a final state neutralino. The labels above each line are the
two-component field names. (The neutralino is its own antiparticle.)

Final state 1\7Z

X! C
C X!

as external particles are summarized in Fig. [5.2

As a simple example, consider Bhabha scattering (e e™ — e~ e™) . We require the two-
component Feynman rules for the QED coupling of electrons and positrons to the photon, which
are exhibited in Fig. Consider the s-channel tree-level Feynman diagrams that contribute
to the invariant amplitude for e”e™ — e~et. If we were to label the external fermion lines

according to the corresponding particle names (which does not conform to the conventions
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(a) ieﬁfj’g or —ieo,sq
e
e

(b) —ieﬁgﬁ or  1€0,84
e

Figure 5.3: The two-component Feynman rules for the QED vertex. Following the conventions
outlined in Section |5, we label these rules with the (3,0) [left-handed] fields e and &, which
comprise the Dirac electron. Note that (). = —1, and the electromagnetic coupling constant e
(not to be confused with the two-component electron field that is denoted by the same letter)

is conventionally defined such that e > 0 [cf. Fig. |J.1.2].

e e
et et

e e~ e e~

et et et et

Figure 5.4: Tree-level s-channel Feynman diagrams for e“e™ — e~e™, with the external lines
labeled according to the particle names. The initial state is on the left, and the final state is on
the right. Thus, the physical momentum flow of the external particles, as well as the flow of the
labeled charges, are indicated by the arrows adjacent to the corresponding fermion lines in the
upper left diagram.

introduced above), the result is shown in Fig. One can find the identity of the external two-
component fermion fields by carefully observing the direction of the arrow of each fermion line.
For contrast, the same diagrams, relabeled with two-component fields following the conventions
established in this section (cf. Fig. , are shown in Fig. An explicit computation of the

invariant amplitude is given in Section 6.3

76



ef € 3 €
e e ef e
ef ef € ef

Figure 5.5: Tree-level s-channel Feynman diagrams for ete™ — eTe™. These diagrams are the
same as in Fig. but with the external lines relabeled by the two-component fermion fields
according to the conventions of Fig. [5.1

6 Practical examples from the Standard Model and its SUSY
extension

In this section we will present some examples to illustrate the use of the rules presented in
this paper. These examples are chosen from the Standard Model and its supersymmetric
(SUSY) extension [6H10], in order to provide an unambiguous point of reference. In all cases,
the fermion lines in Feynman diagrams are labeled by two-component field names, rather than

the particle names, as explained in Section

6.1 Top quark decay: t — bW+

We begin by calculating the decay width of a top quark into a bottom quark and W vector
boson. For simplicity, we treat this as a one-generation problem and ignore Cabibbo-Kobayashi-
Maskawa (CKM) [164] mixing among the three quark generations [see eq. (J.1.16) and the

surrounding text]. Let the four-momenta and helicities of these particle be (pg, A¢), (kp, Ap) and

(ky s A\w), respectively. Then p? = m?, k? = m? and k:IQ/V = mIZ/V and
2py-kyy = mi —mj +miy (6.1.1)
2p¢-ky = m? +mi —miy (6.1.2)
2k -ky = mi —mi —miy, . (6.1.3)

Because only left-handed top quarks couple to the W boson, the only Feynman diagram for
t — bW is the one shown in Fig. |6.1.1l The corresponding amplitude can be read off of the
Feynman rule of Fig. in Appendix J. Here the initial state top quark is a two-component
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W (kw, Aw)

t(pta )‘t)
b(kp, \p)

Figure 6.1.1: The Feynman diagram for t — bW ™ at tree level.

field ¢t going into the vertex and the final state bottom quark is created by a two-component

field bT. Therefore the amplitude is given by:

iM=—ide Q:ZE“xt, (6.1.4)

V2

where €% = ¢,(kw, \w)* is the polarization vector of the W, and xz = xT(Eb,)\b) and z; =

*
m
x(Py, \¢) are the external state wave function factors for the bottom and top quark. Squaring
this amplitude using eq. (2.46)) yields:
9

IM|? = ?Eusy(xlﬁ“xt) (z]5"zy) . (6.1.5)
Next, we can average over the top quark spin polarizations using eq. (3.1.57)):
= Z IM|? = sl,xba prroa’xy. (6.1.6)

Summing over the bottom quark spin polarizations in the same way yields a trace over spinor

indices:
= Z IM|? = €60 Tr[a"py-0 7 ky 0]
)\t Ap
g2

= ?auay( piky + KDY — 9" pe-kp — i€ prokig) (6.1.7)
where we have used eq. (2.58)). Finally we can sum over the W polarizations according to:

> eren = —gu + (k) ully)u/ma, . (6.1.8)
The end result is:

= Z M = = [k + 2(pekyy ) (ko oy ) /m ] (6.1.9)
SplnS

After performing the phase space integration, one obtains:

1 1
+ 1/2 2 o[t 2
(t_> bW ) 167rmt)\ (mt7mwvmb) 2 Z |M‘
spins
2
= m/\lﬂ(mf, miv,mg) [(mt2 + 2m3y) (m? — m3y) + mi(méy, — 2m?) + mg] ,(6.1.10)
wh
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where the kinematical triangle function A\'/? is defined by \\
Nz, y, 2) = 22 + % + 2% — 2zy — 202 — 2y2. (6.1.11)

In the approximation mj, < my;,, m, one ends up with the well-known result [166]

2

2 2 2

T(t — bW+) = 962'“ <2+ T > < - m‘g’) : (6.1.12)
7r m2, m?

which exhibits the Nambu-Goldstone enhancement factor (m? /m%v) for the longitudinal W
contribution compared to the two transverse W contributions [166].

6.2 Z° vector boson decay: Z° — ff

Consider the partial decay width of the Z° boson into a Standard Model fermion-antifermion
pair. As in the generic example of Fig. there are two contributing Feynman diagrams,
shown in Fig. In diagram (a), the fermion particle f in the final state is created by a
two-component field f in the Feynman rule, and the antifermion particle f by a two-component
field fT. In diagram (b), the fermion particle f in the final state is created by a two-component
field f, and the antifermion particle f by a two-component field ff. Denote the initial Z° four-

momentum and helicity (p, Az) and the final state fermion (f) and antifermion (f) momentum

and helicities (kf, Af) and (k 72 A f), respectively. Then, kzj% = I{:JZE = m?c and p? = mQZ, and
L 2
p.kjf = p-kjf—. = %mQZ . (6.2.2)

According to the rules of Fig. the matrix elements for the two Feynman graphs are:

iM, = —ici(Tg - s%,VQf) sux;rﬁ“yf*, (6.2.3)
1%
&2
iMp = iglef enyrotal, (6.2.4)
11

where z; = x(l%, Ai) and y; = y(Ei,Ai), fori = f, f, and €, = ¢,(p, A\z).

Z%p, A7) Z%(p, A7)

JAUT®N; flkz A7)
(@) (k7> Af) (b) FAF

Figure 6.2.1: The Feynman diagrams for Z° decay into a fermion-antifermion pair. Fermion
lines are labeled according to the two-component fermion field labeling convention established
in Section B
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Using the Bouchiat-Michel formulae developed in Appendix H.3, one can explicitly evaluate
M, and My as a function of the final state fermion helicities. The result of this computation
is given in eqs. ([1.3.40) and (T1.3.41)). If the final state helicities are not measured, then it is

simpler to square the amplitude and sum over the final state spins.

It is convenient to define:
ap = T:{ — QfSIQ/V’ by = —Qfs%/v. (6.2.5)
Then the squared matrix element for the decay is, using egs. and ( -,
g2
IM|? = Wsus (afx}E“yf + bfyfa“x}) (afy}:ﬁ”xf + bfxfa”y}) . (6.2.6)
Summing over the antifermion helicity using eqgs. (3.1.57)—(3.1.60) gives:

Z\MF C—&?ME (afx koG zy +bfyfa”kf oo y}

—mfafbfx;rﬁ”a”y} — mfafbfny“E”xf) . (6.2.7)
Next, we sum over the fermion helicity:
Z IM|? = —sus (achr[E“k‘f-JE”k:f-a] + bchr[a“k‘f-EU”k:f-E]
ApAp
—mfcafbfTr[E”a”] - m?afbfTr[U“E”D . (6.2.8)
Averaging over the Z° polarization using
1 o1 Pup
5D EuE =73 <—gW + 7;;;) : (6.2.9)
Az Z
and applying eqs. 2.5672.58 , one gets:
721 [(af+b2)(2kf kj+4dkppkpp/m%) + 12a5bym7]
spins
29 [(a? + b2 2) + 6asbym?] 6.2.10)
=3, 2 ay )( —mjy) + 6agbymy] (6.2.

where we have used egs. and (6.2.2). After the standard phase space integration, we
obtain the well-known result for the partial width of the Z9:

f a2\ /2
Nz - 1) = (1—mf> 53 M

16mm
Z spins

1/2

2 2
247rcW ms,

2 2

m m
— | +6asb;—
mZ mZ

(afc + b?c) (1

Here we have also included a factor of ch (equal to 1 for leptons and 3 for quarks) for the sum

] . (6.2.11)

over colors. Since the Z° is a color singlet, the color factor is simply equal to the dimension of

the color representation of the outgoing fermions.
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6.3 Bhabha scattering: eet — e~e™

In our next example, we consider the computation of Bhabha scattering in QED (that is, we
consider photon exchange but neglect Z%-exchange) . Bhabha scattering has also been
computed using two-component spinors in . We denote the initial state electron and positron
momenta and helicities by (p1, A1) and (p2, A2) and the final state electron and positron momenta
and helicities by (ps, A3) and (pa, A1), respectively. Neglecting the electron mass, we have in

terms of the usual Mandelstam variables s, t, u:

P1-p2 = Pp3-pa = 35, (6.3.1)
p1-p3 =p2-ps = —3t, (6.3.2)
P1-Pa = p2-p3s = —3u, (6.3.3)
and p% =0 for ¢ = 1,...,4. There are eight distinct Feynman diagrams. First, there are four

s-channel diagrams, as shown in Fig. 5.5 with amplitudes that follow from the Feynman rules
of Fig. |5.3| (more generally, see Fig. in Appendix J):

. . —igh” . /- t R . t
IMg = . (—iexi0,ys)(ieysoy)) + (—iey,0,x2)(le yso,x))

+(—ie xlauy;)(ie mgﬁyyz;) + (—te yIE“acg)(ie :cgﬁl,y4)] , (6.3.4)

where x; = (P, \i) and y; = y(Pi, \i), for ¢ = 1,4. The photon propagator in Feynman gauge
is —igh” /(p1 + p2)? = —ig"/s. Here, we have chosen to write the external fermion spinors in
the order 1,2, 3,4. This dictates in each term the use of either the & or ¢ forms of the Feynman
rules of Fig. One can group the terms of eq. (6.3.4]) together more compactly:

iMg = é? <

—ighv

> <xlauy; + yIE#:@) <y30'l,:cj1 + $§5yy4) ) (6.3.5)

There are also four t-channel diagrams, as shown in Fig. The corresponding ampli-
tudes for these four diagrams can be written:
—ighv
t

iM; = (—1)e? < > (xlauxg + yfﬁuys) (1320'ij1 + y§EVy4> : (6.3.6)

Here, the overall factor of (—1) comes from Fermi-Dirac statistics, since the external fermion
wave functions are written in an odd permutation (1,3,2,4) of the original order (1,2,3,4)

established by the first term in eq. (6.3.4)).
Fierzing each term using eqs. (2.68)—(2.70), and using egs. (2.60) and (2.61)), the total

amplitude can be written as:

M= Myt Mo =262 | o) oed) + 5 e aamn) + (5 + ) el o)
" <1 * 1) (@u)ale) = orz)(elel) - 1<yiy$><y3y4>]. (6.3.7)
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Figure 6.3.1: Tree-level t-channel Feynman diagrams for e“e™ — e~e™, with the external
lines labeled according to the two-component field names. The momentum flow of the external
particles is from left to right.

Squaring this amplitude and summing over spins, all of the cross terms will vanish in the
me — 0 limit. This is because each cross term will have an z or an z for some electron or
positron combined with a y or a y! for the same particle, and the corresponding spin sum is

proportional to m. [see egs. (3.1.59) and (3.1.60)]. Hence, summing over final state spins and

averaging over initial state spins, the end result contains only the sum of the squares of the six

terms in eq. (6.3.7)):

LD {312[<m1y3><y§xi><y;mb<x4y2>+<y1x§,><x3y1><x2y4><y1m£>}

spins A1,A2,A3,A4

2
+ (i + 1) [(yixl)(myl)(xzyg)(ygx;) + (x1y4)(ylm{)(y;xg)(xm)]

1

t3 [(mx?)(@ﬂ)(%ﬂ)(ﬂﬁ) + (yiyg)(yzyl)(ysyz;)(yly;)] } . (6.3.8)

Here we have used eq. (2.44)) to get the complex square of the fermion bilinears. Performing
these spin sums using eqgs. (3.1.57) and (3.1.58]) and using the trace identities eq. (B.2.5):

2
D2 P4 pl ‘P3| D1°D2 D3 P4 1 1
*Z\MP*S [ + 2 + (s+t> p1'p4p2']93}

spins

_ 5 [tZ N 12 n (% . ?ﬂ _ (6.3.9)

Thus, the differential cross-section for Bhabha scattering is given by:

do 1 9 2ra? [12 §2 u w2
= = =+ -+ |. 6.3.10
dt — 16ws? S§S’M’ 52 LQ et (s * t) ( )

This agrees with the result given in problem 5.2 of ref. [115].
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6.4 Polarized muon decay

So far we have only treated cases where the initial state fermion spins are averaged and the final
state spins are summed. In the case of the polarized decay of a particle or polarized scattering

we must project out the appropriate polarization of the particles in the spin sums. This is

achieved by replacing the spin sums given in eqgs. (3.1.57)—(3.1.60) by the relevant polarized

spin projections exhibited in eqs. (3.1.45)—(3.1.56)). As an example, we consider the decay of a
polarized muon. Polarized muon decay has also been computed using two-component spinors

in ref. [105], however with an effective four-fermion interactionﬁ The leading order Feynman
diagram for muon decay is shown in Fig. (and the relevant four-momenta are indicated).

V# (kl/;u )\Vu)

/L(p7 8) e(kje,)\e)

Z/l (klje ? )\De)

Figure 6.4.1: Feynman diagram for electroweak muon decay.

In our computation, the mass of the muon is denoted by m, and the electron mass is
neglected. The spin of the muon is measured in its rest frame with respect to a fixed z-axis.
Assume that the muon at rest is polarized such that its spin component along the 2-direction

is s = —i—%. Then, the decay amplitude is given bylg_yl

ivi= (9) (sl 70m) (o) (727, (6:41)

where Dy = (p — kl,u)2 — m%,[, is the denominator of the W-boson propagator. In eq. 1}
z,, = z(P, s = 3) for the spin-polarized initial state muon, and :cJ,L# = .”L’(E,,w M),y zl = ot (Ke, Me),
and yp, = y(EpE, Az, ). Squaring the amplitude using eq. 1} we obtain

4
M = () () o) (hoen) . o0
w

Summing over the neutrino and electron spins using eqs. (3.1.57)—(3.1.58)), and using eq. (3.1.45))

for the muon spin (with s = ) yields:

4
S MPE = LTk, 00 (p-0 — muS-0) 77| Telke-0 5 pks, 0 7]
Avy AeAre 8Diy

2g4
= % ke'k}/u kDe . (p — mNS) s (643)

58In a related calculation given in ref. \\ two component spinor techniques are applied to the computation
of matrix element for v +n — p + e~ using an effective four-fermion V' — A interaction.
59Throughout this subsection yp and v are particle labels. Hence, we employ p and 7 as Lorentz vector indices.
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where S* in an arbitrary frame is given by eq. (3.1.15) [with § = Z]. To obtain the second
line we have used the trace identity eq. (2.57) twice; note that the resulting terms linear in the
antisymmetric tensor do not contribute, but the term quadratic in the antisymmetric tensor
does.

The differential decay amplitude is now given by

1 B3k 3k B3k
I = 2 = Ve i 2m)46 (p — ke — ky, — Ky 4.4
d 2m,u, |M| (27T)32Ee (27T)32E17€ (QW)BQEVM( 7T) o (p k k e k u)’ (6 )

where F;, i = e, ,,v, are the energies of the final state particles in the muon rest frame. In
the following we shall neglect both the electron mass and the momentum in the W-propagator
compared to the W-boson mass, so D%V — 'mfjv. We can now use the following identity to

integrate over the neutrino momenta [168]

1
(2m)*0%(q — ko, — ku, KOk, = ——(q°g"" +24¢"q"), (6.4.5)

velVi T 967

/ Bk, kK,
(2m)32E5, (2m)32E,,

where ¢ = p — k.. It follows that

4 Bk,
g 1 [q2 ke-(p —muS) + 2q-keq-(p — mMS)} .

_ a’ke 6.4.6
1536m4m,, my;, E. ( )

In the muon rest frame, k. = FE.(1;cos¢sinf,sin¢sinf, cosf) and S = (0;0,0,1), so that
¢*> = m, — 2E;my, and ke-(p — my,S) = myEe(1 + cos ) and q-k, = m, E, and q-(p — m,S) =
my(my, — E. — E. cosf). Noting that the maximum energy of the electron is m, /2 (when the

neutrino and antineutrino both recoil in the opposite direction), we obtain

dr gtmz [l ) 4AF, AE,
d(cos ) = 768mm / dEcEc |3~ m G m cosf
w /0 © ©
4,5
g my (1-1
=k (1—1Lcosh) , (6.4.7)
3-212m3md;, 3

in agreement with ref. || Introducing the Fermi constant, Gp = v/2¢2/ (8mi,), we can

rewrite eq. (6.4.7) as:
v _ Gimy
d(cosf)  384r3

Integrating over cos @ reproduces the well-known total muon decay width,

(1—2cosd) . (6.4.8)

G2Fm5
I = 19%5 : (6.4.9)

6.5 Neutral MSSM Higgs boson decays: ¢° — ff for ¢° = h°, H°, A°

In this subsection, we consider the decays of the neutral Higgs scalar bosons ¢° = h?, HY, and A°

of the MSSM into Standard Model fermion-antifermion pairs. The relevant tree-level Feynman
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I (p1, M) fT(p2, A2)

(a) I (p2, A2) (b) f]L (p1, A1)

Figure 6.5.1: The Feynman diagrams for the decays ¢° — ff, where ¢0 = hY, H?, A° are
the neutral Higgs scalar bosons of the MSSM, and f is a Standard Model quark or lepton, and

f is the corresponding antiparticle. We have labeled the external fermions according to the
two-component field names.

diagrams are shown in Fig. [6.5.1] The final state fermion is assigned four-momentum p; and
polarization A1, and the antifermion is assigned four-momentum py and polarization \o. We will
first work out the case that f is a charge —1/3 quark or a charged lepton, and later note the
simple change needed for charge +2/3 quarks. The Feynman rules of Fig. of Appendix K
tell us that the amplitudes are:

i
V2

i

V2

Here Yy is the Yukawa coupling of the fermion, kg4 is the Higgs mixing parameter from

iMq = ——= Yy ko 2]}, (6.5.1)

1:./\/1[) - — Yf kd¢0 Yyi1yz - (652)

eq. (K.1.8), and the external wave functions are denoted x; = z(p}, M), y1 = y(pP;, A1) for
the fermion and zy = z(P5, \2), y2 = y(Py, A2) for the antifermion. Squaring the total ampli-
tude iM = iM, + M, using eq. (2.44) results in:

1 *
M2 = SIY512 IRago P (aye wly] + b wawn) + (ki) 2alab udy] + (hago) g2 2o | . (6.5.3)
Summing over the final state antifermion spin using eqgs. (3.1.57)—(3.1.60) gives:

1 — *
> IMPP = §\Yf|2 deqz)O\Z(ylm'UyI +alpy-aar) — (k) myaly] — (kd¢0)2mfy1$1] . (6.5.4)
A2
Summing over the fermion spins in the same way yields:

> IMP

A1,A2

1 *
§\Yf|2 {|kd¢0|2(ﬂ[p2'ffp1 0] + Tr[pa-op1-0]) — 2(kjy0)°m} — Q(kddﬁ)?m?}

= Y7 [* {2lkago *p1-p2 — 2Re[(kago) *|m} }
= Y72 { ago 220 — 2m3) — 2Rel(kago)Im3 } (6.5.5)

where we have used the trace identity eq. ([2.56)) to obtain the second equality. The corresponding
expression for charge +2/3 quarks can be obtained by simply replacing ;40 with k,40. The total
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decay rates now follow from integration over phase space [169]

/
(¢ = fF) = (1 _ 4m§/m§0)1/2 3 IMP (6.5.6)

16mm
¢° A1,A2

The factor of N = 3 for quarks and 1 for leptons comes from the sum over colors.

Results for special cases are obtained by putting in the relevant values for the couplings

and the mixing parameters from eqs. (K.1.7) and (K.1.8)). In particular, for the CP-even Higgs

bosons h? and H°, kqgo and k40 are real, so one obtains:

'(h° — bb) = 16% Yy sin®armyo (1 — 4m§/mio)3/2 , (6.5.7)
(Y = cc) = 16% Y72 cos®amyo (1 — 4mg/mi0)3/2 , (6.5.8)
LR = r777) = 16% V2 sinfarmyo (1 — 4m3/m,210)3/2, (6.5.9)
T(H® - tf) = % Y2 sin2amyo (1 — 4m2/m20)*, (6.5.10)
L(H° — bb) = % Y2 cos® ampo (1- 4m§/m%,o)3/2 , (6.5.11)

etc., which check with the expressions in Appendix C of ref. [170]. For the CP-odd Higgs boson

AV the mixing parameters k, 40 = i cosfly and k40 = isinfy are purely imaginary, so

3

D(A® — ) = 1= ¥ cos’ By (1 - am?2/m%0)"? (6.5.12)
3

D(A® — bD) = 1= Y7 sin’ By mgo (1 - am3 /m%o) "7, (6.5.13)
1

D(A® = 7777) = 1= Y2 sinBymgo (1 - am?2 m%,)"?. (6.5.14)

Note that the differing kinematic factors for the CP-odd Higgs decays came about because
of the different relative sign between the two Feynman diagrams. For example, in the case of
h? — bb, the matrix element is

iM = L’Yb sina (y1y2 + :ﬂxé), (6.5.15)
V2
while for A — bb, it is
. 1 .
iM = —=Yysinfo (y1yo — xi2h). (6.5.16)

V2

The differing relative sign between y;y2 and :L'J{l’g follows from the imaginary pseudoscalar La-

grangian coupling, which is complex conjugated in the second diagram.

6.6 Sneutrino decay: v, — CNJ’z.'"e_

Next we consider the process of sneutrino decay v, — 6’: e~ in the MSSM. Because only the left-

handed electron can couple to the chargino and sneutrino (with the excellent approximation that

86



Xi (ke Aa)

e (ke, Ae)

Figure 6.6.1: The Feynman diagram for v, — 5’2*6_ in the MSSM.

the electron Yukawa coupling vanishes), there is just one Feynman diagram, shown in Fig.[6.6.1
The external wave functions of the electron and chargino are denoted as x. = z(Ee, Ae), and
TH = x(Eé,)\é), respectively. From the corresponding Feynman rule given in Fig. of
Appendix K, the amplitude is:

IM = —igVin xgacl, (6.6.1)

where Vj; is one of the two matrices used to diagonalize the chargino masses [cf. eq. (K.2.6))].
Squaring this using eq. (2.44]) yields:

IMP? = Vil (aLal) (@) - (6.6.2)

Summing over the electron and chargino spin polarizations using eq. (3.1.57)) yields

> IMP = @ Vi PTrlke- T kg-0] = 26°| Vi ek = 9% |Via [P (m3, = mZ ) , (6.6.3)
XeAe
where we have used 2k ks = mg — m% , neglecting the electron mass. Therefore, after inte-

grating over phase space in the standard way, the decay width is:

~+ 1 m%’ 2 2 2 mQC’ i
— Cle” 1- : = —1V; 1- =+ 6.6.4
( ) 167]_7,’,?111E m2 )\Z |M| 16 | Zl| ml/e ml% Y ( )

Ve e

which agrees with ref. [171] and eq. (3.8) in ref. [7].

6.7 Chargino decay: C;” — D.e*

Here again, there is just one Feynman diagram (neglecting the electron mass in the Yukawa
coupling) shown in Fig. [6.7.1] The external wave functions for the chargino and the positron
are denoted by x5 = 2(Ps, \s) and ye = y(Ee,Ae), respectively. The fermion momenta and
helicities are denoted as in Fig. As in the previous example, the amplitude can be directly
determined using the Feynman rule given in Fig. in Appendix K:

M = —igVi] zaye - (6.7.1)
Squaring this using eq. (2.44)) yields:
IMP2 = g2V () (wlal) (6.7.2)

87



-V,
~ e
s

e

N el (ke, Ae)

Figure 6.7.1: The Feynman diagram for éj — Dee™ in the MSSM.

Summing over the electron helicity and averaging over the chargino helicity using eqs. (3.1.57))

and (3.1.58)) we obtain:

2
g
Z (M[* = 36%|Var " Trlke -0 pe-0] = 6%V [Phe-pe = 5 [V P (m, —m3) . (6.7:3)

So the decay width is, neglecting the electron mass:

2
jod ~ 1 77lg 1 g2 m%
L(CH —vet) = T (1 — m;ﬁ> 3 Z M2 | = 327‘%“27,@ (1 - m—;’ ., (6.7.4)
C; o

XeAe

2

which agrees with ref. [171].

6.8 Neutralino decays: N; — quZAV/j for ¢° = h?, HY, A°

Next we consider the decay of a neutralino to a lighter neutralino and neutral Higgs boson
¢0 = K0, HY or A°. The two tree-level Feynman graphs are shown in Fig. where we
have also labeled the momenta and helicities. We denote the masses for the neutralinos and the

Higgs boson as m x and mg. Using the Feynman rules of Fig. IKEI, the amplitudes are

N;?
respectively given by

i./\/ll = —inl-yj, (6.8.1)
iMsy = —iY " ylal, (6.8.2)

where the coupling Y = YXIX] is defined in eq. 1) and the external wave functions are
v = 2(B N, ul = yT (B M), vy =y, \y), and ol = 2t (K, \;).
Taking the square of the total matrix element using eq. (2.44]) gives:

IMP? = Y P(zayzylal + ylatoy) + Vi + Y 2ylalylal. (6.8.3)
Summing over the final state neutralino spins using eqgs. (3.1.57)—(3.1.60)) yields

Z IM|? = |Y|?(2ik; o*x + yzk TYy) — Yomy Tili — Y*2m mg, yj j (6.8.4)
Averaging over the initial state neutralino spins in the same way gives
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Figure 6.8.1: The Feynman diagrams for N; — ]%(bo in the MSSM.

1 1
5 Z IM? = §|Y|2(Tr[kj'0’pi'5] + Tr[k;-opi-o]) + RG[YQ]mﬁimﬁjTr[]lzxz]
A

=2|Y|?p;-kj + 2Re[Y2]mNimﬁj

= \Y\Q(m%i + m%j —m%) + 2Re[Y?|mj mg,, (6.8.5)

where we have used eq. (2.56)) to obtain the second equality. The total decay rate is therefore

1
7)\1/2(771 ,m2, §:|M|2
(b?

167 le )\W\

T(N; — ¢°N;) =

= RN, g, ) [M XX 2(1 r-—r¢)+2Re[(Y¢OX?X?)2} \/g] (6.8.6)

where the triangle function A\'/? is defined in eq. (6.1.11)), ; = m /m~ and ry = m¢0/m~.
The results for ¢° = h% HY, A° can now be obtained by using eqs K.1.7) and m in
eq. m In comparing eq. ( with the original calculation in ref. -, it is helpful to
employ eqs. (4.51) and (4.53) of |\ The results agree.

6.9 N; — Z°N;

For this two-body decay there are two tree-level Feynman diagrams, shown in Fig. [6.9.1] with
the definitions of the helicities and the momenta. Using the Feynman rules of Fig. the
two amplitudes are given bym

. 9 AL
My = —z—(’)i zioTiey (6.9.1)

iMsy = Z—O”L Taty e (6.9.2)

where the external wave functions are z; = z(p;, ), yg = yi (@, M), :L'; = xT(Ej,)\j), yj =
y(Ej,Aj), and ¢}, = Eu(Ez,Az)*. Noting that O;’Z»L = (’)g’jL* [see eq. ], and applying
egs. (2.45) and (2.46]), we find that the squared matrix element is:

e
IM|? = —5 Wy \(’)"L (xia“x}:cja”a:i —i—yjﬁ“yjyjﬁ"yi)
Ciy

(O"L) 0’ yjxijo” x — ((’)”L*) mia“:UTyja”yz] ) (6.9.3)

%When comparing with the four-component Feynman rule in ref. |7] note that O} = —O}/* [cf. eq. (K.2.5)].
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Figure 6.9.1: The Feynman diagrams for N; — NjZO in the MSSM.
Summing over the final state neutralino spin using eqgs. (3.1.57)—(3.1.60)) yields:

r
Z IM|? = —5 nEv [|(’)”L (ziotk; -EUVJJ;L + yjﬁ“kjvﬁyyi)

2 _ 2 _
+ (OQ’JL) mﬁjyja”al’xi + (OQ’JL*) mﬁj:ﬂm“al’yi]. (6.9.4)
Averaging over the initial state neutralino spins in the same way gives

- Z M =5, 2 € ey[|(9;;.L Q(Tr[aﬂk;j.ﬁo-”pi.ﬁ] +Tr[6ukj.05upi.g])

~ (OL1)" mgmy, io"0") = (O) my,m oo

29 . 9 ,

= 62 {\OHL|2 (kupz +p“k‘ —pi-kjgh ) —Re[(@l'-'f) ]mﬁimﬁjg“ },(6.9.5)
W

where in the last equality we have applied eqgs. (2.56)—(2.58). Using

Z et*e” = —gM + ki kY /m% (6.9.6)

we obtain

1
= Z IM|? = W{|(9”L (pi-kj + 2p;-kzk;-kz/m%) +3mﬁimﬁjRe[(O£’jL)2]}. (6.9.7)

2
AiyAj, Az
Using 2kj-kz = m%i — m%j — mQZ, 2pi-kj = m?\ﬁ + m%j — mQZ, and 2p;-ky = m?\ﬁ — m%j +m22,
we obtain the total decay width:
r j\vf ZON _ 1 )\1/2 2 2 1 M2
(N; — i) = 3 (mN’mZ’mN) 5 Z M|
167mm= j 2
N; AisAj, Az
2
g mg
le/m 7)) |OMF 2 (1415 — 27 + (1 — 1)) /rz) + 6Re[(O/F)?] /77|, (6.9.8)
w

where

T = m%j/m%i , Ty = mZ/m , (6.9.9)

and the triangle function A/2 is defined in eq. (6.1.11)). The result obtained in eq. 1’ agrees
with the original calculation in ref. |172].
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6.10 Selectron pair production in electron-electron collisions

6.10.1 e e~ —epep

Here there are two Feynman graphs (neglecting the electron mass and Yukawa couplings), shown
in Fig. Note that these two graphs are related by interchange of the identical initial
state electrons. Let the electrons have momenta p; and po and the selectrons have momenta
kz, and kg, so that p} = p} = 0; k¥ = mgL; k3 = m%R; s = (p1 +p2)? = (k1 + k2)%

t= (ki —p1)? = (k2 — p2)% u = (k1 — p2)* = (k2 — p1)*

e(p1, M) er (k1) e’ (p1,\1) e, (k1)

»
>

€ (p2a )‘2)

e (p2, )\g) e (k2) ep (k2)

Figure 6.10.1: Feynman diagrams for e"e™ — € €.

Using the Feynman rules of Fig. the matrix element for the first graph, for each

neutralino NZ exchanged in the ¢t channel, is:

9 (e oW Y o s i(k1 —p1)-o | 5
ZMt— |:l\/§< ,L'2+CW 11>:| |: Z\/igCWNzl] 1 [(kl—pl)Q—m?\?] y2. (6101)

We employ the notation for the external wave functions z; = (p;, \;), ¢« = 1,2 and analogously

for yi,xj»,y;r . The matrix element for the second (u-channel) graph is the same with the two

incoming electrons exchanged, e; < es:

iMy = (—1) [z\% <N7;*2 + % ﬁ)} [—iﬁgz}t]\fﬂ] T2 !( itk —p2)-0’2 ] i (6.102)

)2
ki —p2) m]\?i

Note that since we have written the fermion wave function spinors in the opposite order in Mo
compared to My, there is a factor (—1) for Fermi-Dirac statistics. Alternatively, starting at the

electron with momentum p; and using the Feynman rules as above, we can directly write:

g (e oswo Y s sw o ]| ik —pa) T
M= [Z\@ ( 2t cw ll)] [ Z\/igCWNzl} . [(lﬁ — p2)? —m?%] w2 (6.103)

This has no Fermi-Dirac factor (—1) because the wave function spinors are written in the same

order as in M;. However, now the Feynman rule for the propagator has an extra minus sign, as

can be seen in Fig. We can also obtain eq. (6.10.3]) from eq. (6.10.2)) by using eq. (2.62)).

So we can write for the total amplitude:

M = M+ M, = z1a-0y} + ylb-oas, (6.10.4)
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where

4
(kY — 1Y) ZNil(Nz‘Z + p il)timiv ; (6.10.5)
92 1
W= — Z Nit (N ﬂ)m : (6.10.6)
Hence, using eqs. ([2.45)) and (2.46)):
IM|? = <x1a-0y$) (yQ(z*-UxD + (y{b-?m) <x£b*-5y1)
+ <w1a-ayg) <x£b*-§y1> + (y{b-ﬁxg) (yga*-aﬂ) . (6.10.7)

Averaging over the initial state electron spins using eqs. (3.1.57)—(3.1.60), the a,b* and a*,b

cross terms are proportional to m,. and can thus be neglected in our approximation. We get:

— Z IM|? = fTr [a-0 py-T a*-0p1-o] + Tr[b T p2-o b7 preo]. (6.10.8)
/\1,)\2

These terms can be simplified using the identities:

Tr[(k1 —p1)-0 p2-7 (k1 —p1)-0 p1-G] = Tr[(k1 — p2)-T p2-0 (k1 — p2)-G p1-0]
= tu — m2 m2 (6.10.9)

eR’

which follow from eq. (2.57) and ([2.58)), resulting in:

5%,
. s
- Z |IM (tu — m?2 m Z Nj1N; W 1) (N2 + 7WN1‘1)
i defy irg=1 w w
: + : (6.10.10)
(t—m?vi)(t—m?vj) (u—m?\h)(u—m?\b) ' o
To get the differential cross-section do /dt, multiply this by 1/(167s?):
do ra? [ tu—m?2 m sy
- NN (N *)(Nig + W N,
it~ 4532, ( ) le j1Via ( ]1)( 2 + o i1)
1 1
+ . (6.10.11)
[(t—m?vi)(t—m?vj) (u—m%ﬁ)(u—m%ﬂ)]

To compare with the original calculation in ref. [174] and with eq. E26, p. 244 in ref. |7], note

that for a pure photino exchange, N;1 — cwd;1 and N2 — swd;1, so that

1

—5——| N1 || Niz + —NzlP — 1. (6.10.12)
4s

Sw W

Also note that in ref. [174] polarized electron beams are assumed. The result checks.
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6.10.2 e"e” — epep

For this process, there are again two Feynman graphs, which are related by the exchange of
identical electrons in the initial state or equivalently by exchange of the identical selectrons
in the final state, as shown in Fig. (We again neglect the electron mass and thus the
higgsino coupling to the electron.) Let the electrons have momenta p; and ps and the selectrons
have momenta k; and ko, so that p? = p3 = 0; k¥ = k3 = m%R; s=(p1+p2)?% t = (k1 —p1)?

u= (ki —p2)°.

) €g (k1) ep M) €r (k1)
< i \
X5 X7
et (p2, Aa) T epba) 2 XT er (k2)
) e (p2, A2)

Figure 6.10.2: The two Feynman diagrams for e”e™ — €€y in the limit where m, — 0.

Using the Feynman rules of Fig. the amplitude for the first graph is:

2
iM; = <—i\/§gSWNi1> [
cw

m

Ni 71
Y1Ys 6.10.13
(k1 —p1)? —m%] e ( )

for each exchanged neutralino. The amplitude for the second graph is the same, but with the

electrons interchanged:

2 imy
iM, = (—i\/igsWNu> N il (6.10.14)
cw (k1 —p2)® —m%

Since we have chosen to write the external state wave function spinors in the same order in M,
and M, there is no factor of (—1) for Fermi-Dirac statistics. So, applying eq. (2.44]), the total

amplitude squared is:

4.4 4 2
M = = ) (oyn) | D_(Naf*mg, | o (6.10.15)
1% =1 ]VZ Nz
The sum over the electron spins is obtained from
Z (yiy;)(yﬂh) - Tr[pg'ﬁpl'd] = 2p2'p1 =S. (6.10.16)
A1,A2
So, using eq. (3.1.58)), the spin-averaged differential cross-section is:
4 2
do 1 1 9 ma? 9 1 1
— = - = N; S 6.10.17
dt  16ms? | 4 > M 2cy s Z( wWmy \ o Ta e ( )
A1,A2 =1 N; N;

After integrating over t to obtain the total cross-section, the resulting expression must be mul-
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tiplied by a factor of 1/2 to account for the identical sleptons in the final state (to avoid the
double counting of indistinguishable particles).
To compare with [174] and also with eq. E27 of ref. [7], note that for a pure photino

exchange, N;1 — cw 1, so it checks.

6.10.3 e e~ —ejep

Again, in the limit of vanishing electron mass, there are two Feynman graphs, which are related
by the exchange of identical electrons in the initial state or equivalently by exchange of the
identical selectrons in the final state. As shown in Fig.[6.10.3] they are exactly like the previous

example, but with all arrows reversed.

e(pl,Alg L _E_Z (k1) e (p1,\1) . _’ev_z (k1)
A \
X5 X5
e (p2; A2) 1 er (k2) e, (k2)
g T e (p2, A2) T

Figure 6.10.3: The two Feynman diagrams for e"e™ — €, €, in the limit of vanishing electron
mass.

Using the Feynman rules of Fig. [K:4.2] the amplitude for the first graph is:

2 .

. g sw LMy,

Mt = <Z[NZ*2 + — ’L*l]> [ B t 3 ] Tr1x9, (61018)
V2 ‘w (p1 — k1) N,

for each exchanged neutralino. The amplitude for the second graph is the same, but with

p1 <7 pa:

2 i~
M, = (z’\%[z\f;; n SWN;]) [( N ] 2122 (6.10.19)

cw P2 — k1)2 - mﬁi
Since we have chosen to write the external state wave function spinors in the same order in M
and My, there is no factor of (—1) for Fermi-Dirac statistics. The total amplitude squared is:

2

4 4
g e SW o 1 1
IM? = Z(xlxz)(xgﬂ) Z(Nz'z + o il)QmNi (t oz T u—mz ) - (6.10.20)
i=1 N; N;
The average over the electron spins follows from eq. (3.1.57):
Z (acwg)(:/vgmb = Tr[p2-op1-G) =2pa-p1 =s. (6.10.21)

A1,A2
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So the spin-averaged differential cross-section is:

do 1 (1 S M ma? ﬁ:(N*‘i‘SW )2 Lo,
PR — — ; — N m=
dt — 16ms? \ 4 &~ 16sys [ 2 ew TN\t —mZu—mZ

2

(6.10.22)
After integrating over t to obtain the total cross-section, one must multiply the resulting ex-
pression by a factor of 1/2 to account for the identical sleptons in the final state [as noted below

eq. (6.10.17)]. To compare with [174] and also with eq. (E27) of ref. [7], note that for a pure

photino exchange, N;; — cywd;1 and Njs — sy d;1, so it checks.
6.11 e et — vr*

Consider now the pair production of sneutrinos in electron-positron collisions. There are two
graphs featuring the s-channel exchange of the Z°. We will neglect the electron mass and Yukawa,
coupling, so there is only one graph involving the ¢-channel exchange of the charginos. These
three Feynman diagrams are shown in Fig. [6.11.1} where we have also defined the helicities and
momenta of the particles. The Mandelstam variables can be expressed in terms of the external

momenta and the sneutrino mass:
2p1p2 = s, 2k -ky = 5 — 2m2, (6.11.1)
2p1-k1 = 2po-ky =mZ —t, 2p1-ky = 2po-k1 = m2 —u. (6.11.2)

Using the Feynman rules of Fig. [J.1.2] the amplitudes for the two s-channel Z boson exchange
diagrams are{’]

. . —igh'v | .

iMy = [—ZQé’W(kzl . @)4 [ DQZ ] [zc*zv(siv _ ;)] v | (6.11.3)
. . —igh | [ gs? _

iMy = [—125;‘/(/{1 — kg)#} [ DgZ ] [ch;:[//v] yj{ayxg, (6.11.4)

where the first factor in each case is the Feynman rule from the Z boson coupling to the
sneutrinos (see Fig. 72c, ref. ), and Dz = s —m?% + il zmy is the denominator of the Z boson

propagator@ The t-channel diagram due to each chargino gives a contribution

o
iMy = (—igV) (—igVin) oy | L= POy (6.11.5)
(k1 —p1) —mg,

using the rules of Fig. Therefore, the total amplitude can be rewritten as:

M= clxl(kl — k2)-ay§ + CQyI(kl — k‘Q)'E.’L'Q + C3$1(k1 —pl)-ayg , (6.11.6)

51Because we neglect the electron mass, we may drop the Q“Q" term of the Z propagator, where Q = p; + p2
is the propagating four-momentum in the s-channel [cf. Fig. [4.2.5].

52The explicit inclusion of the finite decay width in the propagator of an unstable particle involves subtle issues
of gauge invariance and unitarity, particularly in higher loop computations. The authors of ref. recommend
the complex-mass scheme for perturbative calculations with unstable particles, first introduced in ref. .
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e(p1, A1) v(k1) e'(p1, 1) v(k1)

ZO /Y// ZO /1//
Tvl AN
e'(p2, A2) v* (ko) e(p2, A2) v (k2)

e(p1, A1) v (k1)

> - - -
X; A

el (p2, A2) v* (ko)

< - <——— -

Figure 6.11.1: The Feynman diagrams for e”e™ — vro*.

where
2 2 2.2 2 2
g°(1 — QSW) 9 Sw 2 Vi |
1= "5, 2= —:5 , 3=y 5 . (6.11.7)
degyy Dy 2cy, Dz ; méj —t

Squaring the amplitude and summing over the electron and positron spins, the interference

terms involving c¢o will vanish in the massless electron limit due to egs. (3.1.59) and (3.1.60]).

Therefore, we obtain

doIMP = {\Cl\Qﬂfl(kl — ko) oy yalky — ka)-0a] + |eaf? y] (k1 — ko) T wl(ky — ka) Ty
)\1,>\2 >\17>\2

+cdzi(ky — p1)-oyb ya (k1 — p1)-ox) + 2Referes 21 (ky — ko) oy y2(ky —pl)'fmm}

= |Cl‘2TI‘[(k‘1 — kQ)'O'pQ‘E(kl — kg)-O'pl'E] + |62|2T1"[(k‘1 — k‘g)'ﬁpg'g(kl — kz)-&pl'a]

+3 Tr[(ky — p1)-ope-G(k1 — p1)-op1-7) + 2Re[c]es Tr[(ky — ko) -op2-a(k1 — p1)-op1 -7,
(6.11.8)

where we have used eqgs. (3.1.57) and (3.1.58]) to perform the spin sums. Applying the trace
identities egs. (2.57) and (2.58) and simplifying the results using eqgs. (6.11.1)—(6.11.2)) and

u:2m,2;—s—t,weget

Z IM|? = —[st+ (t — m2)?] (4]c1]* + 4|ca|® + 5 + 4Re[ei]es) - (6.11.9)
A1,A2

When ms = mg_, this agrees with eqs. (E46)—(E48) of ref. [7]°°| and with ref. [177]. The
C1h Ca

%3 There is a typographical error in eq. (E48) of H the right-hand side should be multiplied by 1/cos? 8.
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differential cross-section follows in the standard way by averaging over the initial state spins:

do 1 1
= W<4 > \MP) : (6.11.10)

1,A2

Note that

4m2 1/2
t=mZ — (1 —Bcosh)s, B = (1— V> : (6.11.11)
S

where 6 is the angle between the initial state electron and the final state sneutrino in the center-
of-momentum frame. The upper and lower limits ¢4 and ¢_ are obtained by inserting cos§ = +1
above, respectively.

Performing the integration over ¢ to obtain the total cross-section, one obtains

 do gt 2 2
a:/t it = <Sz+ > S¢j+ZSZi>, (6.11.12)

ij=1 i=1
where
B3 2
Sz = 24k, By —4siy +1)—=—3 D (6.11.13)
Sii = |[Va|* [(1 — 2v)L; — 25] ; (6.11.14)
(m%, +573)La (m2~ +577) L1
S19 = So1 = |Vi1Vi2|? { Ca R — B3, (6.11.15)
mé mél
2 2
Sz = CW Dy [, + 50?4+ 580 - 1/2)] E=12) (61
ciy |Dz[?
with
ml% —m2 m2 —t
N = G L= m(g’i). (6.11.17)
s Z, —t+

This agrees with egs. (E49)-(E52) of ref. [7] in the limit of degenerate charginos, or of a single
wino chargino with |Vi;| =1 and Vi3 = 0. It also agrees with [177].

6.12 e~et — N;N;

Next we consider the pair production of neutralinos via e”e' annihilation. There are four
Feynman graphs for s-channel Z° exchange, shown in Fig. [6.12.1] and four for t/u-channel
selectron exchange, shown in Fig. [6.12.2] The momenta and polarizations are as labeled in the

graphs. We denote the neutralino masses as m 3 and the selectron masses as mg, and

NN,
megg,. The electron mass will again be neglected. The kinematic variables are then given by

$=2p1-py = m?@ + m%j + 2k; - k5, (6.12.1)
t= m?\z — 2p1'ki = m%]_ — 2p2'kj, (6.12.2)
U= m?\z — 2po-k; = m%j — 2p1-kj. (6.12.3)
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e(pi, A1) XY (Kiy Ai) e’ (p1,\1) XY (kis \i)

A Z°
e (p2, A2) X?T(kj7)\j) e (p2, A2) X?T(kg})\j)
e (p1, A1) 0T (ki i) e (p1,\1) X (ki i)
70 Z°
€ (p27)‘2) X? (kj,)\j) é(p2>)‘2) XE‘) (kja)‘j)

Figure 6.12.1: The four Feynman diagrams for e“e™ — Niﬁj via s-channel Z° exchange.

By applying the Feynman rules of Figs. |J.1.2] and [K.2.1] we obtain for the sum of the
s-channel diagrams in Fig. [6.12.1] [cf. footnote ,

—ig" [ig(s%, — L
Mg = 17/)9 { gl ZV Q)xla“yg + giy{*ux ] [ O”La: oy — O’/Lyzal,a: , (6.12.4)
z W

where O]} is given in eq. 1’ and Dz = s—m%+il'zmz. The fermion spinors are denoted by
x1 = x(P1, \1), yg =yt (P, \a), xj = xT(Ei, i), yj = y(l%, Aj), etc. Note that we have combined
the matrix elements of the four diagrams by factorizing with respect to the common boson

propagator. For the four ¢/u-channel diagrams, we obtain, by applying the rules of Fig.
iMD = ! 9 * ‘9 oot
zMgL =(-1) [t — mzL] [ﬂ(NZ? + Nﬂ)] [\/? <N]2 + N >]m1yzy2xj, (6.12.5)

e — [ ] sw 9 (N o SW Lt
iMz = [u—mg ][\/5( 2t o 31)} [ﬂ(NZ2+cWNll>]xlyjy2x” (6.12.6)

iM{) = (-1) [t — R] ( zfg— 11) (—i\/ig% f1>yMﬂ?2yj= (6.12.7)
ZMS;) = LL — ng] (—iﬁgZ—VWVNﬂ) (—iﬂg%Nﬁ)ny}myz‘- (6.12.8)

The first factors of (—1) in each of egs. and are present because the order of the
spinors in each case is an odd permutation of the ordering (1,2, 1, 7) established by the s-channel
contribution. The other contributions have spinors in an even permutation of that ordering.
The s-channel diagram contribution of eq. can be profitably rearranged using the
Fierz identities of egs. (2.68)) and (2.69)). Then, combining the result with the ¢/u-channel and
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e(p1, A1) 3 Xo ' (ki i) e (p1, 1) - X7 (Kis Ai)
| |
Ly €p L
| |
| |
el (p?y )\27 " X? (k], )\]) e (p27 )\2)' ) X?T (kja >‘j)
e (p1, A1) X0 (kiy M) e (pr, M) X1 (ki \)
\ \
ey TN
|
: \ | \
e’ (p2, A2) X?T (kj,2)) € (P2, A2) XY (kj, Aj)

Figure 6.12.2: The four Feynman diagrams for e"et — NZN] via t/u-channel selectron ex-
change.

s-channel contributions, we have for the total:

M = ermyjybel + comiyiybal + caylaleay; + caylalaay,, (6.12.9)
where
2
cL = CgT [(1 — ZS%V)O;;L/DZ — %(CWNiQ + SWNil)(CWN;z + SWN;'H)/(U — mgL)] , (6.12.10)
w
2
co = CgT (25 — 1O /Dz + §(ewNiy + swNji) (ew Njz2 + swNjt)/(t —m2))], (6.12.11)
w
_ 292812/1/ OIIL D N N* 2
cs = =5 [0} /Dz + NaNjy /(t —=mZ,)], (6.12.12)
c
w
_ 292812/1/ O//L D N* N 2 6 12 13
€4 = C%/V [jz'/ z — Vi1 Jl/(u_méR)}' (6.12.13)
Squaring the amplitude and averaging over electron and positron spins, only terms involving

xlmJ{ or ylyir, and acga:; or ygyg survive in the massless electron limit. Thus,

STIMP =D <!cllzy}x1{x1ijiyzy§xj + Jea| Pyl 2l yia oyl
A1,A2 A1,A2

+|03|256iy1y1$;[y;93£1?2yj + \04\290jy1y193;y3$£$2yi

+2Re [clczygxixlijjygygmﬂ + 2Re [03chjy1nyIygm£xgyj}>
= 101’2%%1'5% wz'pzﬁw;r + !02!2ygpl-ﬁyi l'jpz-a'x;-
+!C3!2$1p1'0$3 y}pg-ﬁyj + !C4|2$jp1'096;r- ygprﬁyi

+2Re [clcéygpl-iyj xjpz-aa:;f] + 2Re|[cscia;p1 -U:EZT- y;rpg-ﬁyj] , (6.12.14)
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after employing the results of eqgs. (3.1.57)—(3.1.60]).
We now perform the remaining spin sums using eqgs. (3.1.57)—(3.1.60|) again, obtaining:

Z IM|? = |c1|*Tr[p1-@k;- 0] Tr[pa-oki - + |ca|*Tr[py -Gk; - 0| Tr[pe-ok; -]
A1,A2,A8,75
+es|*Tr[p1-ok; -7 Tr[pe-Gk;-0] + |ca|* Tr[py -ok; -7 Tr[pe-Gk; - o]

+2Re[6102]mﬁimﬁjTr[p2-Jp1 7] + 2Re[03c4]m]\7imﬁjTr[p1 -o0p2-7).(6.12.15)
Applying the trace identity of eq. (2.56) to this yields

Z IM? = (|ea|? + leal®)4pr -k pa-ki + (leaf® + |es|*)4py-ki p2-kj
spins % *
+4Re[cic5 + C3C4]mﬁimﬁjpl ‘P2

= (lea)* + |eal®) (u — mf:,i)(u - m%j) + (el + [es|?) (t — mf:,i)(t - m?vj)
+2Relc1¢5 + 0304]mﬁimﬁjs. (6.12.16)
The differential cross-section then follows:
do 1 1 9
— =—1 = . 6.12.17
dt 167s? | 4 Z M ( )
spins

This agrees with the first complete calculation presented in ref. [178]. For the case of pure
photino pair production, i.e. N;; — cwd;1 and Njo — swd;1 and for degenerate selectron

masses this also agrees with eq. (E9) of the erratum of . Other earlier calculations with some

simplifications are given in refs. [179,180].

Defining cos 6 = p1-k; (the cosine of the angle between the initial state electron and one of

the neutralinos in the center-of-momentum frame), the Mandelstam variables ¢, u are given by

1

t=3 |m% +mE — s+ A (s,m m ) cosd] (6.12.18)
1

w= [m§V Fm s V(s ) cos 0} : (6.12.19)

where the triangle function A2 is defined in eq. (6.1.11)). Taking into account the identical

fermions in the final state when ¢ = j, the total cross-section is

1 4+ do

— —dt 6.12.20
7 1+6; ), dt ’ ( )

where t_ and ¢, are obtained by inserting cos = F1 in eq. (6.12.18)), respectively.

6.13 N.N, — ff

In this section, we compute the annihilation rate for NiN; — ff, where f is any kinematically

allowed quark, charged lepton or neutrino. The case of f = e is the reversed reaction of the
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XY (p1, A1) f(k1,Af1) X (p1, A1) f (k1 Ap)

70 A
i
X1 (P2, A2) FT (k2, Ap2) X1 (P2, A2) fT (K2, Ap2)
X (1, A1) FT (k1 Ap1) X3 (1, M) ST (k1 Ap)
70 Z°
- g S
X1 (p27)‘2) f(k2,>\f2) X? (pQ’)‘Z) f(ka)‘fQ)

Figure 6.13.1: The four Feynman diagrams for Nlﬁl — ff via s—channel Z" exchange, where
f is a quark or lepton.

process examined in Section (with ¢ = 7 = 1). In R-parity-conserving supersymmetric
models in which Nl is the lightest supersymmetric particle (and hence is stable), the Nlﬁl
annihilation process is relevant for the computation of the neutralino relic density . In
particular, Nlﬁl — ff can be an important contribution to cold dark matter annihilation
. Neutralino dark matter is typically heavier than about 6 GeV ; for lighter
neutralinos see ref. .

In the computation of the relic density, one computes vye10ann, Where oann is the Nlﬁl
annihilation cross-section and v, is the relative velocity of the two neutralinos in the center-
of-momentum frame. The square of the relative velocity is taken to be its thermal average,
vfel ~ 6kpT/m ~ , which is typically non-relativistic when the temperature is of order the
freeze-out temperature (where the neutralino falls out of thermal equilibrium). Hence, it is
sufficient to compute the annihilation cross-section for NNy — ff in the non-relativistic limit.

As in Section there are four Feynman graphs for s-channel Z° exchange, shown in
Fig. In addition, there are s-channel neutral Higgs exchange graphs, shown in Fig.
that yield contributions to the annihilation amplitude proportional to the fermion mass, m fﬁ
Likewise, as in Section there are four Feynman graphs for ¢/u-channel fL and fR exchange,
shown in Fig. |6.13.3l However, because we do not set my to zero, four additional ¢/u-channel
graphs contribute, shown in Fig. [6.13.4] that are sensitive to the higgsino components of the

neutralino.

64 : 1 1 0 _ 30 g0 0
In regions of parameter space where My, & 5Mz OF M ™ 5Myo (where ¢” = h°, H® or A”), the resonant

2 — 1 annihilation ]T/'l ]T/'l — 7% or ]vl ]vl — qbo dominates the 2 — 2 annihilation processes considered here.
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XY (p1, A1) f (k1 Ag1) X (p1, A1) STk, A1)

X[l) (p27)‘2) f(kg,)\fQ) X(‘:l] (va)‘Q) fT (k27)\f2)

X1 (1, A1) f (K1, Ap1) X3 (1, M) ST (k1 Ap1)
¢’ ¢’

X0 (p2, A2) F (k2, Apa) X3 (92, 22) F1 (k2 Apo)

Figure 6.13.2: Feynman diagrams for ]Vlﬁl — ff via s—channel Higgs exchange. There are
four diagrams for each possible neutral Higgs state ¢ = h?, H? and A°.

The neutralino and the final state fermion four-momenta and polarizations are as labeled

in the Feynman graphs. In the center-of-momentum (CM) frame, the four-momenta are

=(E;P), ph=(E;-p), K =EQ;Bk), Kk =EBEQ1;-pk), (6.13.1)
where

B=4l1——L. (6.13.2)

2
Ex~mg + Pl , (6.13.3)
1 2m ~
N1
and the kinematic invariants are given by
s = (p1+p2)” = 4E% = dm7; + 4[], (6.13.4

)
t=(p—k)?= m%l + m?« — 21 -k —m?vl + m?c +2Bmg, [Pl cos b — 2|p1?, (6.13.5)
u=(p —ko)? = mJQTh + m? — 2py kg =~ —m?v + m? —2Bmy, |Plcosf — 2|p1%, (6.13.6)

)

where 0 is the CM scattering angle. Subsequently, we shall neglect the subdominant O(|p]
terms in the ¢ and u-channel propagator denominators by setting t ~ u ~ —m? St m2 I3
1

By applying the Feynman rules of Figs. [J.1.2|and [K.2.1] and using the unitary gauge for the

Z-boson propagator, we obtain for the sum of the s-channel Z-exchange diagrams of Fig. [6.13.1
Coegm) (o

Dy cw

iIMy =
(6.13.7)
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Xi (p1,Ay) _ J(kAp) X1 (1, Ay) [Tk A)
| |
o _
fi a Ti v
I I
X (P2, X2) S fke ) X1 (92, 22) T FlkaAp)
X1 (p1, A1) f (k1 Ap1) X (p1, M) F1 (k1 A p1)
\ \
i v i s
: \ | \
XU (02, 22) I (k2 Apa) X (p2, A2) f (k2. Ap2)

Figure 6.13.3: The four Feynman diagrams for Nz]% — ff via t/u-channel fL and fR ex-
change, where f;, and fr couple to the gaugino components of the neutralino.

X8 (p1, M) [Tk A X (p1, M) [k An)
| |
i a i v
l l
X3 (2. A2) T [k Ap) X3 (P2, A2) T ke Ap)
X1 A) F1 k1, A1) X1 (p1, A1) f (k1 Ap1)

gt
ot
*

BN -

X(l) (p27)\ ) f(k‘g,)\fg) X?T (p27)“2) fT (k27)\f2)

Figure 6.13.4: The four Feynman diagrams for Nz]v] — ff via t/u-channel fL and J?R ex-
change, where f; and fr couple to the higgsino components of the neutralino.

where O7{ is given in eq. (K.2.5), Dz = s — m% + ilzmyz, and Q = p; + p2 = ki + ka.
The spinor wave functions are denoted by =1 = x(p}, A1), y% =y (P, \o), :L‘}:l = xT(El,Afl),
Ypo = y(Eg, Ar2), etc. In obtaining eq. 1D we have combined the matrix elements of the

four diagrams by factorizing with respect to the common Z-boson propagator. Note that all

103



four terms in eq. have the same order of spinor wave functions (1,2,f1,f2). Thus, no
additional relative signs arise (beyond the sign associated with the choice of the o or @ version
of the vertex Feynman rules). One can simplify the terms that originate from the Q*Q" part
of the Z-boson propagator by Writing Q“ = (p1 + p2)* and Q" = (k1 + k2)¥. Contracting the u
and v indices with the help of egs. m 3.1.12)) yields:

(p1 + p2)" [mlauyg — yIEng} =2mg, (wle - ny%) , (6.13.8)

(k1 + k2)” (Tgf — S%VQf)x}:lEl,yfz - S%‘/nyflo',/ﬂf}Q} = T:,fmf (yflyﬁ — x}lx;rc?) . (6.13.9)

Hence, we shall write

Mz =MP + MY, (6.13.10)

) —igt (—ig _ _
iMy) = () oY {xwuyg - yigu@] [(T:{ - S%/I/Qf)x}laVny - SIZ/VnyflanJ}2:| ’

DZ Cw
(6.13.11)
@) tTmymg (—ig Liomf it ot
MG = (o O” (21 (xm_yly2> <yf1yf2_xf1xf2) . (6.13.12)

Next, we apply the Feynman rules of Figs. [K.1.1] and [K.3.1| to obtain the sum of the four
s-channel Higgs exchange diagrams (for ¢ = h°, H? and A°) of Fig. [6

iMpg= Z Do (\/51::() [(Y¢ X1X1)m1x2 + (Y¢ X1X1) Y1 yg} [kf¢oyf1yf2 + kf¢o$f1$}2
qu:hO,HO,AO

(6.13.13)
where Y°XIX? g given by eq. (K.3.1), and Dy = s — mio + il'gomgo. In addition, we have

introduced the following notation

kago, for f=d, e, for f=d. e
Uq or =a, e ,
krgo =< kg0, f =, = 6.13.14
f? ug® or f = u v {vu, for f=u, v, ( )
0, for f=v,

where vy, vg are the neutral Higgs vacuum expectation values [cf. eq. (K.1.9)] and k40 and &40
are defined in egs. (K.1.7) and (K.1.8)). As the order of the spinor wave functions is (1,2, f1, f2)

for all four terms of My, no extra minus signs appear.

A good check of the above calculations is to repeat the analysis in the 't Hooft-Feynman
gauge (where the gauge parameter £ = 1). In this gauge, My = M(ZI), since the term pro-
portional to Q*Q" is absent from the gauge boson propagator. However, we must now include
the diagrams of Fig. with ¢0 = GO. In the t Hooft-Feynman gauge, mgo = mz and
D¢o = Dz. Moreover, using egs. (K.1.7) and (K.1.g)),

ko _ 2Ty
vy v

(6.13.15)
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Hence, using eq. (6.13.13) with ¢° =

. m 0,,0.,,0
iMag = 4\/5’01;) (2T) Yy GEXIXT <x1$2 — yiy;) (yflyﬁ — folmJ}Q) , (6.13.16)
z
where we have noted that 1Y ¢ XIX! is real. In particular, using eq. (K.3.14) and recalling that

mW mQZc%,V 2g v?, we confirm that Mg = M(ZZ) as expected from gauge invariance.

We next evaluate the t/u-channel exchange diagrams shown in Figs. [6.13.3|and [6.13.4, We

neglect fofR mixing. Eight Feynman graphs contribute, and we denote the total invariant

amplitude by:

2
Mi=>"( ft f“)+M(tJ)+M(“])) (6.13.17)
7j=1

where 7 = 1,2 labels the contributions of Figs. [6.13.3] and [6.13.4] respectively, and the other

superscripts (¢ or u) and subscripts (fL or ]?R) indicate the exchange channel and the exchanged

particle, respectively. These matrix elements are evaluated by applying the rules of Fig. [K:4.2]
The graphs of Fig. [6.13.3| are sensitive to the gaugino components of Nl, and yield

o~ (=)

2
(wlzh)) (@2yy,) . (6.13.18)

s
T;{Nu + X (Qf — T:{)Nll
cw

2 .
. u SW (3
iM§ :( zgxf) Tgch12+J(Qf—T3f)N11 <u_m§> (2197,)(het) . (6.13.19)

L
2 .
La (1) . SW 7 9
Mz =(=1) <“f290WQf) (t—mj; )an (2197) Wahy) | (6.13.20)
R
2 .

Mg = <“/§90WQJ”> <“_mfR> [N (ylahy) (w2y 1) - (6.13.21)

The explicit factors of (—1) in egs. (6.13.18) and (6.13.20) are present because the order of

the spinor wave functions in these cases is an odd permutation of the ordering (1,2, f1, f2)
established in the computation of the s-channel amplitudes.
The graphs of Fig. are sensitive to the higgsino components of Kﬁ, and yield

. 2 .
Ca (82) —imy i 9 -
Mg, _(_1)( vy ) (t_m? ) [Nisl” (@141) (Y325) » (6.13.22)
L
. 2 .
. u —im 2
ZME?LQ):< v f> (u_m )Ilel (fhy) (@ayp) | (6.13.23)
f fr
. 2 .
o (12) —1my 2
Mg, _(_1)< vy ) (t_m )!lel (ylzh) (@2uy,) (6.13.24)
fr
. 2 .
u —1im 7
M= ( Uff) <u—m% )'le’Q(xlyfz)(?J%x}l), (6.13.25)
fr
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where v; is defined in eq. (6.13.14)), and

N3, for f=d, e,
Nif =< Ny, for f=u, (6.13.26)
0, for f=v.

As before, the explicit factors of (—1) are due to the ordering of the spinor wave functions.

It is convenient to write the total matrix element for Ny Ny — ff as the sum of products
of separate neutralino and final state fermionic currents. The contributions of the s-channel
diagrams are already in this form. The contributions of the ¢— and u—channel diagrams given in
eqs. (6.13.18)—(6.13.25]) can be rearranged using the Fierz identities of eqgs. (2.68)—(2.70),

ylah ways, = =3 (Wle"e:) (2 7p,) | (6.13.27)
Ty gyt = =3yl (@hFayp,) (6.13.28)
xlyflygfﬁjfg = —%(xw“yi)(yfmxﬁ), (6.13.29)
Yiehatayp = =5 (1" e2) (y510u)) (6.13.30)

Combining the result of the s, t, and u—channel contributions, we have for the total amplitude:

L D R P,
=z o\nr2 Y1Y2 ) \Ur1Yy2 1ty
Z

a1 (Y] 7 we) (wh Ty ) +e2 (210" yD) (@ Ty 1) +es (107 y) (g1 00y +ea(y]e# w2) (y o )y)

tmy [es(@122) (9152) + co(@rea)(@hiahy) + el (W) + es@lvd) @hiel,)] L (6.13.31)
where the coefficients ¢y, ¢1, ..., ¢4 are given by
2271 Off
_ , 6.13.32
Co g C%VDZ ( )
2 [T = sh@pOfE | TN+ Q- THNP]  mi (NP
1=-9g 3 + 2 2 7 | (6.13.33)
CWDZ t—me 2vf t—mfR
L@ —sheport | T Ne + 2Q — THNUPT | md (N
co=g 5 + 3 + 55 s |, (6.13.34)
cWDZ u—me 2vf u—mfR
2 "L 2 2 2
_ 25w Off | Qg|Nul my [ [Nyl
=95 Q| p t i | T i ) (6.13.55)
w Ir f fr
2 "L 2 2 2
S 0] Q¢|N m N
c—g g, |9 N ] Loy ( Yy ) ' (6.13.36)
v z  u—m5 2vy \u—m3
Ir fr

The coefficients cs,...,cg are obtained from eq. (6.13.13)) and represent the s-channel Higgs

exchange contributions to the annihilation matrix element.
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In the non-relativistic limit, |p] < m 5,- Then t ~u ~ —mJQVl + m?c, and we can approxi-
mateESl c1 = —cy and c3 = —cy. Hence, the total amplitude, eq. ((6.13.31)), can be written as

IR e — gt
= mQZ 0\ X122 — Y1Ya | (Yr1Yyp2 ity
+ [yhﬂxg — xlg“y;} [cl(xhﬁﬂyﬂ) — 03(yfla#x}2)] + My, (6.13.37)

where the s-channel Higgs exchange contributions, My, will be neglected for simplicity in the
subsequent analysis. The spin-averaged squared matrix element for NNy — ff then takes the

following form:

2,2

m4sm4

TN

i Mz M =N [|61|2F1W + e PP — 236(0103)17{5/] + m741|60|2NF
$1,52,5 11,5 f2 z
2mymg
+——5—Re[c(c1 + c3)|N F*, (6.13.38)
myz

where Ny, N, and N are spin-averaged tensor, vector and scalar quantities that depend on
the initial state neutralino kinematics and F{f 5’12, F* and F are spin-summed tensor, vector

and scalar quantities that depend on the final state fermion kinematics. These quantities are
easily computed using the projection operators of egs. (3.1.57)—(3.1.60) and the standard trace

techniques to perform the spin averages and sums. Explicitly, the spin-averaged neutralino

quantities are

N=1 Z (129 — yiy;)(a}gaz{ — Yoy1) = p1-p2 + m%l =2E?, (6.13.39)
S1,52
| i Y —2mg B, n=0,
Nt =4 Z(%Eﬂfﬁ? — z10Myy) (w21 — Y2un) = —my, (p1+p2)t =
51,52 Oa n= i )
(6.13.40)

and a symmetric second-rank tensor,

Nt =13yl e — ooyl @by — ya0¥al) = pivh + phpt — g" (p1ops — m%,)

51,52

2m~ M:U:07
=9 0, pu=0,v=jor p=i,v=0, (6.13.41)

2[|p1? 6" —p'p’], w=i,v=7j,

55In particular, we assume that fL and fR are significantly heavier than all other particles in the annihilation
process. Consequently, we can ignore all O(|p]/mj, ) terms in c1 + c2 and cs + ca.
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where the final results given in eqs. (6.13.39)—(6.13.41)) have been evaluated in the CM frame.

Similarly, the spin-summed final state fermion quantities are

F = Z (Yp1Yp2 — x}lxk)(yky}l — Xy py) = 4(k1-ko + m?«) = 8E?, (6.13.42)
Sf1of2
P = Z (x}15“yf2)(y}2y}1 — Zpypy) = — Z (yflauxjfz)(y}zy}l — TpoTyy)
5f1:5F2 SF1:Sf2
AmsE,  p=0,
= 2ms (k1 + ko) = (6.13.43)
0, p=1,

after evaluating the above quantities in the CM frame, and

FY= 3 @po"yp) W] e p) = kipho Tr(o""0*5") (6.13.44)
SF15f2

FY" = N (ypotahy)(@,0yh) = kipkoy Tr(@ota "), (6.13.45)
5152

Fiy = Y (ypo'zhy)Whe'z,) = Y (@h 7y, (@,0"y)) = —m? Ti(e"3”). (6.13.46)
SF15f2 Sf1sf2

Since N is symmetric, the antisymmetric parts of F{" and F}" do not contribute in eq. ((6.13.38)).

The symmetric parts of FI"” and F3" are equal and given by:

[F1 Jeymm = [Fy " Joymm = 2(k'R5 + (kG — Ky - kag™”)

2m?c , pw=v=>0,
= 0, pw=0,v=j530r p=1,v=0,
2m2 2k’ — §) —AB2(K'K —§7),  p=iv=j,
(6.13.47)
and Fly = —Qm?cg“” . The spin-averaged squared matrix element for NiNi — ff given by

eq. (6.13.38) can now be fully evaluated, resulting in
1 Z Mz + /\/l];\z =4(|c1* + [es]?) [m%lmfc + 2|p1?(E%(1 4 cos? 6) — m?c cos? 6)
51,52,5f1,5f2
—|—8m? Re(cic3) [m%l - 2|13*|2}

16m?m2~

et B [J-“72|00|2 —myRe[cf(c1 + 03)]] , (6.13.48)
Z

where cosf = 15’]2:/ |P]. In the non-relativistic limit, we use eq. (6.13.3) and drop terms of
O(|p1%).
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To compute ve10ann, We make use of the following result for the differential annihilation

cross-section in the CM frame:

d 1 4m? 12
2 _ 7 2
frel <dQ> ~ 32725 (1 S ) Mlive s (6.13.49)

where |[M|2,, is the squared matrix element for the annihilation process, averaged over initial

spins and summed over final spins, and the relative velocity of the initial state neutralinos in
the CM frame is given by v = 4[p]/\/s = 2|p]/my, , after noting that /s ~ 2mg in the
non-relativistic limit. Inserting the squared matrix element obtained above into eq. ((6.13.49)

and integrating over solid angles, we end up with:

2 1/2
1 m
vrelaannz&rEz(l—Eg‘) {<|c1|2+|c3|2>{ i+ 22 (4 )]

4m§m% 2 2 2 2 2 2 2
+T‘él |:m]v1 (mﬁl + 2|];| )|CO| — mZ(mﬁl + |]5‘| )Re[CS(cl =+ 63)]:|
+2m] Re(ercs) [ m%, — 2/l + o<rm4>} , (6.13.50)

where the effects of the s-channel Higgs boson exchanges have been omitted.

The momentum dependence of eq. reflects the famous p-wave suppression of the
annihilation cross-section in the m; = 0 limit noted in ref. m In general, the annihilation
cross-section in the non-relativistic limit behaves as vpe) Cann o |P]?. Applying this result to
eq. (6.13.50) in the my = 0 limit implies that £ = 1. This is a consequence of the Majorana
nature of the neutralino. In particular, in the limit of m; = 0, the f f pair is in a J =
angular momentum state. However, Fermi statistics dictates that at threshold, a pair of identical
Majorana fermions in a J = 1 state must have relative orbital angular momentum ¢ =
(corresponding to p-wave annihilation). The s-wave annihilation (corresponding to the Majorana
fermion pair in a J = 0 state) is suppressed by a factor of m?c, as is evident from eq. .

We have checked that eq. corresponds to a result first obtained in ref. (al-
though the latter reference omits the terms in eq. proportional to ¢y). However, we
emphasize that this formula neglects the effects of s-channel Higgs boson exchanges. We in-
vite the reader to complete the computation of the annihilation cross-section by including these
terms (along with the effects of interference between the neglected contributions and the ones

computed above).

56Tn ref. [181], the annihilation rate for photinos is computed, corresponding to Ni1 = cw, Ni2 = sw and
Ni3 = Nig = 0. In this case, the Z boson and Higgs boson s-channel exchange diagrams are absent. The
result presented in ref. |[181] should be multiplied by a factor of two (H. Goldberg, private communication)—the

corrected expression then agrees with eq. (6.13.50)).
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The annihilation of Ny N7 into heavy quarks (¢, b and t), followed by the decay of the heavy
quarks, can yield observable signatures suitable for indirect dark matter detection. For example,
the annihilation of neutralinos in the galaxy provides a possible source of indirect dark matter
detection via the observation of positrons in cosmic rays . Neutralino dark matter can also
be captured in the sun [188]. The neutrinos that arise (either directly or indirectly) from the
neutralino annihilation in the sun can be detected on Earth (see, e.g., ref. )

6.14 e et — C;C}

Next we consider the pair production of charginos in electron-positron collisions. The s-channel
Feynman diagrams are shown in Fig. [6.14.1] where we have also introduced the notation for the

fermion momenta and polarizations. The Mandelstam variables are given by

$=2p1-py = m%z + m%]_ + 2k;-k;j, (6.14.1)
t= m%l — 2p1'/€i = m%j — 2p2'k3j, (6.14.2)
U= m%l — 2po-k; = m%j — 2p1-kj. (6.14.3)

Note that the negatively charged chargino carries momentum and polarization (k;, A;), while the
positively charged one carries (kj, \;).
Using the Feynman rules of Figs. [J.1.2]and [K.2.1] the sum of the photon-exchange diagrams

is given by:
iMy = 29 et — ieylE e 8iyi0uat 4 ie 0ix1T,y; (6.14.4)

~ ; 10uYy — ey 0,22 ) (i€ 04yion ] + e 6z Tvy; ) - .14.

e(p1,A1) X; (Kiy Ai) e (p1, A1) X; (Kis i)
v, 2° A

e (2 2a) OBy € p222) Ry

e(p1, A1) T ki N) et (p1, A1) P (ki N
v, Z° v, Z°

e (p2; A2) X; (kj Ag) € (p2, A2) X; (k5 Aj)

Figure 6.14.1: Feynman diagrams for e et — 5; éj via s-channel v and Z° exchange.
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e (p1, A1) X;FJr (ki Ai)

A

Ve

F— — « — — 4

el (p2, A2) X (ks )

Y

Figure 6.14.2: The Feynman diagram for e et — CN’; 5]+ via the t-channel exchange of a
sneutrino.

The Z-exchange diagrams yields [cf. footnote :

Mg = T

—igh" [ ig 1 } - 9 L
Dy [7 SW )$10u92+ o y1 u@] [—JO]‘@ YioyT

'R
O :Ea,,y] ,
Cw

(6.14.5)

where Dy = s — m2Z +il'zmyz. The t-channel Feynman diagram via sneutrino exchange is shown

in Fig. Applying the rules of Fig. we find:

iMy, = (—1)—— (=igViaw) (~igViybe]) - (6.14.6)
The Fermi-Dirac factor (—1) in this equation arises because the spinors appear an order which
is an odd permutation of the order used in all of the s-channel diagram results.

One can now apply the Fierz transformation identities eqgs. (2.68)—(2.70) to eqs. (6.14.4))
and (6.14.5) to remove the o0 and @ matrices. The result can be combined with the ¢-channel

contribution to obtain a total matrix element M with exactly the same form as eq. (6.12.9)), but

now with:

P B (1—2s3) O (6.14.7)

! &, Dy Ik i
2625ij 92 (1 %2 2 )O/L 2‘/&‘/}1 (6 14 8)

Ccy = — — Z 14.

2 s c,Dy t— mge ’
262(5”- 2g SW IR

="t ap, o'k, (6.14.9)
2e26;;  2¢°

oy = 280 + 2 J SWo’L (6.14.10)

S DZ

The rest of this calculation is identical in form to eqs. (6.12.9)—(6.12.16)), so that the result is:

Z IMPZ = (ler? + fea] ) (w = m ) (u — m%j) + (leal® + fes*)(t = mZ )(t — m%j)
spins

+2Re[c1¢) + cscylms ms s (6.14.11)
i J

The differential cross-section then follows:

do 1 1

spins

111



~

As in the previous subsection, we define cos = p1-k; (where 6 is the angle between the initial

state electron and C’i_ in the center-of-momentum frame). The Mandelstam variables ¢, u are

given by
1
t= 3 [m%l + méj — 5+ )\1/2(s,m2@_, ma) cos 0} , (6.14.13)
1
u=g [m%l + m%j —5— ,\1/2(s,m2@, m%]) cos 0} . (6.14.14)
The total cross-section can now be computed as
4 do
= 6.14.15
7 /t_ dt ( )

where t_ and ¢, are obtained with cos = —1 and +1 in eq. (6.14.13)), respectively. Our results
agree with the original first complete calculation in ref. [190]. Earlier work with simplifying
assumptions is given in ref. [191]. An extended calculation for the production of polarized

charginos is given in [192].

6.15 ud — C;'N;

Next we consider the associated production of a chargino and a neutralino in quark, antiquark
collisions. The leading order Feynman diagrams are shown in Fig. where we have also

defined the momenta and the helicities. The corresponding Mandelstam variables are

s =2py-pg = m%i + m%j + 2k;-kj, (6.15.1)
t= m%i —2p1-k; = mfvj — 2py-kj, (6.15.2)
U= m%z — 2po-k; = m%j — 2p1-kj. (6.15.3)

The matrix elements for the s-channel diagrams are obtained by applying the Feynman

rules of Figs. [J.1.2] and [K.2.2}

. —ig"” [ ig t\ (o Lx t= . Rx t
Mg = W (\/ixla“yQ (ngji z;o,y; +i90;; yml,a:j) . (6.15.4)

The external spinors are denoted by x; = z(p}, \1), y; =y (P, \2), J:I = xT(Ei,Ai), Yj
y(Ej, Aj), etc. The matrix elements for the ¢t and u channel graphs follow from the rules of

Figs. [K4.1] and [K.4.2}

. i ey (29 SW tot
My = (~1 —igU: ( Nip— W N, ) bzt 6.15.5
iMp = ( )t_m?zL( igU})) \/5[ 27 3 1] ) 219y ( )
. i . iy «  SW t

_ —iqV: ( N - N > ! 6.15.6
My, u—m%L (—igVi) ﬂ[ 27 3oy ﬂ] 1YY, ( )

The first factor of (—1) in eq. (6.15.5]) is required because the order of the spinors (1,4,2,7) is

in an odd permutation of the order (1,2,4,j) used in the s-channel and u-channel results.
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u(p1, A1) x; (kis \) w(p1, A1) X;T (ki \i)

W+ W+
d' (p2, Ao) X5 T (ki Ag) d' (p2, Aa) X0 (kj, Ag)
u(p1, A1) - X; T (K, N u(p1, A1) X (ki M)

I \

JL ; ur, ;

| |

[ [ \\
A (p2, 7o) BEACEY d" (p2; 2a) X! (k)

Figure 6.15.1: The four tree-level Feynman diagrams for ud — éf ]\ij.

Now we can use the Fierz relations eqs. (2.68)) and (2.70]) to rewrite the s-channel amplitude
in a form without o or @ matrices. Combining the result with the t-channel and wu-channel

contributions yields a total M with exactly the same form as eq. (6.12.9)), but now with

¢ = —V2g? ijt Ly 4 5w ) Vi (6.15.7)

! g s —m¥, 2792 Gew I u—mag, | o
OR* 1 SW U

co=—V2g% | —L— + < ;- *) d__ | 6.15.8

2 [s—m%v 2792 ey It t—mg ( )

C3 = C4 = 0. (6159)

The rest of this calculation is identical in form to that of egs. (6.12.9)—(6.12.16), leading to:

Z M2 = |eg]?(u — m% )(u— m%]) + |ea 2 (t — m%z)(t - m%]) + 2Re[clc§]m@_mﬁjs. (6.15.10)

spins

From this, one can obtain:

do 1 1
STl Z IMP? ], (6.15.11)

spins
where we have included a factor of 1/3 from the color average for the incoming quarks. As in

the previous two subsections, eq. (6.15.11]) can be expressed in terms of the angle between the

u quark and the chargino in the center-of-momentum frame, using

1

‘=3 [m% +my = s+ A (s, mE, ,mQJ)cose} : (6.15.12)
1

w=g [md Fmy s = X (smE % ) eosd)] (6.15.13)
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This process occurs in proton-antiproton and proton-proton collisions, where /s is not fixed,
and the angle 6 is different than the lab frame angle. The observable cross-section depends
crucially on experimental cuts. Our result in eq. (6.15.11]) agrees with the complete computation

in ref. [193]. Earlier calculations in special supersymmetric scenarios, e.g. with photino mass

eigenstates, are given in refs. [180,/194).
6.16 N; — N;N.N,

Next we consider the decay of a neutralino N; to three lighter neutralinos: Nj, Nk, Ng. To the
best of our knowledge, this process has not been computed in the literature. This decay is
not likely to be phenomenologically relevant, because a variety of two-body decay modes will
always be available. Furthermore, the calculation itself is quite complicated because of the large
number of Feynman diagrams involved. Therefore, we consider this only as a matter-of-principle
example of a process with four external state Majorana fermions, and will restrict ourselves to
writing down the contributing matrix element amplitudes.

At tree level, the decay can proceed via a virtual Z° boson; the Feynman graphs are shown
in Fig. In addition, it can proceed via the exchange of any of the neutral scalar Higgs
bosons of the MSSM, ¢ = hY, H?, A, as shown in Fig. Since any of the final state

neutralinos can directly couple to the initial state neutralino there are two more diagrams for

each one shown in Figs. [6.16.1] and [6.16.2] for a total of 48 tree-level diagrams (counting each

intermediate Higgs boson state as distinct). In all cases, the four-momenta of the neutralinos

X} X}
0 0
X X; 0
7 Xk 1 ij—
Z0 A
0
XgT Xe
0 0
0f 0f
X Xi
7 X% 7 XZT
A A
0
XgT X?

Figure 6.16.1: Four Feynman diagrams for N; — Njﬁkﬁg in the MSSM via Z° exchange.
There are four more where N; <+ N, and another four where N; <+ Ny.
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X] XJ
0 0
X 0 X
L>_/ X! J X3
hOHOAO\ hOHOAO\
0
XgT X%
Xj Xj
0f 0f
X X
J XZT ;—/ X%
hOHOAO\ hOHOAO\
0
XgT X(l?

Figure 6.16.2: Four Feynman diagrams for N; — sz\?km in the MSSM via ¢° = h?, HY, A°
exchange. There are four more where N; <+ Nj and another four where N; <+ Nj.

Ni, Nj, Nk, Ng are denoted p;, kj, ki, k¢ respectively.
We obtain the sum of the four diagrams in Fig. [6.16.1] by implementing the rules of
Fig. and using the 't Hooft-Feynman gauge:

£ 9.9
—ig®/c
i/\/l(Zl) = g /2 W 5 (O"szau O//Lyzauy]) (OZZLQ:LE“W Oy, ka“CCD (6.16.1)
(pi — kj)* —my

The external wave functions are x; = z(Pj, \i), Tjpe = $(kijkg,)\j,kyg), and analogously for
a;;r Sk and y; j k¢ and yi i Note that we have factorized the sum of the four diagrams, taking
advantage of the common virtual boson line propagator. By a judicious use of the ¢ or & version
of the vertex rule, we have ensured that the order of the four spinor wave functions is the same
for each of the four diagrams. Hence, no additional relative minus signs are required.

The contributions from the diagrams related to these by permutations can now be obtained

from the appropriate substitutions (j <> k) and (j <> £):

(2) _iQZ/CtZA/ "L i 1L, T—
iM, = (-1) " (Okz zio,xy, — Oy, auyk> (Ojg x! U“yg Oy yja“:%) (6.16.2)
Z

(pi — ki)? —
. 92/9
L s s (OFwioue} — OFyloue ) (O alaty; — OfFyeoral). (6.16.3)
(pz - kf) —my

The first factors of (—1) in iM(ZQ) and iM(Z?’) are present because the order of the spinors in each

(1)

case appear in an odd permutation of the canonical order set by iM’. Note that if we were
to proceed to a computation of the decay rate, the very first step would be to apply the Fierz

relations of egs. ) to eliminate all of the ¢ and @ matrices in the above amplitudes.
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The diagrams in Fig. |6.16.2] combine to give a contribution:

—i 3
T o k)R - mio( ziyj + Yijy o)) (Y yrye + Yiewyay) ( )

where we have used the Feynman rules of Fig. and adopted the shorthand notation
Y = (Y;)* = yoxix Again we have factored the amplitude using the common virtual boson
propagator. As in the Z-exchange diagrams, the other contributions can be obtained by the
appropriate substitutions:

—1

1 @0 ( )(pz*kk)Qimio( TiYk + zkyzxk)( y]y€+ jgx]xz) ( )

—1

iMS) = (-1) (Y iy + Yiylah) (V¥ yry; + Vigajal).  (6.16.6)

(pl - k€)2 - m¢0

The first factors of (—1) in iM((;O) and z/\/l((;) are needed because the spinors in each case are in
an odd permutation of the canonical order established earlier.

The total matrix element is obtained by adding all the contributing diagrams:

3 3
M= MP+3 NS M. (6.16.7)
n=1

(z)O n=1

Squaring the matrix element, dividing by 2M 7, and integrating over phase space yields the
total decay rate. Note that final states differing by the interchange of identical particles must
be considered as a single state, counted once . Given an N-body final state made up of v,

particles of type r (where r < N), we define a statistical factor S,
S = H vyl where ZVT =N. (6.16.8)

Then, in computing the total decay rate, the integration over the total phase space must be
divided by S to avoid over-counting. In the present example, N = 3 with S = 2 [or S = 6] in

the case of two [or three| identical neutralinos in the final state, respectively

6.17 Three-body slepton decays: ZB Sl TEFFforb=e,p

We next consider the three-body decays of sleptons through a virtual neutralino. The usual as-
sumption in supersymmetric phenomenology is that these decays will have a very small branching
fraction, because a two-body decay to a lighter neutralino and lepton is always open. However,
in Gauge Mediated Supersymmetry Breaking models with a non-minimal messenger sector, the
sleptons can be lighter than the lightest neutralino . In that case, the mostly R-type
smuon and selectron, jip and ég, will decay by Z;z — E‘Ti?f . The lightest stau mass eigenstate,

?fE, is a mixture of the weak eigenstates ?zc and ’F&F, as described in Appendix K.4:

= BT + L5, (6.17.1)

7
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7t (k1, M) 7t (k1, \p)
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XY g X; 3
\\?;f (k3) \\;;r (k3)

~

Figure 6.17.1: Feynman diagrams for the three-body slepton decays 271; — 077 (top row)
and {5 — ¢~ 777, (bottom row) in the MSSM.

and 7, = (7, )*, while the jip and ég are taken to be unmixed.

First consider the decay EE — ¢~ 717, which proceed by the diagrams in the top row of
Fig. The momenta and polarizations of the particles are also indicated on the diagram.
Using the Feynman rules of Fig. we find that the amplitudes of these two diagrams, for

each neutralino N; exchanged, are:

. . [k . T _Z(p_kl)g T
iMy = (—iaj )(—zaj)yl[ 3 }xQ, (6.17.2)
(p—k1)* — My,
iMy = (—ia; )(_ij)yl[( Sy p— }ya. (6.17.3)
p 1 m]\?j
where
= Va2g' Ny, (6.17.4)
aj = Y;NjsLk + V29 Nj RE (6.17.5)
T * % 1 * * *

V2
The spinor wave function factors are y; = y(El, M), Y2 = y(Eg, A2), and :vg = xT(EQ, A2).

In the following, we will use the kinematic variables

z = 2p-k1/m%R =2E¢/my_, 2y = 2p-k2/m3;R =2E;/myj,_, (6.17.7)
Ty, = mNj/ng, rE = ms /mg,, (6.17.8)
rr = me/my,, re = my/my,. (6.17.9)
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The total amplitude then can be written as

4
Z [Cﬂ/l (p—k1)-oxy +d]y1y2} ; (6.17.10)
7j=1
where
¢ = ="} [lm}, (%, — 1+ 2], (6.17.11)
d; = af*bj my, /[meR( X 1)l (6.17.12)

We consistently neglect the electron and muon masses and Yukawa couplings (so r¢ = 0) in the
matrix elements, but not below in the kinematic integration over phase space, where the muon

mass can be important

Using eqs. and -, we find

IMP? = Z {Cjcz y1(p — k1) oz xa(p — k1)-oyl + djdiyye vyl
g,k
+cidiyi(p — k1) -aazg ygyi + c;dkxz(p —ky) -ayI Y1y2|. (6.17.13)
Summing over the lepton spins using eqs. (3.1.57)—(3.1.60]) gives

Z ’M|2 = Z [CjCZTI‘[(p — kl)-ng-E(p — kl)‘akl-ﬁ] + ddeTI‘[kQ'O'kl 'E]
A1,A2 Jik

—cjdpm;Tr[(p — k1)-0k1-G] — ¢;dpm;Tr[(p — k1)-0k1-5]|. (6.17.14)

Taking the traces using eqs. (2.56) and ([2.57)) yields

Z ’M|2 Z {CjC}Z[Zlkl‘(p - kl)kg'(p — kl) — 2k1-k2(p - kl)z] + 2djd;;k1‘k2

spins
—dRelc;dmrky - (p — kl)}
_Z {c]ckm (1= 20)(1 — 2,) — 72 + 72
+djdkml7 (g4 2, —1+72 —12) - 2Re[cjdk]m7m£ zg} (6.17.15)

The differential decay rate for Zj% — £~7%7] then follows:

d’T mg, )
dzdz, 25673 (Z M > (6.17.16)

spins

The total decay rate in that channel can be found by integrating over zy, z,, with the limits (see
for example ref. [166]):

2 < zg < 1+73 — (rr +72)% (6.17.17)
(zf)min <z < (Zf)max, (61718)
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where

1

— [ (2— 1 2 2_ .2 2_421/2)\1/21 2 2 2:|
2(1 — 2 +17) [( ) (Ikrg+rr—re—z) F (2 —4ry) (I+rg—ze,r7,75)]

7 T

(6.17.19)

(ZT)min,max -

and the triangle function A'/2 is defined in eq. .

Now we turn to the competing decay ZI} — E*T*?f , with diagrams appearing in the bottom
row of Fig. By appealing again to the Feynman rules of Fig. [K.4.3] we find that the
amplitude has exactly the same form as in egs. (|6.17.2[) and 46.17.3[), except now with aj- > bj-*.

Therefore, the entire previous calculation goes through precisely as before, but now with

ot (6.17.20)
C;, = 5 . .
j mg <TJ2\”/j —1+2z)
Ox Fx
at*at ' m
dj = ——5 220 (6.17.21)
méR(rNj — 1+ 2)

The differential decay widths found above can be integrated to find the total decay widths. The

results agree with ref. [197], except that the signs of the coefficient cg) and CE?) in the published

version of that paper are incorrect; the arXiv eprint version has been corrected. (Also, the
notations for the sfermion mixing angle are different in that paper.) If mg, — Mz — My is not
too large, the resulting decays can have a macroscopic length in a detector, and the ratio of the

two decay modes can provide an interesting probe of the supersymmetric Lagrangian.

6.18 Neutralino decay to photon and Goldstino: sz — 76’

The Goldstino G is a massless Weyl fermion that couples to the neutralino and photon fields

according to the non-renormalizable Lagrangian term [198]:

¥ — _%(Xoaugpava“@”r) (0,A, — 0,A,) + h.c. (6.18.1)

7

Here X? is the left-handed two-component fermion field that corresponds to the neutralino NZ
particle, G is the two-component fermion field corresponding to the (nearly) massless Goldstino,

and the effective coupling is

a; = (N} cos Oy + N5 sin Oy ), (6.18.2)

1
V2(F)
where N;; the mixing matrix for the neutralinos [see eq. (K.2.8)], and (F) is the F-term ex-

pectation value associated with supersymmetry breaking. Therefore N; can decay to v plus G

through the diagrams shown in Fig. |6.18.1] with amplitudes:

My :i% xﬁké-a(s*-ﬁk‘w-a—kzy-ﬁs*-a):vg, (6.18.3)
iMy = —z% ylke T (e o ky T —ky 0" T)yg. (6.18.4)
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¥ (Fys Ay) Y (kys Ay)
XY (, Ag) X (p, A5)

G(k‘é«,)\é) éT (kéw)\é')

Figure 6.18.1: The two Feynman diagrams for N; = 7@ in supersymmetric models with a
light Goldstino.

Here x5 = (P, A\g), y;r\? =41(p, Ay, and xg = xT(kzé, Aa)ya =y(ka, Ag), and e = e*(ky, \y)
are the external wave function factors for the neutralino, Goldstino, and photon, respectively. Us-
ing the on-shell condition k,-¢* = 0, we have k,-0e*-0 = —¢*-0k,-0 and k,-0c*-0 = —c*-0k, -0
from egs. (2.52) and (2.53)). So we can rewrite the total amplitude as

M =My + My =agAzl, + 1y Byg, (6.18.5)

where
A=aikg 0" -Tky o, (6.18.6)
B =—aj kg0 -0ky0. (6.18.7)

The complex square of the matrix element is therefore

M = xNAa:Téxé/l:c}/ + kayéyééyN + xNAxgygByN + y;rvByéx@Axk, (6.18.8)

where A and B are obtained from A and B by reversing the order of the o and & matrices and

taking the complex conjugates of a; and ¢ [cf. eq. (4.4.4) and the associated text].
Summing over the Goldstino spins using egs. ((3.1.57)—(3.1.60)) now yields:

> IMP? = w g Akg - TAxT + yl BhgroByg. (6.18.9)

Ag

(The A, B and fl, B cross terms vanish because of mg = 0.) Averaging over the neutralino spins

using eqgs. (3.1.57) and (3.1.58]), we find

1 1 e 1 A
3 > M= 5 TrlAkg 7 Ap-o] + S Te[Bkg 0 Bp-o
A A

1
= §|a7;]2Tr[5*-5k‘7-0 keTky-oe-Tka-opGhgol+ (o< 7). (6.18.10)
We now use

ky-okgGky-o =2ksky k-0, (6.18.11)
kea-opTkao =2kapks-o, (6.18.12)
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which follow from eq. (2.54)), and the corresponding identities with o <> @, to obtain:

1
3 > IMP? =20ai* (kg ky) (kg p)Trle” G hy-0e-T kg0l + (0 < 7). (6.18.13)
ARG

Applying the photon spin-sum identity

D ettt =g, (6.18.14)
)\'Y
and the trace identities eq. (2.57) and (2.58)), we get
1
3 Yo IMP = 16]aif* (kg ko) (kg p) = 2lai*m; . (6.18.15)
AAgAG
So, the decay rate is [195,[199):
I(N; = ~G) = ! ! > M| = |Niscos by + Nigsin6 |2msﬁf (6.18.16)
% 0 - 167TmN_ 2)\ o lt - il w 72 w 167T‘<F>|2 3.
g VINNING

6.19 Gluino pair production from gluon fusion: gg — gg

In this subsection we will compute the cross-section for the process gg — ¢g. The relevant
Feynman diagrams are shown in Fig. The initial state gluons have SU(3). adjoint
representation indices @ and b, with momenta p; and ps and polarization vectors e} = e#(p}, A1)
and e = e"(P,, \2), respectively. The final state gluinos carry adjoint representation indices ¢
and d, with momenta k1 and ke and wave function spinors x]{ = xT(El, )\’1) ory; = y(El, )\&) and
:cg = 2T (K2, \y) or y» = y(Kka, \), respectively.

The Feynman rules for the gluino couplings in the supersymmetric extension of QCD are

given in Fig. [K.5.1] For the two s-channel amplitudes, we obtain:

. gt )
IMg = (—gsfabe[guu(pl —D02)p + Gup(P1 + 202) . — Gup(201 +p2)y]) ( . > ehel

X [(—gstde)ﬂEnw + (g5 %) yroal ] (6.19.1)

The first factor is the Feynman rule for the three-gluon interaction of standard QCD, and
the second factor is the gluon propagator. The next four (¢-channel) diagrams have a total

amplitude:

; —(_ cea M\ ([ edb_v\ . T— Z‘(kl_pl)'a _
iMy = (g5 f"e)) (—95f*Ve5) 210 [(kl—p1)2—m§ TuY2

i(ky —p1)-@ ] t

2

eca deb _v
+(gSf 61) (QSf 62) o [(kl —p1)? - mg

N mg
e o el ]
g

Tmg
+(gs fE%t) (—gs feP8) y1o g LY. 6.19.2
(9sf"e) (=95 Ves) 11 “[(kl—pl)Q—mf; 2 ( )
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< ~_i_ > —
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Figure 6.19.1: The ten Feynman diagrams for gg — gg. The momentum and spin polarization
assignments are indicated on the first diagram.
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Finally, the u-channel Feynman diagrams result in:

ey — )
ZMu — (_gsfedaglf) (_gsfcebgg) x];&y [ Z( 1 p?) o ] Equ

(k1 —p2)? —mZ
dea ech_v Z(kl _p2)‘5 T
+(gsf glf) (gsf 2'52) Y10y [(kl — p2)2 — m?}] Opsy

d b _ im"
(97 t) (~9sf"25) 2l [(,ﬁ ) mZ] !

img
(k1 —p2)? —m2

We choose to work with real transverse polarization vectors €1, £2. These vectors must both

+(—gsfeel) (95 £ yrow [ T LYo (6.19.3)

be orthogonal to the initial state collision axis in the center-of-momentum frame. Hence,

€1-61 = ¢eg-e2 = —1, (6.19.4)
£1:p1 = €2°p1 =€1°p2 = €2:p2 = 0, (6.19.5)
£1-k2 = —¢e1-k1, (6.19.6)
£2-ky = —&2-k1, (6.19.7)

for each choice of A\, A2. The sums over gluon polarizations will be performed using [cf. eq. ([.2.61))]:

2 Mo v Hov
S ehet = Y chey = g 4 2EPETPD) (6.19.8)
A1 A2

S

Note that in QCD processes with two or more external gluons, the term 2 (pi'py + phpY) /s
in eq. (6.19.8)) cannot in general be dropped . This is to be contrasted to the photon
polarization sum [cf. eq. }, where this latter term can always be neglected (due to a
Ward identity of quantum electrodynamics).

Before taking the complex square of the amplitude, it is convenient to rewrite the last two
terms in each of egs. (6.19.2) and (6.19.3]) by using the identities [see eq. (3.1.12)]:

mgl'J{ = yl(kl -0’) , mgy1 = .’L‘J{ (kl -5) . (6.19.9)

Using egs. (2.54)) and (2.55), the resulting total matrix element is then reduced to a sum of

terms that each contain exactly one o or @ matrix. We define convenient factors:

G = g2 fabefede s, (6.19.10)
G = g f* f*%/(t — m3), (6.19.11)
Gu = go [ 7/ (u— m). (6.19.12)

where the usual Mandelstam variables are:

s = (p1 4 p2)? = (k1 + k2)?, (6.19.13)
t= (k‘l — p1)2 = (]fg — p2)2, (6.19.14)
u=(ky —p2)? = (k2 — p1)> (6.19.15)
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Then the total amplitude is (noting that the gluon polarizations 1,9 were chosen real):

M= Mz;+ M+ M, = x];a-ﬁyz + yla*-aarg,

where

at = —(Gt + Gs)€1'€2p!f —

- VPR
—ie!? €1u€2p(th1*

Squaring the amplitude using eqs. (2.45) and (2.46)), we get:

T

M| = xiaﬁygy;a*-ﬁm +y1a”-oxyx0a0-0Y,

T

Summing over the gluino spins using eqgs. (3.1.57)—(3.1.60)), we find:

> IMP =

AL

—mgTr[a-Ewa]

- m?]Tr[a*ﬁa*-E].

Performing the traces with eqgs. (2.56)—(2.58)) then yields:

Z IM|? = 8Rela-kia* ko] — da-a* ky-ky — 4ie" P ky,kaya,al,

Y

(6.19.16)

(Gu — GS)El'Eng — 2Gtk1'€1 55 — QGukl'Ez 5?
Gup2)/i'

(6.19.17)

I+ x}a-&ygxga-ayl +y1a”-oxyysat-oxy.

Trla-cky-ca™ Tk 0] 4+ Tr[a* -cke-GTa-ok,-T]

t,f
(6.19.18)
(6.19.19)
— 4mZRe[a’]. (6.19.20)

Inserting the explicit form for a* [eq. (6.19.17))] into the above result, we obtain:

> IMP =

NG

mg)(u —

F16(Gy + Go)[Gs(t — 1) + Ga(t —

mg) + Gy(u —

—32(Gt =+ Gu)Q(kl -81)2(k‘1 '62)2.

m2)[(Gr + Gu)? + 4(Gs + Gi) (G — Gu)(e1-€2)°]
m2)](e1-e2)(k1-21) (k1 -€2)

The sums over gluon polarizations can be done using eq. (6.19.8)), which implies:

d 1=4,

A1,A2

> (er-ea)(kr-e1) (ki -e2) =

A1,A2

Z (k1'€1)2(k1'€2)2 = (mg _

A1,A2
Summing over colors using fabe fede fabe’ pede
> ar-
colors
7244

2 S
2 G
colors 9

3692

D GG~y
colors g
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(6.19.21)
D (erre2)? =2, (6.19.22)
A1,A2
— (t—mZ)(u—m2)/s, (6.19.23)
(t —mg)(u—m3)/s) (6.19.24)
S Qfabefcdeface’fbde’ — N(:Z(ch ) _ 72’
72g5
d Gl=— T w2 (6.19.25)
colors g
Y GG = 3698 (6.19.26)
colors mg)
4
Y GG = 509, (6.19.27)
colors mg)(u n mg)



Putting all the factors together, and averaging over the initial state colors and spins, we have:

do 1 1 1 9
& = Tons? (4 2. 52 M )

colors  spins

9ra? ) ) ) ) s2(s 4+ 2m2)? 4mi st
= 2(t —mz)(u —mz) — 3s° —4dmzs + . - ! ;
45* [ g g 9 (t— mg)(u — mf}) (t — mg)Q(u - mg)2
(6.19.28)

which agrees with the result of [180,201] (after some rearrangement). Note that in the center-
of-momentum frame, the Mandelstam variable t is related to the scattering angle 6 between an

initial state gluon and a final state gluino by:

t:m§+g<cos9,/1—4m§/s—1). (6.19.29)

Since the final state has identical particles, the total cross-section can now be obtained by:

1 [ do
o =—

2/, dt
where t1 are obtained by inserting cos = +1 into eq. (6.19.29)).

dt, (6.19.30)

6.20 R-parity violating stau decay: ?I‘{ — ey,

In an R-parity-violating extension of the MSSM (denoted henceforth by RPV-MSSM), new
Yukawa couplings can arise [see egs. (L.1)—(L.3)] that violate either a global U(1) lepton number
L or baryon number B. The corresponding Feynman rules are derived in Appendix L. Consider
the decay of a right-handed scalar tau via an L-violating LLeée coupling governed by eq. .

This is particularly relevant when the scalar tau is the lightest supersymmetric particle (LSP)

202, [203] and in the case of resonant slepton production [204}205]. Note that in R-parity
violation the LSP need not be the lightest neutralino and in a minimal supergravity embedding

often it is not [206}207]. The Feynman diagram is shown in Fig. [6.20.1] where we have also

defined the momenta and the helicities of the fermions.

Vl(klju’ )\Du)

eT(kze, Ae)

Figure 6.20.1: Feynman diagram for the R-parity-violating decay 77; — et

The amplitude for the R-parity-violating %;g decay is given by:

iM = —i\yeys, - (6.20.1)
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Here we have defined A = Aj23, and the external wave functions are denoted by y. = y(Ee, Ae),
and yp, = y(k:uu, A, ), respectively. Using eq. 1} the amplitude squared is

M2 = [Myeys, vl vl (6.20.2)
Summing over the fermion spins using eq. (3.1.58)) gives:

> IMP = (APTrfke-0 kg, 7] = [A[*m2,, . (6.20.3)
XeAiy,
where in the last step we have used the trace formula eq. (2.56]), and neglected the mass of the

electron and the neutrino. The total decay rate is then given by

2 IAI
r= 167rmm< > M| ) . (6.20.4)

Ae, Ay,

which agrees with the computation in refs. . Completely analogously we can obtain
the total rate for the decays v, — 7~ e and €, — 777, which proceed via the same operator,
by replacing mz, — (me,,mp,), respectively.

In general the two-body decay rate of a sfermion fvia the L-violating LQd coupling gov-
erned by eq. or the B-violating @dd coupling governed by eq. is given by:

2
N fip) = S, (6.20.5)

where we have neglected the masses my o of the final state fermions. The factor C' denotes the
color factor. For the slepton decays via the LQd coupling which are summed over the final
state quark colors, C' = §% 0ij = 3, where 4,5 = 1,2,3 and 9;; is the symmetric invariant tensor
of color SU(3). For the squark decays via the LQd where the initial state color is averaged
over and the final state color is summed, C' = 1. For the squark decays via the @dd coupling,
C = %eijkeijk = 2, where the Levi-Civita tensor, /% = €ijk, is the antisymmetric invariant
tensor of color SU(3). In realistic cases, one must also include the effects of mixing for the

third-family sfermions, which we have omitted here for simplicity.

6.21 R-parity-violating neutralino decay: ]f\7Z — pud

Next we consider the R-parity-violating three-body decay of a neutralino NZ — p~ud, which
arises due to the L-violating LQd coupling governed by eq. . This is of particular interest
when the neutralino is the LSP, since it determines the final state signatures [211213]. The
three Feynman diagrams are shown in Fig. including the definitions of the momenta

and helicities. We have neglected sfermion mixing, i.e. we assume Jiy, uy, and dr are mass

eigenstates. Using the Feynman rules given in Figs. and [K.4.2| (or [K.4.4]), we obtain the
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Figure 6.21.1: Feynman diagrams for the R-parity violating decay sz — u"ud.

corresponding contributions to the decay amplitude,

iMy = (iN*) | —=(gNi2 + ¢'N; ] yZ-T:z:T JJL:ET, 6.21.1

1 ( ) _\/§( 2 1) (pi_k“)z_m%L I d ( )
V2 i

My = (iN* V2, 'N; PR 6.21.2

zMQ (Z ) i 3 9 1 (pi _ kd)2 _ m?jR Yi Tg i Tay ( )

Ms = (iN) | = (gNis + ¢/ Nin /3 Tl 2l 6.21.3

iMs (Z ) i \/i(g 2+tg 1/ >:| [(pz _ ku)2 _ m%L] Yi Ty gy, ( )

Here we have defined X' = A}, and the external wave functions are denoted by yg = ! (B;, M),
xu =z (k Aw)s ol = xT(Eu, ), and :1;; = xT(Ed,)\d), respectively. In the following, we will
neglect all of the final state fermion masses. The results will be expressed in terms of the

kinematic variables

2 = 2piku/mYy, = 2B, /my,, (6.21.4)
24 = 2pi-ka/m% = 2Eq/my (6.21.5)
2y = 2pi-k‘u/m?§h =2B,/mg,, (6.21.6)

which satisfy z, + 24 + 2, = 2. Then we can rewrite the total matrix element as:

M= clyjﬂ fal qt czijLxT :BT + c;;yJ:J:LwL:L‘L, (6.21.7)
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where

1
o= \ﬁ/\/*(gNig +g'Niy)/[m, —m% (1= 2], (6.21.8)
Vi,
co = —?)\’ g/Nil/[m?ZR - m?vl(l — z4)], (6.21.9)
L
c3 = _ﬁ)\/ (9Ni2 + g'Ni1/3)/[m%L — m?vl(l — )] (6.21.10)

Before squaring the amplitude, it is convenient to use the Fierz identity [eq. (2.67))] to reduce

the number of terms:
M= (c1 — 03)y;r:nL$Lx:; + (e2 — c;:,)y;fxilmT zl . (6.21.11)

Using eq. ([2.44]), we obtain
|/\/l|2 =le; — 63|2y3$;&1‘#y¢$:&3}2$d$u + |ea — 03|2y;r:nzlxdyix;&x}:a:u$“
—2Re[(e1 — ¢3)(c5 — cg)ijlxuxux:&lexdyl] , (6.21.12)
where eq. ([2.60]) was used on the last term. Summing over the fermion spins using eqgs. (3.1.57)—
(3.1.60)), we obtain:

> IMP? = o1 — e3P Txlky, Gpi- o) Telkg -Thy o] + |ea — c3|*Te[kq Tp; 0] Trlky Thy o)
spins

—2Re[(e1 — ¢3)(c3 — ¢5)Trlk,,-Tky-okq-op;-0]] . (6.21.13)

Applying the trace formulae, eqs. (2.56) and (2.58)), we obtain

ST IMP = dler — espicky kaka + 4lea — es*picka by ke

spins

—4Re[(01 - 03)(63 - C;)](k,u'kupi'kd +pi’ku kq-ky — ku'kdpi‘ku)

= mik |leaPzu (1 = 2) + lealP2a(l = za) + lealP2u(1 = 20)
—2Re[c163)(1 — 2,) (1 — zq) — 2Refcie3](1 — 2,)(1 — 24)
—9Re[eac] (1 — 24)(1 — zu)} : (6.21.14)
where in the last equality we have used egs. (6.21.4))—(6.21.6) and
2k, kg = (1— zu)m?v, 2k, ky = (1 — zg)m?%, 2kg-ky = (1 — zu)m%{‘. (6.21.15)

The differential decay rate follows:

d*r Nemyg. (1 )
dzdzg 2573 (2 > IM| ) (6.21.16)

spins
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where a factor of N, = 3 has been included for the sum over colors, a factor of 1/2 to average

over the neutralino spin, and the kinematic limits are

0<z, <1, (6.21.17)
1—z, <z <1 (6.21.18)

In the limit of heavy sfermions, the integrations over z; and then z, are simple, with the result

for the total decay width:
5

NcmNi 112 /12 /12 ’ox ’ok rox
I'= m (|Cl| + ’62| + ’03’ — Re[01C2 + 0103 + 62C3 ]) y (62119)

where the ¢} are obtained from ¢; of egs. (I6.21.8[)7(IG.21.10[) by neglecting m?v in the denom-

inators. Our results agree with the complete computation (which includes mixing) given in

refs. [209 214]. Earlier calculations with some simplifications are given in refs. [212}[215].

6.22 Top-quark condensation from a Nambu-Jona-Lasinio model gap equa-
tion

The previous examples have involved renormalizable field theories. However, there are cases in
which it is preferable to use effective four-fermion interactions. The obvious historical example
is the four-fermion Fermi theory of weak decays. This has been superseded by a more complete
and accurate theory of the weak interactions but is still useful for leading order calculations of
low-energy processes. Another case of some interest is the use of strong coupling four-fermion
interactions to drive symmetry breaking via a Nambu-Jona-Lasinio model , as in the top
quark condensate approach to electroweak symmetry breaking.

Consider an effective four-fermion Lagrangian involving the top quark , written in

two-component fermion form as:
e
&L =ittt + it 70,t + p(tf)(tTET ). (6.22.1)

Here the Standard Model gauge interactions have been suppressed; the quantities within paren-
theses are color singlets. Note also that there is no top quark Yukawa coupling to a Higgs scalar
boson, nor a top quark mass term, which would normally appear in the form —my (¢t + tTt_T).
Instead, the effective top quark mass is supposed to be driven by a non-perturbatively large and
positive dimensionless coupling G, with A the cutoff scale at which G arises from some more
fundamental physics such as topcolor [221].

The Feynman rule for the four-fermion interaction can be derived from the mode expansion
results of Section [3] and is given in Fig. The resulting gap equation for the dynamically

generated top quark mass is shown in Fig. [6.22.2] Evaluating this using the Feynman rules of

Figs. [£.2.3] and [£.2.4] one finds:

A g4 . .
: &k (.G C im
—imy 6l 6P = (— el ; JsksBsP nea_ U
im83 68 = ( 1)/ )i <z Azéﬁn%é&) (5@6 k2_m§+i€>. (6.22.2)
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1%535,’;5555

£ B t,n, B

Figure 6.22.1: Feynman rule for the four-fermion interaction in the top quark condensate
model. The indices i, j,k,n = 1,2,3 are for color in the fundamental representation of SU(3),
and the indices «, 8, &, 8 are two-component spinor indices.

— > @ < =

Y
A

Figure 6.22.2: The Nambu-Jona-Lasinio gap equation for a possible dynamically generated
top quark mass mg.

Here i, j,k,n are color indices of the fundamental representation of SU(3), and «, 3, & .3 are
two-component spinor indices. The factor of (—1) on the right-hand side is due to the presence
of a fermion loop.

Euclideanizing the loop integration over k* by k? — —k% and [ d'k — i [ d*kp, and then
rewriting the integration in terms of z = k:?E7 this amounts to :

A2
- e [ da/emi ) -
where N, = 3 is the number of colors, and a factor of two arises from the sum over dotted spinor
indices of 555;

For small or negative GG, only the trivial solution m; = 0 is possible. However, for G >

| = 87%/3 &~ 26, there is a positive solution for m7/A? [219]. It is now known that this

3 G’I?’Lt

[1— (mi/A%) In(A?/mf) + .. ], (6.22.3)

my

Geritica
minimal version of the model cannot explain the top quark mass and the observed features of

electroweak symmetry breaking, but extensions of it may be viable [222].

6.23 Electroweak vector boson self-energies from fermion loops

In this subsection, we consider the contributions to the self-energy functions of the Standard
Model electroweak vector bosons coming from quark and lepton loops. (For a derivation of
equivalent results in the four-component fermion formalism, see for example Section 21.3 of
.) The independent self-energies are given by I}V, TIZ7, va = H,W, and I}, as shown
in Figs. [6.23.] and [6.23.2] In each case, iII,, is equal to the sum of Feynman diagrams for

two-point functions with amputated external legs, and is implicitly a function of the external

momentum pH.
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Figure 6.23.1: Contributions to the self-energy function for the W boson in the Standard
Model, from loops involving the left-handed quark and lepton pairs (f, f') = (e,ve), (1, ),
(1,vr), (d,u), (s,¢), and (b,t). The momentum of the positively charged W flows from left to
right.

) J [ ] Pt
) 1% vV | A 74 vV Vv’
iy = + + -
1 vl v S 7 TR v
i q 7 i
Figure 6.23.2: Contributions to the diagonal and off-diagonal self-energy functions for the

neutral vector bosons V,V’ = ~,Z in the Standard Model, from loops involving the three
generations of leptons and quarks: f = e, ve, p, v, 7,v7,d, u, s,¢,b,1.

First consider the self-energy function for the W boson, shown in Fig. [6.23.1 The W boson
only couples to left-handed fermions, so there is only one Feynman diagram for each Standard
model weak isodoublet. Taking the external momentum flowing from left to right to be p, and

the loop momentum flowing counterclockwise in the upper fermion line (f) to be k, we have
from the Feynman rules of Fig. [J.1.2}

o o 2 5 enl ) () o) ()

(6.23.1)

Here p is a regularization scale for dimensional regularization in d = 4 — 2¢ dimensions. The
sum in eq. (6.23.1) is over the six isodoublet pairs (f, f') = (e, ve), (1, vu), (7,v7), (d, ), (s,c¢),
and (b,t) with CKM mixing neglected, and

3, f = quarks,
1, f = leptons.

NI =

[

(6.23.2)

The first factor of (—1) in eq. (6.23.1)) is due to the presence of a closed fermion loop. The trace
is taken over the two-component dotted spinor indices. Using eq. (B.2.27)), it follows that

2
g
f

where we have defined

, dk 4k, k, + 2k,p, + 2k,p, — 2k-(k+p) g
_ 2\, 2¢ phv ulv vPu v
Lw(x,y) = i(167°) p / on) 2 =)k +p)? =y . (6.23.4)
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We do not explicitly exhibit above the term proportional to €,,44, as it integrates to zero. The

integral I,,, can be evaluated by the standard dimensional regularization methods [115}223],

L (2,9) = (0°9u — pup) 1 (0% 2,9) + g Lo (0%; 2, y) (6.23.5)
where
Bsi) =~ + oo { (20 = 2~ 9)A() + (2y — 20— 5)AQ)
+ [2(3: —y)? —s(z+y) — 82}3(8; z,y) —s(zr+y) + 52/3}, (6.23.6)
h(sizy) = Y - 1{<x ~y)[A@) - AW)] + @ —)? - s+ y)]B<s;x,y>} . (6:237)

after neglecting terms that vanish as € — 0. The functions
A(z) = x1n(z/Q?) — x, (6.23.8)

! x — — —t)s—1
B(s;x,y)z—/o dt In <t +( t)yQQt(l 2 5), (6.23.9)

are the finite parts of one-loop Passarino-Veltman functions [224], with the renormalization scale

Q related to the regularization scale i by the modified minimal subtraction relation
p? = Q%" /4r, (6.23.10)

where v = 0.577216. .. is Euler’s constant.
The photon and Z boson have mixed self-energy functions, defined in Fig. [6.23.2] Applying
the pertinent Feynman rules from Fig. we obtain:

= o | e ke (5 et (525

—i—(—iG{;EM) (%) (~iG1,7, ) <(k'f;; p)-o >

7 mj
ol = tmyg i
—l—( ZGVQL)(kQ_m?E)(zGV,UV)( k:—l—p — )
e imy . f
+( zavau)<k2_m?>(zc;v,ay)< k+p — )} (6.23.11)

where V and V' can each be either vy or Z, and ) | 7 is taken over the 12 Standard Model fermions.
The corresponding V ff and V ff couplings areﬂ

G = _Gj = eQy, (6.23.12)
g P9

Gl = 7@5 — Q) Gl = Z5,Q;. (6.23.13)
w cw

5"Note that there is no contribution from the left-handed two-component antineutrino fields, e, Dy, Ur, which
do not exist in the Standard Model.
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The four terms in eq. (6.23.11]) correspond to the four diagrams in Fig.|6.23.2] in the same order.
The first two terms in eq. (6.23.11)) are computed exactly as for HIVX,W, while in the last two
terms we use eq. (B.2.5) to compute the trace. It follows that the neutral electroweak vector

boson self-energy function matrix, after dropping terms that vanish as € — 0, is given by

Sl F 7 S
4% 2 2 2 2 2
W =162 Ef N [(G(/G{ﬂ + GU G L (mF,m3) + g, (G Gy + G{/G{/')mfl?’(mf’mf)]’

(6.23.14)

where 1, (z,y) was defined in egs. (6.23.5)-(6.23.7)), and we have defined the function

dk 2
(2m)® (k% — )[(k +p)? — y]

The photon self-energy function is a simple special case of eq. ((6.23.14)):

2
I3(z,y) = —i(167?) u26/ =+ 2B(p*;z,y).  (6.23.15)

1
7 = 63 > 2NI(eQp)? [Luw(mF, m3) — gumFs(m3, m3)] . (6.23.16)
!

Evaluating the integrals I, and I3 yields
2
2m ¥

1 1
P2

o 2
HZZ =3 Z NZQ? (p29;w - p,upz/) { — + 3 P [A(mfz) + m?«] — (1+ )B(pQ; mfc, m?)},
f
(6.23.17)
in agreement with the result given in, for example, eq. (7.90) of [115]. This formula satisfies
P!, = p’I};} = 0 as required by the Ward identity of QED, and is regular in the limit p? — 0.
In each of egs. (6.23.3), (6.23.14]), and (6.23.17)), there are 1/e poles, contained in the

loop integral functions. In the MS renormalization scheme, these poles are simply removed by

counterterms, which have no other effect.

In egs. (6.23.1) and (6.23.11), we chose to write a @, for the left vertex in the Feynman

diagram in each case. This is an arbitrary choice; we could also have chosen to use instead —o,
for the left vertex in any given diagram, as mentioned in the caption for Fig. This would
have dictated the replacements @ <+ —o throughout the expression for the diagram, including
for the fermion propagators, as was indicated in Fig. [£.2.4] It is not hard to check that the result
after computing the spinor index traces is unaffected. Note that the contribution proportional
to € from eq. or eq. (B.2.27) vanishes; this is clear because the self-energy function
is symmetric under interchange of vector indices, and there is only one independent momentum

in the problem.

6.24 Self-energy and pole mass of the top quark

We next consider the one-loop calculation of the self-energy and the pole mass of the top quark
in the Standard Model, including the effects of the gauge interactions and the top and bottom

quark Yukawa couplings. As in Section [6.1] we treat this as a one-generation problem, neglecting
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CKM mixing. Consequently, the corresponding Yukawa couplings Y; and Y} are real and positive
(by a suitable phase redefinition of the Higgs ﬁeld@. Using the formalism of Section for
Dirac fermions, the independent 1PI self-energy functions are given by@ Y+, 2pt and Xpy

(defined in Fig. 4.6.5)) as shown in Fig. [6.24.1

p
9777 hSM7G0 G+
—(—( }_4_ = \\ _I_ ”‘\
«—&—e «—&—e —<——>—+ >«
—ip-T S t ot bt
(—p 0
9777Z hSM,G G+
= > - <> > >
—ip-0 Xy t t t t t t t b t
<—p 0
g?’Y7Z h’SM’G G+
> > —>——<—>—+ _>__<_,_._<_ —>—l—<—
S Tttt ottt i b b t 7 t

Figure 6.24.1: One-loop contributions to the 1PI self-energy functions for the top quark in the
Standard Model. The external momentum of the physical top quark, p#, flows from the right to
the left. The loop momentum k* in the text is taken to flow clockwise. Spinor and color indices
are suppressed. The external legs are amputated. The last diagram contains one-loop tadpole
contributions.

Note that in these diagrams, the physical top quark moves from right to left, carrying
momentum p*. Then according to the general formula obtained in eq. (4.6.31), the complex

pole squared mass of the top quark is given by:

. + Xp¢)?
M2 DM, = T , 6.24.1
RIS P i (6.24.1)
where m; is the tree-level mass. Working consistently to one-loop order, this yieldﬂ
M? — Ty My = [m(1+ Spe + Sge) + 2me S py] L (6.24.2)
s=mj+ie

It remains to calculate the self-energy functions j;, Xg; and Xp;. Two regularization
procedures will be used simultaneously—the MS scheme || based on dimensional regulariza-
tion || and the DR scheme based on dimensional reduction || This is accomplished by

58 As shown in Section after the fermion mass matrix diagonalization procedure, the tree-level fermion
masses are real and non-negative. If CKM mixing is neglected, it follows from eq. that the corresponding
diagonal Yukawa couplings are real and positive if the phase of the Higgs field is chosen such that the neutral
Higgs vacuum expectation value v > 0.

%9Gince the Yukawa couplings can be chosen real (in the one-generation model), Y. = Y. Note that after
suppressing the color degrees of freedom, X 1:, X r: and X p; are one-dimensional matrices, so we do not employ
boldface letters in this case.

"1t would be just as valid to substitute in s = M7 + ic here, as two-loop order effects are being neglected.
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. O

thsm + thsm = 0

Figure 6.24.2: The tree-level Higgs tadpole cancels against the one-loop Higgs tadpole, pro-
vided that one expands around a Higgs vacuum expectation value that minimizes the one-loop
effective potential (rather than the tree-level Higgs potential, which would yield no tree-level
tadpole).

integrating over the loop momentum in
d=4-—2¢ (6.24.3)

dimensions, but with the vector bosons possessing

D =4 — 2edyg (6.24.4)
components, where
1 for MS,
Ois = - (6.24.5)
for DR.

In other words, the metric g appearing explicitly in the vector propagator is treated as four
dimensional in DR, but as d-dimensional in MS. The renormalization scale @ is related to the
regularization scale p in both cases by the modified minimal subtraction relation of eq. .

The calculation of the non-tadpole contributions to the self-energy functions will be per-
formed below in a general R¢ gauge, with a vector boson propagator as in Fig. @ There are
different ways to treat the tadpole contributions, corresponding to different choices for the Higgs
vacuum expectation value around which the tree-level Lagrangian is expanded. If one chooses to
expand around the minimum of the tree-level Higgs potential, then there are no tree-level tad-
poles, but there will be non-zero contributions from the last diagram shown in Fig. (This
corresponds to the treatment given, for example, in ref. ) Alternatively, one can choose
to expand around the Higgs vacuum expectation value v that minimizes the one-loop Landau
gaugelﬂ effective potential. In that case, the one-loop tadpole contribution is precisely canceled
by the tree-level Higgs tadpole, as shown in Fig. [6.24.2] Here, we have in mind the latter pre-
scription; the calculation for the pole mass is therefore complete without tadpole contributions

provided that the tree-level top quark mass is taken to be

my = Yy, (6.24.6)

"'This procedure is considerably more involved outside of Landau gauge, because the propagators mix the
longitudinal components of the vector boson with the Nambu-Goldstone bosons for £ # 0 if one expands around
a Higgs vacuum expectation value that does not minimize the tree-level potential. This is the same reason the
effective potential is traditionally calculated specifically in Landau gauge.

135



where Y; is the MS or DR Yukawa coupling, and v is the Higgs vacuum expectation value at the
minimum of the one-loop effective potential in Landau gauge. To be consistent with this choice,
& = 0 should be taken in all formulae below that involve electroweak gauge bosons or Goldstone
bosons. (The gluon contribution is naturally independent of { because the gauge symmetry is
unbroken, providing a check of gauge-fixing invariance.) Nevertheless, for the sake of generality
we will keep the dependence on ¢ in the computation of the individual non-tadpole self-energy
diagrams below.

Consider the one-loop calculation of the self-energy 3r;, which is the sum of individual
diagram contributions X1 = [EXr¢]g+[X ey + X0 2+ e w +[E el hey H X e go+[Ene] g+ - First,
consider the diagrams involving exchanges of the scalars ¢ = hgy, GO, G*. These contributions

all have the same form

d?k i(k+p)c i
—ip-o [X = | — (=Y — ) (—=iY)) | ——— 6.24.7
ZpO'[ Lt]¢ M /(27T)d( ? )<(k+p)2_m? ( 1 ) k:Q_mz) ) ( )
where the loop momentum k* flows clockwise, and the couplings and propagator masses are,
using the Feynman rules of Figs. [J.1.3] and [J.1.4],

forg=hsm: Y =Y/V2  mp=my o omi=mig, (6.24.8)
for ¢ = G¥: Y =iV /N2 mp=my omi=émy, (6.24.9)
for ¢ = G* : Y =Y mp=my;  m3=Emy. (6.24.10)

Multiplying both sides by p-o and taking the trace over spinor indices using eq. (B.2.5)), one
finds
2¢ d
oo dk p-(k+p)
Srie = Z‘Y‘Q/ :
o= R ] @ O - R
Performing the loop momentum integration in the standard way [115] , and expanding in €

up to constant terms, one finds that in each case
1

by =—
Bedo =~ 15

Here we have introduced some notation for the loop integral:

1 (s+z—y)B(s;z,y) + Alz) — Ay)

R _l’_ s

2e 2s

where the Passarino-Veltman functions A(z) and B(s;xz,y) were defined in egs. ([6.23.8]) and

(6.24.11)

Y [? Ips(s;mF,m3). (6.24.12)

Irs(s;z,y) = (6.24.13)

(6.23.9). These functions depend on the renormalization scale (), which is related to p via
eq. (6.23.10)). It can be checked that Ipg(s;x,y) has a smooth limit as s — 0.
Next, let us consider the contributions to ¥ involving the vector bosons V = g,v, Z, W.

These have the common form:
o dk o i(k+p)o o
. 2e
—ipo[Xnlv = p /(27T)d (—iG o) <(k+p)2_m?> (—iGay)

i N
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where again the loop momentum k flows clockwise, and, using the rules of Figs. [J.1.2]and [K.5.1}

forV=g: G = g1, my = my, (6.24.15)
for V.=r: G =eQy, my = my, (6.24.16)
forV.=2: G = g(T — s%5:Qq)/cw my = my, (6.24.17)
for V=W: G=g/V2, my = mp. (6.24.18)

In the case of gluon exchange (V = g), the T* are the SU(3)¢c generators (with color indices
suppressed). The adjoint representation index a is summed over, producing a factor of the
Casimir invariant (7%7%);; = Cpd;j = %cﬁj. We now use ,0,0, 9" = —(D — 2)5, [see
eq. (B.2.11))]; note that this introduces a difference between the MS and DR schemes. Also, we
use k-o(k +p)-ok-c = (k* + 2k-p)k-G — k?p-7, which follows from eq. . One therefore

obtains, after multiplying by p-o and taking the trace over spinor indices:

. pe d%k 1
Py = —i6? p? / 2m)? [(k +p)? — m3][k2 — my] [(2 ~Dlp-(k+p)
+ (Kk-p + 2(k-p)? — k*p?) M] , (6.24.19)
\%

Performing the loop momentum integration, one finds that

1
1672

v =— G Ipy (s;mf, miy), (6.24.20)

where we have introduced the notation

Tev(siz,9) = >4 [(s 42— )Blsiz,y) + Alx) — Aw))/s — dygs + {(s — 2)[A(y) — Aley)]
(s —2)2 — y(s + D) Blsia,y) — [(s — )2 — Ey(s + 2)| Bls; v, &)} 2ys,  (6.24.21)

after dropping terms that vanish as e — 0. Combining the results of egs. (6.24.12]) and (6.24.20)):

1
Y= T KQECF + BQQf)IFv(m?; mi,0) + [g(T4 — sy Qr)/ew]*Ipy (mi;mf, m%)

SV Lps(mEsm? m? )

1
+*92[Fv(m?§ miﬁ”?xv) + hsm

2
1
5 Y Ies(mEsmi, ém) + Vi Ies(mis m?, mdy )| (6.24.22)
where we have now substituted s = m?. It is useful to note that for massless gauge bosons,

Ipy(x;2,0) =€ % —In(z/Q?) + 2] + 1 — 0y5g- (6.24.23)

The contributions to Xrt = [Erelg + [Ertly + [Ert]z + [Ertlhey + [Ertlgo + [ERe)gr are
obtained similarly. [Note that there is no W boson contribution, since the right-handed top
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quark is an SU(2)y singlet.] For the scalar exchange diagrams with ¢ = hgy, GO, GF, the

general form is:

d i o i
ip-o[Srls = 12 / (ZW’; . (—iY)<m>(—iY*) <k2—mi> . (6.24.24)

which yields

1
1672
Here the couplings and propagator masses for hgy and GY are the same as in egs. (6.24.8)),

(16.24.9), but now instead of eq. (6.24.10]),

for ¢ = G* : Y=-Y, mp=my, md=emiy, (6.24.26)

Erils = ——— Y [* Irs(s;mG, m3). (6.24.25)

from Fig. [J.1.4] For the contributions due to exchanges of vectors v = g,v, Z, the general form

is given by
, k. i(k+p)o ,
—ip-o[Srly = H2e/d (iG o) <2> (iG o))
2n) (k+p)2 -
—i (& — 1)k”’kz”)
S Y TN S 6.24.27
(i) (S ). oo
where
for V=g: G=—g, T, (6.24.28)
for V.=r: G = —eQ:, (6.24.29)
forV.=2: G = g5 Qi/cew (6.24.30)

after using the rules of Figs. [J.1.2] and [K.5.1] with m; = m; in each case. We then make
use of 0,0,0, 9" = —(D —2)0, [cf. eq. (B.2.10)] and k-o(k + p)-ok-0 = (k* + 2k-p)k-0 —
k%*p-o [cf. eq. ] After multiplying by p-@ and taking the trace over spinor indices [using
eq. (B-2.5))], we obtain

1
1672
in terms of the same function appearing in eqs. and . Adding up these con-
tributions and taking s = m? yields

1
1672

Erilv = G*Ipy(s;mi,mi), (6.24.31)

Sre = — 1o | (62Ck + 2QF ) Iy (miim, 0) + (6*QEsiy /ey Iy (mis m, m)
1 1
5V Ips(mdimi, i) + SV Irs (i mi, €m) + Y Ies(mfs mi, €mi) | (6.24.2)

Next, consider the contributions to Xp: = [Epilg + [Eptly + [Ept]z + [EDt)hey + [EDt]go +
[Xpt]g+, ignoring the tadpole contribution for now. The diagrams involving the exchange of

scalars ¢ = hgu, G°, G* have the form:
dk m i
—1|2 — e 2 vy () (i) [ .24,
ol = [ G0 00 (G ) O (e ) 62199
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so that

[Xpile = im V1Y 26/ d'k !
Dtlp = 1 1Yol
v (2m)? [(k +p)® — m3][k2 — m3]
1 2 2
= 162 myY1Yol5g(s; my,mg) (6.24.34)
where we have introduced the notation:
1
Isg(s;z,y) = - B(s;z,y), (6.24.35)

after dropping terms that vanish as ¢ — 0. The relevant couplings and masses are, from

Figs. [J.1.3] and [J.1.4}

for p=hsy:  Y1=Ys=Y/V2, mp=my, mi=mp,,, (6.24.36)
for ¢ = G : Vi =Y, =iY,/V?2, mp=my, mi=E&my,  (6.24.37)
forp=G*: Y=Y, Ya=-Y, my=my, mi=&mfy. (6.24.38)

The contributions from vector boson exchanges are of the form

dk m
. _ 2 AR —f . _
ol = [ e ) (G ) i)
_i L (€= DR ol
(o) (o Y iy
Using 0,5,g"" = D [see eq. (B.2.8)] and k-ck-o = k? [from eq. (2.52))] yields
, d’k 1 (€ —1)k?
¥p V:szG,uQG/ [D ]
Sodv =G | Gy v o~ [P e end
1
= 167T2mfG1GQIFV(S;m3c,m%/), (6.24.40)
where
_ 3+¢
Iy (s52,y) = T 3B(s;x,y) — £B(s;x,&y) + 205g, (6.24.41)

after dropping terms that vanish as € — 0. It is useful to note that for massless gauge bosons

Iy (232,0) = _¥ + (34 6)[In(/Q%) — 2 + 2655, (6.24.42)

The relevant couplings are obtained from the rules of Figs. [J.1.2] and [K.5.1}

for V=g: Gy = -Gy = gsT?, (6.24.43)
for V.=r: Gi1 = -Gy =eQy, (6.24.44)
forV=2: Gi1 = g(T?f — s%,l/Qt)/cW, Gy = gs%VQt/cW, (6.24.45)
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and my = m; in each case. Adding up these contributions and taking s = m?, we have:

mg
Ypt =3 {92 (T3 — sy Q1) sty Qi /iy ] Iy (miymi, m%) — (g2Cr + €2Q7) I, (mi; mi, 0)

167
+éy?aw0n%nﬁnnaM>—;nyWOn%nﬁ@n&>—nyWOn&nﬁfw&»}, (6.24.46)

where Y; = m;Y,/my, was used on the last term.

In each of the self-energy functions above, there are poles in 1/e, contained within the
functions Ipy, Irs, Ify and I5g. In the MS or DR schemes, these poles are simply canceled
by counterterms, which have no other effect at one-loop order. The one-loop top quark pole

mass can now be obtained by plugging eqs. (6.24.22)), (6.24.32)), and (6.24.46)) into eq. ((6.24.2))

with £ = 0, as discussed earlier. It is not hard to check that the terms from massless Nambu-

Goldstone boson exchange just cancel against the terms from the vector exchange diagrams that
came from fm%v and &m%.

As a simple example, consider the one-loop pole mass with only QCD effects included.
Then the result of eq. has no imaginary part. Taking the square root (and dropping a
two-loop order part) yields the well-known result :

M pole = my(1 + %ELt + %2Rt) + Xp¢

= mt<1 - ?gfzg [Ipv(m?; mi,0) + Iy (mi;m7, O)D
= my (1 + Z—;CF [5 Sy 31n(m§/Q2)} ) (6.24.47)

As another check, consider the imaginary part of the pole squared mass of the top quark. At

leading order, eq. (6.24.2) implies:

I'y = —Im[my (X1 + Xre) + 22 py]

2
= ot [ L Iy (g i)+ (V2 + Y2 Ies(mdsmd €nmdy) + 22 Ig(md: m?, €y )
1
= 555 (0" + Y YY) (mi + my — miy) — 4YPm } Tm[B(mysmy, miy)). (6.24.48)
t

The fact that the & dependence canceled here is a successful check of gauge-fixing invariance,
since the tadpole diagram in Fig. does not contribute to the absorptive part of the self-
energy. One can express Im[B(s;z,y)] in terms of the triangle function [cf. eq. (6.1.11))],

0 for s <(Vz+ 9%
a2 (s, z,y)/s for s> (Vz+9)>%

Eq. (6.24.48]) then reproduces the result of eq. (6.1.10|) for the top quark width at leading order.

Im[B(s;2,y)] = { (6.24.49)
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6.25 Self-energy and pole mass of the gluino

The Feynman diagrams for the gluino self-energy are shown in Fig. Since the gluino
is a Majorana fermion, we can use the general formalism of Section [£.6] We will compute the
self-energy functions =z = Egg and Q7 = Q99 defined in Fig. and infer Q5 = Qg5 from
the latter by replacing all Lagrangian parameters by their complex conjugatesm At one-loop
order, it follows from the general result of eq. that the complex pole squared mass of

the gluino is related to the tree-level mass mg by

M; —iMgLg = [mj(1 + 255) + mg(Q + Q5)]

(6.25.1)

s=m2+ie
It is convenient to split the self-energy functions into gluon/gluino loop and squark/quark
loop contributions, as
E=[Ealg+> Y Eala., and Q=[5+ > > [Qla, (6.25.2)
q z=12 q z=12
where the sum over ¢ runs over the six squark flavors u,d, s, ¢, b,t, and x = 1,2 corresponds to
the two squark mass eigenstates [i.e., the two appropriate linear combinations (for fixed squark

flavor) of g1, and gg|. The gluon exchange contributions, following from the Feynman rules of

Fig. [K:51] are:

P a € d’k aec— (k+p)- ebc—
“ip Bl = [ 6 o) (s ) (o)

(;) <gMV Fe— 1)"“;’2“”> 7 (6.25.3)

. ab __ € ddk eac img ebc—
—i[Q5]y 6 —M2 /(27T)d (9sf““ou) (M) (—gsf Uu)

(;) <guu+(£_ 1““2’;")_ (6.25.4)

The internal gluon and gluino lines carry SU(3). adjoint representation indices ¢ and e respec-
tively, while the external gluinos on the left and right carry indices a and b respectively. The

gluino external momentum p* flows from right to left, and the loop momentum k* flows clock-

wise. Comparing with the derivations of eqgs. (6.24.20) and (6.24.40|) in the previous subsection,
and using — facc febe = feac febe — §abC, [with C'y = 3 for SU(3).], we can immediately conclude
that

- o 2
[Egly = — - Calrv(simg, 0), (6.25.5)
Qg 9
[Qly = = Camglpy (simj, 0), (6.25.6)
where the loop integral functions Ipy and Iz, were defined in eqs. (6.24.21]) and (6.24.41)).
"2Suppressing the color degrees of freedom, Z,  and Q are one-dimensional matrices, so we do not employ

boldface letters in this case.
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dx

g dx
= S‘ ]Z + RN + RO
- < = < <
g g g g q

g 9 q g

4z
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—ip-ﬁEg
<P g
—— f<— = S‘ ‘]z + + ,”—\\
- — — > < > — > <
g g g

7
—i€Y g 494 g ¢ a9 g

Figure 6.25.1: Self-energy functions for the gluino in supersymmetry. The external momen-
tum p* flows from the right to the left. The loop momentum k* in the text is taken to flow
clockwise. Spinor and color indices are suppressed. The index x = 1,2 labels the two squark
mass eigenstates of a given flavor ¢ = u,d, s,c,b,t. Both x and ¢ must be summed over. The
external legs are amputated.

Next consider the virtual squark exchange diagrams contributing to =Z3. Labeling the quark

and squark with color indices j, k respectively, we have for each squark mass eigenstate:

—ip-7 [Eglg, 0% = M%/(;ijr];d(—i\@gs:’}%q‘z) <(Z(k+p)02> (—iv2g, TP L) <Z>

k4 p)? —m2 K2 —mZ
dk (. j i(k+p)o . i
2¢ aj p* e\ )Y bk v

This uses the Feynman rules shown in Fig.[K:5.3] given in terms of the squark mixing parameters
Lg, and Ry, defined in eq. (K.4.1). Using Tr[T°T%] = 16 and |Lg, |*+|Rg, |*> = 1, and comparing
to the derivation of eq. (6.24.12)) of the previous subsection, we obtain:

— Qg
Egla. = —EIFS(S; m2,mz ). (6.25.8)

—

Similarly, for the last two diagrams of Fig. [6.25.1] we obtain:

d’k ; m i
21O L]. sab _ 2 . aj T * q . bk 1> _
oula, 3 = [ 5 (<2t ) (rois ) (Vo2 e (=)

Gz
s [ By ) () (ivaain) (o ) (6259)
(27_[.)d 51 o (k+p)2 — mg STk T4z k2 o méw )

again using the Feynman rules shown in Fig. As before, j and k are the color indices
for the quark and the squark, respectively. Comparing to the derivation of eq. (6.24.34]) of the

previous subsection, we obtain:

(6.25.10)

s -y con2 02
[Qg](h = _iLChRéwquFS(S’ m‘]’ qu) :
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Summing up the results obtained above, and taking s = mg, we have:
=g = _47T|:CAIFV(m mg,0)+ Y > Ing(mg;m?,me )], (6.25.11)
q x=1,2
Q5 = — . {CAmg Fv(m m ,0) +2Z Z L; Rz, my FS(m m m )} (6.25.12)

q =12

As previously noted, we can now write down Qj by replacing the Lagrangian parameters of
eq. (6.25.12) by their complex conjugates:

Q= _%Z [CAmg Fv(m m ,0) +2Z Z Lg, R, mq FS(m m m2 )] : (6.25.13)
q x=1,2

Inserting the results of egs. (6.25.11)—(6.25.13) into eq. (6.25.1]), one obtains the result [229,[230]:

MZ iyl = 1+ 52 {Ca [5 - s — 3tu(oe/ @)

—Z Z [IFS m m m ) +2Re[L; R ]22[1{,@(7’/12 mg,mg )} }],(6.25.14)
q xz=1,2

with dyzg defined in eq. (6.24.5)).

6.26 Triangle anomaly from chiral fermion loops

As our final example, we consider the anomaly in chiral symmetries for fermions, arising from
the triangle diagram involving three currents carrying vector indicesm Since the anomaly is
independent of the fermion masses, we simplify the computation by setting all fermion masses
to zero. In four-component notationm the treatment of the anomaly requires care because of
the difficulty in defining a consistent and unambiguous 5 and the epsilon tensor in dimensional
regularization ,. The same subtleties arise in two-component language, of course, but
in a slightly different form since 75 does not appear explicitly.

We shall assemble all the (%, 0) [left-handed] two-component fermion fields of the theory into
a multiplet ¢;. For example, the fermions of the Standard Model are: ©; = (¢}, , Uk s Vi s Qi > Gie),
where k = 1,2,3and i = 1,2,...,6 are flavor labels and ¢ = 1,2, 3 are color labels [see Table.
The two-component spinor indices are suppressed here. Let the symmetry generators be given

by hermitian matrices T'%, so that the 1); transform as:
5; = —if*(T) 4y, (6.26.1)

for infinitesimal parameters 0% The matrices T form a representation R of the generators

of the Lie algebra of the symmetry group. In general R will be reducible, in which case the

"The discussion here parallels that given in ref. . Section 22.3.
"For an excellent review of the computation of the chiral anomaly via four-component massless and massive
spinor triangle loops, see ref. -
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—i(T%);*5, or i(T*);" o,
1 @
k

Figure 6.26.1: Feynman rule for the coupling of a current carrying vector index p and corre-
sponding to the symmetry generator T'* acting on (%, 0) [left-handed] fermions. Spinor indices
are suppressed.

T have a block diagonal structure, where each block separately transforms (irreducibly) the
corresponding field of ¢; according to its symmetry transformation properties. Some or all of
these symmetries may be gauged. The Feynman rule for the corresponding currents is the same
as for external gauge bosons, as in Fig. (but without the gauge couplings), and is shown
in Fig. [6.26.1]

Fig. exhibits the two Feynman diagrams that contribute at one-loop to the three-
point function of the symmetry currents. Applying the G-version of the Feynman rule for the
currents given in Fig. and employing the Feynman rules of Fig. (with m = 0) for
the propagators [traversing the loop in the direction dictated by eq. ], the sum of the two
triangle diagrams shown in Fig. can be evaluated.

ip+q

k+qg+A k—p+ A k—q+B

p.c " Vb %ifffd kB VLLLfb
MJ% e ;\h\/u e P

Figure 6.26.2: Triangle Feynman diagrams leading to the chiral fermion anomaly. Fermion
spinor and flavor indices are suppressed. The fermion momenta, as labeled, flow in the arrow
directions.

The resulting sum of loop integrals is

4 ik — o 7 el 7 -0
il—wabc _ (_1)/ d*k Tr{(_io'#Ta)(kp—i_A)(—iUVTb)W(—Z'O'pTC)Mm

we =10 | eyt (k= p+ A2 Ap (b+ g+ A7

i(k—q+B)-o
(k—q+B)?

i(k+ B)-o
(k + B)?

i(k+p+B)-o

+(—15,T%) (—io,T°) t%aT%(k+p+BP }, (6.26.2)

where the overall factor of (—1) is due to the presence of a closed fermion loop. The trace
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is taken over fermion flavor/group and spinor indices, both of which are suppressed. Because
the individual integrals are linearly divergent, we must allow for arbitrary constant four-vectors
A* and B* as offsets for the loop momentum when defining the loop integrations for the two
diagrams [235][2306].

The persistence of the symmetry in the quantum theory for the currents labeled by wu, a and

v,b and p, ¢ implies the naive Ward identitiesﬂ

(p+ @) 055 (—p — q,p,q) = fTII (q) + FoTIL (p) (6.26.3)
—p” T (—p — ¢,p,q) = P (p + q) + fTI5(q) | (6.26.4)
—¢ il (—p — q,p, q) = [T (p) + fPII (p + q) (6.26.5)

where iHZl{,(p) is the one-loop current-current two-point function shown in Fig. [6.26.3

k+gq

Figure 6.26.3: The one-loop contribution to the current-current two-point function. The
fermion momenta, as labeled, flow along the corresponding arrow directions.

By Lorentz covariance, HZIZ’, (p) is a rank-two symmetric tensor that is an even function of the
four-momentum p [cf. eq. ] In egs. f, we have employed a convention
in which the arguments of iI' correspond to the outgoing momentum of the external legs of the
corresponding one-loop Feynman diagrams, and the order of the momentum arguments matches
the order of the indices.

It is convenient to define the symmetrized three-point function by symmetrizing over the

indices a, b and c:

AZ?,’“;) = %ilel’/i, + [five permutations of a, b, c|. (6.26.6)

In terms of the symmetrized three-point function, the naive Ward identities imply

(p+ @ Ae =0,  —p“A%c =0, and — AR =0. (6.26.7)

We now perform the explicit diagrammatic computation to show that the naive Ward identi-
ties exhibited in eq. (6.26.7]) are violated due to a quantum anomaly. Although the symmetrized

">The derivation of the Ward identities is most easily achieved by writing the three-point function in position
space as a vacuum expectation value of the time-ordered product of three currents. After taking the divergence
(with respect to the position of any one of the three currents) of the time-ordered product and using the fact that
the currents are conserved (9,7 = 0), the surviving terms can be evaluated using the equal-time commutation
relations, §(z° — y°)[j%°(x), 5% (y)] = if**°j<*(x)6*(z — y). Fourier-transforming the result yields the terms on

the right-hand side of egs. (6.26.3))—(6.26.5)). See refs. for further details.
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three-point function is ultraviolet finite, the individual loop momentum integrals are divergent,
and must be defined with care. We do not regularize them by the usual procedure of continuing
to d = 4 — 2e dimensions, because the trace over sigma matrices crucially involves the antisym-
metric tensor with four indices, brought in by eqs. (B.2.26) and (B.2.27), for which there is no

consistent and unambiguous generalization outside of four dimensions. (This is related to the

difficulty of defining 75 in the four-component spinor formalism.) The existence of the vectors A
and B corresponds to an ambiguity in the regulation procedure, which can be fixed to preserve
some of the symmetries, as we will see below.

Starting from eq. (6.26.2)), it follows from eq. (E.2.7) that the symmetrized three-point
function is proportional to the group theory factor (often called the anomaly coefficient),

D = Imy[{T*, T} T, (6.26.8)

where the numerical values of the D¢ depend on the representation R. As discussed in Ap-
pendix E, D¢ vanishes for all simple Lie groups, with the exception of SU(N) for N > 3.
The D™ are also non-vanishing in general for any non-semisimple compact Lie group, which
contains at least one U(1) factor.

First, consider the result for (p + ¢)*A%¢ . This can be simplified by rewriting

pvp
p+a) =(k+q+ A= (k—p+ A", (6.26.9)
p+*=(k+p+B*—(k—q+B)*, (6.26.10)

in the first and second diagram terms, respectively, and then applying the formulae
v-ovT = v, v-Tv-o = v?, (6.26.11)

which follow from eqgs. (B.2.1)) and (B.2.2)). After rearranging the terms using the cyclic property

of the trace, we obtain:

(p+ Q)“Azl:/cp = —D* TI"[UNEVO')\EIJ] XHA,

= —2D" [ Xy + Xp = g Xa* + i, X | (6.26.12)

after applying eq. (B.2.26). (In our conventions, €yjo3 = —1.) The integral X" is given by:

o [ d% [(k—p+ A" (k+ A
X“/(W Lk—pww (k+ Ay

k+q+ A)F (k+ A)>
k+q+ A2 (k+ A)2

_(
(

(k+B)?(k—q+B)? (k+B)?(k+p+ B)?

(k+B)*(k—q+B)* (k+B)" (“p*B)A], (6.26.13)

Naively, this integral appears to vanish, because the first term is equal to the negative of
the fourth term after a momentum shift &k — &k — p + A — B, and the second term is equal

to the negative of the third term after k — k + g + A — B. However, these momentum shifts
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are not valid for the individually divergent integrals. Instead, X** can be evaluated by a Wick
rotation to Euclidean space, followed by isolating the terms that contribute for large k? and are
responsible for the integral not vanishing, and then employing the divergence (Gauss’) theorem
in four dimensions to rewrite X** as an angular integral over a three-sphere with radius tending
to infinity. This integral is initially evaluated at large but finite Euclidean k, with the limit
k — oo taken at the end of the computation. For example, consider a smooth function f(k) of

the four-momentum k with the property that the integral

/d4l<:f(k) (6.26.14)
is at worst quadratically divergent. We define the even and odd parts of f(k), respectively, by:
FR)= L0 + F(=R) . folk) = LIF(R) — F(—R)]. (6.26.15)

It then follows that [237 240]
0

[ o 10 0) = 9] = [ Jim R0 + i W0
(6.26.16)
has a finite limitm In deriving this result, we have expanded f(k+a) in a Taylor expansion and
follow the procedure outlined above eq. . Note that the angular integration removes
the even parts of f(k) and Of/0k¥ = 2k, df/0k? from the right-hand side of eq. .
The “limits” in eq. (6.26.16]) actually correspond to an average over the three-sphere at large

Euclidean k, and thus should be interpreted by the use of:

N
klglgo 2= 79", (6.26.17)
o kPEVEPED 1 y y y
Jim, =G =5 (9707 470 %) (626.18)
For example, if
(k—p+ A)F(k+ AP
k) = , 6.26.19
1 (k) (k—p+ A)2(k+ A)? ( )
then in evaluating eq. ((6.26.16)), it is sufficient to write:
1 2k-(p — 2A)
Jo(k) =~ 5(k —p+ A)(k+ A) [(k2)2 + (k)2 ] (k — —k)
I{A}\_)\ — A)F 2/@)\. —924
~ K K p— A 2Kk k- (p — 24) (6.26.20)

(k2)? (k%)? ’
where we have dropped terms that do not contribute to eq. (6.26.16)) in the limit of & — oo.

Similarly,
afe g/wk:)\ + gkukm ALSEA Y
aku - (k2)2 (k2)3
"0Tf eq. (6.26.14) is linearly divergent, then the second term on the right-hand side of eq. |6.26.16|) is zero. If
6.26.14

eq. (6.26.14)) is logarithmically divergent or finite, then the right-hand side of eq. 1|6.26.16|) vanishes.

(6.26.21)

147



The evaluation of X" is now straightforward [after using eqgs. (6.26.17)) and (6.26.18))]:
o

9672
Hence, eq. (6.26.12)) yields the result for the anomaly in the current labeled by p, a:

X 0+ 0)-(A+B)+ (A 2B) (0 + 0 + (0 +0)"(B — 247 (6.26.22)

be L
(p + Q)MAZVCp - 487'['2

D[ (p+ q)u(A+ B)y+ (A+ Blu(p+a)p + guplp+ 0)-(A+ B)
—Bi€ypr(p+ ) (A — B)A} . (6.26.23)

Repeating all of the steps starting with eq. (6.26.9)), we similarly obtainﬂ

v fQabc Q aoc - K
—p A, = — 5 D" pp(A+ B)y + pul(A+ By + gupp- (A + B) = Sicpuap™(A — B+29)*).
(6.26.24)

{ . .
—quZ,bfp = —487T2Dabc [qu(A +B)y+q(A+B)y+ 9uwq-(A+ B) — 3i€uung”(A— B — 2p))‘].
(6.26.25)

Non-chiral anomalies will arise for all three of the currents (assuming D¢ is non-vanishing),

unless we choose the arbitrary constant vectors A and B such that

A+B=0, (6.26.26)
with the result:
1
(p+ )" ALy = 55D evoma(p + )" AN, (6.26.27)
v jqabc 1 abc K A
—-p Auup = _@D €Epur\P (A+Q) s (6.26.28)
1
_quzbycp = _wDabceuw{)\qn(A —p)’\- (6.26.29)

If D¢ is non-vanishing, it is not possible to avoid an anomaly simultaneously in all three
symmetries, but one can still arrange for two of the symmetries to be non-anomalous. If one
wants an anomaly to arise only in the current labeled by p,a (for example, if the symmetries

labeled by b, ¢ are gauged), one must now choose A = p — ¢g. The standard result follows:

1

(p+ q)ﬂAZijCp = _RDabceupﬁ)\pﬁq)\; (62630)
—p" A, = 0, (6.26.31)
—qP AL, = 0. (6.26.32)

"7 Alternatively, one can simply note that eq. (6.26.24) follows from eq. (6.26.23) by making the replacements
6.26.25

w—=v,v—p,p—>p A— A+q, B— B—q,p— q,and ¢ - —p—gq, while eq. (6.26.25)) follows from eq. (6.26.23])
by making the replacements u — p, v -y, p v, A—>A—p, B— B+p,p— —p—q, and ¢ — p.

148



In particular, one cannot gauge all three symmetries labeled by a, b, ¢ unless D¢ = (.
If all three currents are identical, then by Bose symmetry the anomalies of the three currents
must coincide. This can be achieved by choosing A = %(p —¢), in which case,

1

(p+ )" Ay = — 155 D" evpmap™’, (6.26.33)
1

_pV'AZIb/Cp = _WDabcep,um\pﬂq)\? (6.26.34)
1

_quZchp = _12W2Dabceuun)\pﬁq>\- (62635)

Returning briefly to the original naive Ward identities given in eqgs. (|6.26.3)—(6.26.5)), the

analysis above shows that these identities must be modified by an additional additive contribu-

tion given by the right-hand side of eqs. (6.26.27)—(6.26.29)). In particular, there is no anomalous

contribution proportional to f*¢. This can be checked explicitly by a diagrammatic computa-
tion of the two-point and three-point functions that appear in eqgs. (6.26.3) and (6.26.5)). We
use egs. (E.2.11)) and (E.2.14)) to write

Te(TT®T®) = DY(R) + %IQ(R) fabe, (6.26.36)

where I5(R) is the index defined in eq. (E.2.1]) and R is the representation of the generators T%.
For example, inserting this result in eq. (6.26.2)), it follows that:

(p+ @) ilse = — {D“bc XA 4 %IQ(R) YN Tr[o,7,0,7,) (6.26.37)

where the integral Y** is given by

Y""\:/ d'k [(k—p)“k:)‘ (k+q k> k" (k—q)* k“(k—i—p)’\].

@m)t [(k—p)2 k2 (k+q2k2 k2 (k—q)? k2 (k+p)>

By letting £ — —k in the third and fourth term in the integrand of eq. (6.26.38)), we see that

Y = Y and hence by eq. (B.2.26)),

i - aoc
— S B(R) Y Telo,7,030,] = —ila(R) [ [2YV,J - gypyﬁ} . (6.26.39)

(6.26.38)

Since no e-tensor appears, we can evaluate this integral in d # 4 dimensions using the standard
techniques of dimensional regularization.

One can check that this result matches the diagrammatic calculation of the right-hand side
of eq. (6.26.27)). In particular, Fig. |6.26.3| yields
d*k ik-o i(k+q)-0
-r1ab _ — a — b
i) = (1) [ i T |(im 1) 5 (i) DT

d*k kP (k + q)*
(2m)* k2 (k +q)*

= —I(R)6™ Tr(7,0,5,0)) / (6.26.40)

"Here Y" is obtained from X"* by setting A = B = 0, since we can use dimensional regularization for this
part of the computation as explained below eq. ((6.26.38|).
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where we have used eq. (E.2.1). Lorentz covariance implies that

i (q) = 0 [C1(a*) g + C2(4*)quar] (6.26.41)

for some scalar functions C; and Cy. It follows that Hfﬁj(q) = HZZI),(—q) and HZI;,(q) = HgZ(q)

Consequently, we can write:

Ak kP(k + q)>
CmiR2(k +q)2’

1% (q) = %IQ(RW” Tr(G,0,0,0\ + TL0,0,0)) / (6.26.42)

and so no e-tensor appears in the evaluation of the trace. As above, we are now free to evaluate

the integral in d # 4 dimensions. Comparing eqs. ((6.26.37)) and (6.26.38]) to eq. (6.26.42)), and
using eq. (6.26.27]), the end result is

. 1
(p+ )" iy, (=p — ¢,p,9) = Ta(R) f* [IL,(q) — L,,(p)] + WD“bC(R)eupm(p +q) AN,
0
(6.26.43)
where we have written Hﬁ’;) = I(R)0%Il,,. Indeed the terms on the right-hand side proportional
to f2¢ match those of the naive Ward identity given in eq. (6.26.3)). As previously asserted, the
anomaly only resides in the contributions to the Ward identity proportional to D,

In writing down eq. (6.26.2]), we chose to use the rules with @ matrices for the current

vertices and ¢ matrices for the massless fermion propagators. If we had chosen the opposite
prescription (i.e., o matrices for the current vertices and & matrices for the massless fermion
propagators), then the order of the factors inside the trace of eq. would have been
reversedm Instead of eq. , we would have obtained

(p + Q)NAZbV(;) = _Dabc T‘T[E,{O'Z,E)\O'p} X’i)\ = _2Dabc [Xup + sz/ - ngXAA - iem/AanA ;
(6.26.44)
after applying eq. (B.2.27). The integral X** is simply related to X** by:

XA = XA (6.26.45)

Inserting eq. (6.26.45|) into eq. ([6.26.44)), we immediately reproduce the result of eq. ((6.26.12)),

as expected.
It is instructive to examine the case of massless QED. The terms of the Lagrangian involving

the electron fields is given by
& =ix'e"D,x +in'a" Dun, (6.26.46)

where D, = 0, + iQA, is the covariant derivative, and @ is the charge operator. Here, we
identify x as the two-component (left-handed) electron field and 7 as the two-component (left-

handed) positron field. The corresponding eigenvalues of the charge operator are: Qx = —ex

™The arrowed fermion lines in the loop must be traversed in the direction parallel [antiparallel] to the arrow
directions when the @ [o] versions of the propagator rule are employed, as indicated in eq. (4.4.2) [and in the
discussion that follows]. This rule determines the order of the factors inside the spinor trace.
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and @Qn = +en (where e > 0 is the electromagnetic gauge coupling constant, or equivalently the
electric charge of the positron).

At the classical level, the massless QED Lagrangian [eq. (6.26.46))] is invariant under a
U(1)yxU(1)4 global symmetry. Under a U(1)yxU(1)4 transformation specified by the in-

finitesimal parameters 6y and 6 4,
Ul)y : dx =iebyx, on = —iebyn, (6.26.47)
U(1)4: ox =1i0ax, o =1i04m. (6.26.48)
We can combine these equations into a two-dimensional matrix equation,

S = —ibu(Ta) o, where  p= (") (6.26.49)

n

and the index a takes on two values, a = V', A. It follows that the U(1)y xU(1)4 generators are
given by

Ty =e¢ , for U(1)y, (6.26.50)

-1 0
Ty = : for U(1)4. (6.26.51)
0—1

The classically conserved Noether currents corresponding to the U(1)y xU(1) 4 global sym-

metry are the vector and axial currents{®)
Jb = —e(x'a"x — n'a"y), (6.26.52)
Jh = —xTa"x — niaty. (6.26.53)

Since the U(1)y symmetry is gauged, we demand that this symmetry should be anomaly free.
Thus, we make use of egs. (6.26.30)—(6.26.32), where we identify the index pair u, a with the

axial vector current and the index pairs v, b and p, ¢ with the vector current. Thus, we compute:
DAYV = Tr (T Ty Ty ) = —2¢%. (6.26.54)

Moreover, for an abelian symmetry group, f*¢ = 0. Hence, using eq. (6.26.30) [which also
applies in this case to the unsymmetrized three-point function], the U(1) axial vector anomaly

equation reads:

2
mAvVY € A
(p + Q)“ Zr,uyp T on2 GVpHAqu ) (62655)
80Note that the interaction Lagrangian for massless QED is Zint = —J{; Ay, as expected. This accounts for the

factor of e in the definition of the vector current. The axial vector current does not couple to the photon field;
hence no coupling constant is included in its definition.
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in agreement with the well-known resultlfl
We now convert eq. (6.26.55)) into an operator equation. Consider the process of two photon
production by an axial vector current source [242]. First, we note that 8,J% (z) = i[P*, Ja,(x)],

where P* is the momentum operator. It follows that:

(p, al0uT5(0)[0) =i(p, q|[P", Jau(0)]|0) = i(p+q)" (p, q| Jau(0)[0) . (6.26.56)
We identify the S-matrix amplitude for the two photon production as:

il € (0)e” (@) = (P, a| —iJ4.(0)]0) , (6.26.57)

where ¢(p) and (q) are the polarization vectors for the final state photons. Note that the factor
of —i on the right-hand side of eq. (6.26.57]) has been inserted to be consistent with the Feynman

rule for the axial vector current insertion given in Fig. [6.26.1] Thus, using eqgs. ((6.26.55))—
(6.26.57)), we end up with [115]:

2

€ v * * K
(p, q|8,J%(0)][0) = — 5z ()" (@)p 7
2

e
= - @Q)a q ’ emxz\pFHVF)\pa)) ‘0> ’ (62658)

where €0, F" F* = 4é,,,,(0% A”) (0" AP) has been used to eliminate the photon fields in favor
of a product of electromagnetic field strength tensors. In deriving eq. , an additional
factor of two arises due to two possible contractions of the photon fields with the external states.
We thus obtain the operator form for the axial vector anomalyigzl

62

Ty == 872

FMEy,, (6.26.59)

where the dual electromagnetic field strength tensor is defined by ﬁAp = %em,)\pF’“’.
As a final example, we examine the anomalous baryon number and lepton number currents
in the theory of electroweak interactions [243-245]. For simplicity of notation, we consider a

one-generation model. The baryon number current is a vector current given by:
Ty =1 [u*&“u +d'td — a'eha — dighd| | (6.26.60)

following the particle naming conventions of Table[5.1} Consider the process of gauge boson pair
production by a baryon number current source. It is convenient to work in the interaction basis
of gauge fields, {W#* Bt} where WH® is an SU(2)-triplet of gauge fields and B* is a U(1)y

hypercharge gauge field. We consider triangle diagrams where one generation of quarks runs in

81This result was first obtained by Adler [241]. In comparing eq. (6.26.55) with Adler’s result, note that the

normalization of the triangle amplitude in ref. [241] differs by a factor of (27)* and the opposite sign convention
for €p123 is employed.

82In the literature, eq. often occurs with the opposite sign due to a sign convention for the Levi-Civita
e-tensor that is opposite to the one employed in this review. Here, we have reproduced the form given in ref. .
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the loop. The external vertices consist of the baryon number current source and the two gauge
bosons.
The generators corresponding to the SU(2) gauge boson vertices are given in block diagonal

form by:
b
Tb = gdiag <; @ 13y3, 0, 0> : (6.26.61)

where the 70 are the Pauli matrices, 13y3 is the identity matrix in color space, and ® is the
Kronecker product@ We have included a factor of the weak SU(2) coupling g in the definition of
T?, since the Feynman rule given by Fig. does not explicitly include the gauge coupling.
Likewise, the generators corresponding to the U(1)y gauge boson vertices are given in block
diagonal form by (cf. Table :

Y = ¢ diag (¢lox2 ® L3x3, —213x3, 313x3) , (6.26.62)

where 155 is the identity matrix in weak isospin space, and ¢’ is the U(1)y hypercharge gauge
coupling. Finally, the generator corresponding to the baryon number current source is given in

block diagonal form by:
B = 1diag (1ax2 ® l3x3, —L3x3, —l3x3) . (6.26.63)

Consider first the production of two SU(2)-triplet gauge fields. We put T = B and

associate the indices b and ¢ with the SU(2)-triplet gauge bosons. A simple calculation yields
DB = ¢ Te(BT®T*) = 146", (6.26.64)

where the superscript index B refers to the baryon number current. Since the gauged weak
SU(2) and hypercharge U(1)y currents must be anomaly free for the mathematical consistency

of the electroweak theory, it follows that eqgs. (6.26.30))—(6.26.32) apply. That is, the symmetrized

amplitude for the production of SU(2) gauge boson pairs by a baryon number source is anoma-
lous:

2
(p+ )" AR = —gﬁébceypmp”f : (6.26.65)

Next, consider the production of two U(1)y hypercharge gauge fields. A simple calculation
yields
DPYY = ¢?Tr(BY?) = —14%. (6.26.66)

That is, the symmetrized amplitude for the production of U(1)y gauge boson pairs by a baryon

number source is anomalous:

/12

g
(p+ ALY = @eypmp”ff : (6.26.67)

83The Kronecker product of an n x n matrix and an m X m matrix is an nm X nm matrix. In addition, the
following two properties of the Kronecker product are noteworthy [1611246]: (i) (A ® B)(C ® D) = AC ® BD,
and (i) Tr(A® B) = Tr A Tr B.
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Finally, the symmetrized amplitude for the associated production of an SU(2)-triplet and U(1)y
hypercharge gauge field exhibits no anomaly as the corresponding DBY¢ = g¢/ Tr(BY T) = 0.

The symmetrized amplitudes of the triangle diagrams involving a baryon number current
source and a pair of SU(2) or U(1)y gauge bosons are anomalous. Since the baryon number
current is a vector current, we conclude that the source of the anomaly is a VVA triangle diagram
in which one of the gauge boson currents is vector (V) and the other gauge boson current is axial
vector (A). Nevertheless, the gauge boson axial vector current must be conserved, as noted above.
Hence, the baryon number vector current must be anomalous [243]. In eqgs. (6.26.55)—(6.26.55)),

we showed how to derive the operator form of the anomaly equation from the anomalous non-

conservation of the symmetrized triangle amplitude. Following the same set of steps starting

with egs. (6.26.65) and (6.26.67)), one obtains the anomalous non-conservation of the baryon
number vector current, in a model with N, quark generations 245]:

2 /2
g°N, —~ g “N, ~
0Tl = et WS = T B B (6.26.65)
where B), and
W3, = WP — 0,5 — g Wiwy, (6.26.69)

are the field strength tensors for the hypercharge U(1)y gauge boson and SU(2) gauge boson
fields, respectivelyﬁ Note that for the non-abelian SU(2) gauge fields Wi,

WYL, = 2657 | (9, WE) (03 W) — ge (0 W WAV |

_ 2e g, [Wf(@AW},’) - %geabcwgwfwg} . (6.26.70)

Strictly speaking, the triangle graphs yield only the terms on the right-hand side of eq.
that are quadratic in the gauge fields. To obtain the corresponding terms that are cubic in
the gauge terms, one must compute the anomalies that arise from VVVA and VAAA box dia-
grams [237][247].

For completeness, we re-express the anomalous non-conservation of the baryon number
current in terms of the mass eigenstate SU(2)xU(1)y gauge fields:

2 2
=2 WYWw, - 2L 77— 22 | JVF rz .26.71
1672 Ap 32m2c}, AP 32m2ey A | (6.26.71)

0,
where ¢y = cos Oy, and Wj;, Zyp, and F), are the W=, Z and the electromagnetic field strength
tensors, respectively.

By a similar analysis, one can also compute the anomalous non-conservation of the lepton
number current,

Ji = 0150 4+ viGhy — 0151, (6.26.72)

84We again caution the reader that a different overall sign in eq. (6.26.68) often appears in the literature due
to a sign convention for the Levi-Civita e-tensor that is opposite to the one employed in this review. Here, we
have chosen €"'?3 = 41,
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due to triangle diagrams with N, generations of leptons running in the loop. In the one-
generation calculation, the relevant generators are:

b
o

T® = gdiag (T 0> , Y = ¢ diag (—312x2, 1) , L = diag (1ax2, —1) . (6.26.73)

Thus, we end up with:
DLbc _ %QQ(SbC’ DLYY _ _%9/2 ’ DLYC —0. (62674)
Thus, in the Standard Model with N, generations of quarks and leptons,
O Jr = 0,0 . (6.26.75)

Hence, the B — L current is conserved. However, B — L is not anomaly free, due to the fact that
the lepton number current exhibited in eq. has both vector and axial vector pieces.
In particular, the symmetrized amplitude of the triangle diagrams with three lepton number
current sources is anomalous. To avoid this anomaly, one can add a right-handed neutrino to
the Standard Model, in which case the leptonic current, .J Z = (gl + vighy — 015l — oiahD, is
a vector current. In this case, eq. still holds, and the B — L current is conserved and

anomaly free.
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Appendix A Metric and sigma matrix conventions
In this review, the metric tensor of four-dimensional Minkowski space is taken to beﬁl
Guv = g"" = diag(+1,-1,-1,-1), (A1)

where p,v = 0,1,2,3 are spacetime vector indices. Contravariant four-vectors (e.g. positions,
momenta, gauge fields and currents) are defined with raised indices, and covariant four-vectors

(e.g. derivatives) with lowered indices:

at = (t; &), (A.2)
P =(E;p), (A.3)
AM(z) = (D(Z,1); A(E,1)), (A.4)
T (x) = (p(&,t); J(&, 1)), (A.5)
Oy = aiu = (9/8t; V), (A.6)

in units with ¢ = 1. The totally antisymmetric pseudo-tensor e¢**?? is defined such that
12 = €0 = +1. (A.7)

Egs. (A.2)—(A.7) are taken to be independent of the metric signature convention.
The sigma matrices are defined with a raised (contravariant) index to be independent of

the metric signature convention,
ot = (Laxz2; ), o' = (Lax2; —7), (A.8)

where the three-vector of Pauli matrices is given by & = (0!, 02, 03) [cf. eq. (2.29)] and Tayxo

is the 2 x 2 identity matrix. The corresponding quantities with lower (covariant) index are:

—

Oy = Q;WUV = (l2x2; —0), Oy = guuay = (l2x2; 7). (A.9)

85 An otherwise identical version of this paper with the opposite metric signature is also available; see footnote
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Various identities involving products of sigma matrices are given in Appendix B. The generators

of the (%, 0) and (0, %) representations of the Lorentz group are, respectively, given by:

ot = —(ota” — o"3"), ot =

(Fe” — 5 oh). (A.10)

ENPS
FNS

In adopting the above definition of the sigma matrices, we differ from the corresponding
conventions of Wess and Bagger and Bilal . The Wess/Bagger and Bilal (WBB) definition

of the sigma matrices can be written (with lowered index ) asﬂ

(0"VPP) 0 = 000300 0055 = (lax2; &), (A.11)
_ ; _G ) R
@V =570, 70 = (laxa: —F). (A.12)

One consequence of the WBB definition of o and @ is that v, = diag(Lax2, —Lax2) in the
chiral representation [cf. eq. (G.1.2)]. This associates a lowered undotted [raised dotted] two-
component spinor with a right-handed [left-handed] four-component spinor [cf. egs. and
(G.1.9)]. Indeed, this was the common convention in the older literature (e.g., see refs.
)El However, in the modern formulation of electroweak theory in terms of left-handed
fermions, it is now more common to associate a lower undotted [raised dotted]| two-component
spinor with a left-handed [right-handed] four-component spinor. This is the motivation for our
conventions for the sigma matrices given in egs. and .

In order to facilitate the comparison with the metric signature with ggo = —1, we provide
the key ingredients needed for translating between Minkowski metrics of opposite signature.
In our conventions [cf. egs. (A.2)—(A.9)], each of the following objects (with the Lorentz index

heights as shown) is defined independently of the metric signature:

17 — vV po
at pht, JH 7J;waa,uaauaguwsuyJuyAuyD,uaGuua’Yuy'}’Saéﬁaﬁup ,qug,@“,,

[no sign change], (A.13)
whereas the following objects change sign when the Minkowski metric signature is reversed:

Guv s 9 Ty s O 0 Ty Sy s Ay, DR G Gy, 0 O [sign change].
(A.14)
Here, J#¥ is the angular momentum tensor, the spin four-vector S* is defined in eq. , JHis
any conserved current, A* is any gauge vector potential, and D,, and G, are the corresponding
covariant derivative and antisymmetric tensor field strength, respectively. The Dirac gamma

matrices are defined in eq. (G.1.2), and the tensor 6 parameterizes Lorentz transformations

86 Although Wess/Bagger and Bilal employ opposite metric signatures of goo = —1 and goo = +1, respectively,
their definitions of ¢, and 7, (with covariant index y) coincide. Note that the spinor structure of the o and &
matrices and the definitions of the various (two-index and four-index) epsilon tensors [cf. egs. and (A7)
are identical in both the WBB conventions and in our conventions.

87This convention persists in the literature of the spinor helicity method (cf. footnote in Appendix 1.2).
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[cf. egs. (2.8]), (2.15)), and (2.100)—(2.102))]. The list of eq. (A.14]) can be deduced from eq. (A.13))

by using the metric tensor and its inverse to lower and raise Lorentz indices, simply because each

metric or inverse metric changes sign when the metric signature is reversed. Given any other

object not included in eqs. (A.13)) and (A.14)), it is straightforward to make the appropriate

assignment by considering how the object is defined. For example, we must assign o,,, 0w,
oM and " to the list of eq. , based on the definitions given in egs. and .
In general, objects that do not carry Lorentz vector indices (including all fermion spinor fields
and spinor wave functions) are defined to be the same in the two metric signatures, with the
obvious exception of scalar quantities formed from an odd number of objects from the list of
eq. . For example, the dot product of two four-vectors may or may not change sign when
the Minkowski metric signature is reversed. By writing out the dot product explicitly using
the metric tensor to contract the indices, one can use egs. and to determine the
behavior of a dot product under the reversal of the metric signature. In particular, p- A changes
sign whereas ¢-9 and @-0 do not change sign, when the Minkowski metric signature is reversed.

The translation between Minkowski metrics of opposite signatures is now straightforward.

Given any relativistic covariant quantity or equation in the convention where ggg = +1, one need

only employ egs. (A.13) and (A.14) to obtain the same quantity or equation in the convention

where ggo = —1, and vice Versaﬁ
As an example, let us verify that under the reversal of the Minkowski metric signature the
gauge covariant derivative D, does not change sign and the gauge field strength tensor G*

changes sign. In the metric signature with ggoo = +1, we define
Dy = L0+ igA,. (900 = +1), (A.15)

where 4, = A7T* is the matrix gauge field for a representation R of dimension dg, and I, is
the dr x dp identity matrix. Since under the reversal of the metric signature, 9,, does not change

sign [according to eq. (A.13))] whereas A, changes sign [according to eq. (A.14)], it follows that

the quantity defined in the metric signature where ggg = —1,
DM = IdR(?M — igAM N (goo = —1) (Alﬁ)

has the same overall sign as eq. (A.15). It follows that when the metric signature is reversed,
D,, does not change sign whereas D* = ¢g"D,, does change sign, as indicated in eqgs. ({A.13)) and
(A.14). Next, consider the matrix gauge field strength tensor G, = G}, T, defined by

G = _?Z [DF, D¥] = OFAY — 0¥ AM + ig[A* | AY] (g0 = +1), (A.17)

88 Note that for any relativistic covariant term appearing additively in a valid equation, the relative sign that
results from changing between Minkowski metrics of opposite signature is simply given by & = (—1)N , where
N = Ny + Ng + Ng + .... Here Ny, is the number of metric tensors appearing either explicitly or implicitly
through contracted upper and lower indices, Ng is the number of spacetime and/or covariant derivatives, Ng is
the number of gauge field strength tensors, and the ellipsis (...) accounts for any additional quantities whose
contravariant forms (with all Lorentz indices raised) appear in the list of eq. .
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where the commutator [D#, D¥] is an operator that acts on fields that transform with respect
to an arbitrary representation R. In the metric signature with goop = —1, we define the gauge
field strength tensor as a commutator of covariant derivatives with the opposite overall sign:
G =L [Dr, DV] = gAY — QAP — ig[AF, A7), (900 = —1), (A.18)
g
where D* is now defined as in eq. (A.16]). Since under a reversal of the metric signature, A*
does not change sign [according to eq. (A.13))] whereas 0" changes sign [according to eq. (A.14])],

it follows that G*" and G = ¢up9voGP’ do indeed change sign when the metric signature is

reversed, as stated in eq. ((A.14]).

As another simple illustration, consider the o-matrix identity,
T'o"5P = g"'eP — g'PT” + Pt — iV G, (goo = +1), (A.19)

In the opposite metric signature with gogg = —1, we apply the results of eqgs. (A.13]) and (A.14))
and then multiply both sides of the equation by —1 to obtain:

GGG = —gMGP + g — g i P, (oo = —1). (A.20)

Finally, in the sigma matrix conventions of Wess/Bagger [69] and Bilal [83], both egs. (A.19)
and are modified by changing the overall sign of 7¢#***5,. In general, to convert the
identities of Appendix B to the conventions of WBB, one must first convert (if necessary) to the
appropriate metric signature, and then interchange o <+ @ [cf. egs. and ]

We end this Appendix with a brief summary of our conventions for four-dimensional Eu-
clidean space. The Euclidean components of the coordinates [represented in Minkowski space

by the contravariant four-vector, 2# = (2% ; &), for u = 0, 1,2, 3], are defined as
x’é:mEuz(f,xé), o =xpy = ia?, (p=1,2,3,4). (A.21)

The four-momentum operator in Minkowski space is p# = 0" = i(9/0t, —6) Following the

conventions of ref. [24§], the Euclidean counterpart of the momentum operator is
V= pEp = (B, pp) = =iy = —i(V, 0/0xy) . pp=ppa=ip°, (A22)

The Minkowski space Green functions are obtained from Euclidean space Green functions by
means of a Wick rotation , of :U‘}; = 2% in a counterclockwise senseﬂ Scalar
products of Euclidean four-vectors are carried out by employing the Euclidean metric tensor
Oy = 0M = diag(1, 1, 1, 1). For example, the Euclidean counterpart of —p-z = —pV2 + pex
is phoaly, = P& + phat, ete. Given any tensorial equation in Euclidean space, the heights of the
indices is irrelevant. Consequently, one can simply place all indices at the same height (either

all raised or all lowered), with an implied sum over a pair of repeated indices.

89Expressing the corresponding Green functions as Fourier transforms of momentum-space Green functions,
one must simultaneously Wick-rotate p% = ip° in a clockwise sense to avoid singularities in the complex p°-plane.
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One can also introduce Euclidean sigma matrices [250]:

(=i, o), o= (i6,0p), where 0p =75 = Loy, (A.23)

nw
o

which satisfy{]

oo + opo = 261, Thhoh + opol = 261 (A.24)

The four-dimensional rotation group in Euclidean space is SO(4), which is locally equivalent to
SU(2)xSU(2). It possesses two independent pseudo-real two-dimensional spinor representations
(2,0) and (0,1) [not related by hermitian conjugation in contrast to the Lorentz group|, with
corresponding hermitian generators of; and @ , respectively:

i _ _ _ (v _
ok = 1 (oot — ooty | oty = 1 (chhop —ohol) . (A.25)
These tensors are anti-self-dual and self-dual, respectively [121],
oy = —%el‘l’mafg , oy = %G“VPTE’)ET , (A.26)

where the totally antisymmetric Levi-Civita tensor is defined in Euclidean space such that

1231 = €1934 = +1. One can express o'y’ and 7% in terms of the 't Hooft eta symbols [251],
ol = —%ﬁk‘“’ak, o = —%nk‘“’ak, (A.27)
where pu, v = 1,2,3,4 and there is an implicit sum over £ = 1,2,3. Equivalently,

ohat = oM 4o Ghol = M g et (A.28)

The 't Hooft symbols n and 7 satisfy self-duality and anti-self-duality properties, respectively:

kuv _ 1 _uvpX, _kp\ —kuv __ 1 _pvpi=kpA
n#_ieﬂpnp’ n#_7§€#Pn97 (A29)

and are explicitly given by:

il — ki — ik it = R kT kit gk g = — 0. (A30)

For a more comprehensive treatment of two-component spinors in Euclidean space, see ref. [130].

Appendix B Sigma matrix identities and Fierz identities

In Section 2] we derived a number of identities involving o, o#, o and 7#”. When considering
a theory regularized by dimensional continuation [125], one must give meaning to the sigma

matrices and their respective identities in d # 4 dimensions. In many cases, it is possible to

907t is seemingly more natural to define 0% = (&, o}) and 7% = (&, 7)) where of, = 53 = illax2, in which
case one must replace 6" with —0*" in eq. (A.24)). Nevertheless we prefer eq. (A.23)), which avoids an overall minus
sign in the respective anticommutation relations of the Euclidean sigma and gamma matrices [cf. footnote .
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reinterpret the sigma matrix identities for d # 4. However, the Fierz identities, which depend on
the completeness of {1242, 0’} in the vector space of 2 x 2 matrices, do not have a consistent,
unambiguous meaning outside of four dimensions (e.g., see refs. and references therein).
In Appendix B.1, we exhibit a comprehensive list of identities from which many generalized Fierz
identities can be derived. In Appendix B.2, we examine the class of sigma matrix identities that
can unambiguously be extended to d # 4 dimension and thus can be employed in the context of

dimensional regularization.
B.1 Two-component spinor Fierz identities
We begin with the basic identity for 2 x 2 matrices ,
Sabcd = 5 [Saader + ohgoly] (B.1.1)

where there is an implicit sum over the repeated superscript ¢ = 1,2,3. Eq. is a conse-
quence of the completeness of {12y, o'} in the four-dimensional vector space of 2 x 2 matrices.
Applying these considerations to matrices that possess two indices, either undotted and/or dot-
ted, one can establish four isomorphic four-dimensional vector spaces, each of which is spanned

by four linearly independent hermitian matrices,

V={d",i(c")"},  V={5%;,i@") s}, V'i={o":}, V' ={5"*}. (B.1.2)

Note that the 07% and @/* are completely determined by the six matrices ¢% and @ (where
i,7,k =1,2,3) due to the self-duality relations given by eq. (2.76)).
It is therefore convenient to consider the set of matrices,
I'= {5(167 O'ZB, ot P 60‘3, ohap E‘“’o‘ﬁ-} . (B.1.3)

Elements of T' will be denoted by T'("™) (n = 1,2,...,6). Starting from eq. , one can

establish a set of 21 identities of the following form:
TN AT ip = Y (Cr)# @) i), (B.1.4)

p.¢,K,L

where each label I, J, K and L can represent zero, one or two Lorentz spacetime indices, and
A, B, C'and D represent two-component spinor indices, each of which may be undotted or dotted
and in the lowered or raised position as appropriate. The sum in eq. is taken over the
matrices specified in eq. , and the ng are numerical coefficients [cf. egs. f].
Let us multiply eq. by four (commuting or anticommuting) two-component spinors
ZiAZapZ3c Zap, where Z; stands for either the undaggered or daggered spinor z; or z;-f , depend-

ing on whether the corresponding spinor index is undotted or dotted. This procedure yields

generalized Fierz identities of the form :

(2T Zo) (23T Z4) = (1) > (CPm L (Zi TR 2,) (25T 2), (B.1.5)
p,q,K,L
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where (—1)4 = 41 [~1] for commuting [anticommuting] Spinors

The explicit expressions for the 21 identities represented by eq. (B.1.4) are as follows.

5,70% = Lot T ﬁﬁ, (B.1.6)
5,767 =1 [5a 5.0+ (aﬂy)af(aw)ﬂ : (B.1.7)
55"5‘5#7‘- — % [5d+5’73 + (Eul/)di_(ﬁuu)"vﬁ.} , (B.l )
5oty = 30%38,% — i0yaa(a™),” (B.1.9)
8,75 = 15,750 (o) TP (B.1.10)
8% pol = %5%065 +i(@)*50, 45, (B.1.11)
5“55“70‘ = %E’“mmﬁ- — ia (JW) 4> (B.1.12)
0:2(07),7 = 4 (0)278,5 4 8,707, = i [(07007(0"7), (00, ]}
(B.1.13)
(5af3(6“”)5d =—1i [U Vo8 agdﬁ“ﬁﬁ —i—ie“'/p“apadﬁgﬁ} , (B.1.14)
56“6(0“”)50‘ = —%z [U”aa Eﬂ —E”daagﬁ Zew"magad 55} , (B.1.15)
05 = 4 )57, 4 80 g [0~ )
(B.1.16)
UZdO';B = % _o‘“ Ohe + oaﬂ Ba — g/’“/giﬁ'g)\ﬁd + ie#upﬁgpaﬂ- a,{ﬁd} , (B.1.17)
FHaagvBE _ 1 [Grapgvba | Grabanbe _ g, Fhe — it PP 550‘} , (B.1.18)
GZdEVBﬁ - % g;w(;aﬁ(;ﬁd _ 2i(a“”)a55’3a + 2i5aﬁ(5“”)ﬁd _ 4gpn(0”“)aﬁ(5”p)ﬁa} 7
_ (B.1.19)
(Uw)aﬁaga = % UZ@(Uup)vﬁ - UZ@(UVP)WB + i \ox ad(a/\p)’yﬁ
—3i (g"oly — 7Pl — i€ 0, 06 675] , (B.1.20)
Epdﬁ(a’“’)ﬂ - % él/da(aup)vﬁ _ 5udoc(01/p)7/3 + Z'Ewm/\gga(akp%ﬁ
+%i (g“pﬁ”da — gPEra — ie“l”mﬁi‘a) 675] , (B.1.21)
0 STV s = § [02a (@) 5 — 0l (@7 — i€ aa(@)
+1i (gMPaYy — g"Pat, + i oy 06 6 B] , (B.1.22)
(E,uz/)d,éap"ya _ % [El/doz (Eup)ﬁB o Euda(ayp)"yﬁ_ . Z'EHVH)\Ega(EAp)"yB
—1i (ghr” o — guPGH A et PR ) 5T } , (B.1.23)

91Tt is often convenient to reverse the order of the spinors Z, and Zg on the rlght hand side of eq. (B.1.5) by

using eqs. (]2 60[) (12 62[) and (]2 95[) (]2 96[) to eliminate the factor of (—1)* [cf. eq.
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(0")a (07,7 = Yo7 (07):7 + 302767 (g7 — g — ieh?)

L6y T (g + gVRah — gPPaht — gt gP) B
i

+

4
_i 576 (gHPaV" 4 gVRohP — gPahn — g’“"a”p)z T
1 [(@)a7 (@), + (")aT (), = ()07 (0"), = ()" (),
o [94(67)a7 (07 46" (0")a” (1),
—g"(0")a” (0") = g (") ("), (B.1.24)
(@)% 4(@")75 = 3(@") (@) 5 + §0%:075 (79" — ¢""g" + i)
4&@50'17. (gMPT" + g rahe — VP — gﬁmgl/p)*v 5
_ii(gﬁg (gHPT" 4 gViaHe — gt P — g/‘«“El’P)d -
+3 {(5“’))0"7'(5”“)#3 + (@) (@) 5 — (@) ()T 5 — (5’“)6‘7'(5”)&5}
N L e R G R RGO L
—g"H (@) () — g (@) )] (B.1.25)

()o@ = & [ (99" = 94" 72573

+ie"PA Gy 0aT" BB _ i gy adﬁpgﬁ - ie“p“)‘azdﬁfﬁ + ie”p'“)‘agdﬁfﬁ
(057 4 0k ) + g a8 4 ot )
+gh (0 T 0P 4 o PP — g (o TP 4 ot EPBB)] . (B.1.26)

ad ad

From egs. (B.1.6)—(B.1.26]), one immediately obtains the corresponding 21 Fierz identities rep-
resented by eq. (B.1.5). Eleven of these identities also appear in Appendix A of ref. @
The derivation of the 21 identities listed above is straightforward. Egs. (B.1.6)—(B.1.8) are
equivalent to the completeness relation of eq. (B.1.1). The next eight identities [egs. (B.1.9)—
(B.1.16])] are easily derived starting from egs. (B.1.6)—(B.1.8). As a simple example, using the
results of egs. (B.1.7)) and (B.2.20)), it follows that
5a5‘7'¢d = 0070,k = % [50‘7575 + (Upn)aT(Upn)vﬁ} org
= 4 [0, + (070 s (00), ]
= % [Uga‘gyﬁ + %i(gﬁugp — g™ + iep"‘uyau)ad(%ﬁ)vﬂ}

= 16,7850 4 i(0") 1700 (B.1.27)

where eq. (2.76]) was employed in the final step. We can now use eqgs. (B.1.9)—(B.1.12) to derive
egs. (B.1.17)—(B.1.23) by a similar technique. Finally, starting from eqs. (B.1.13)-(B.1.16) we

92Note that in ref. , """ has the opposite sign with respect to our conventions, and ¢*” is defined without
an overall factor of ¢. Taking these differences into account, we have confirmed that the results of Appendix A of
ref. match the corresponding results obtained here.
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may employ the same technique once more to derive egs. (]B.1.24|)f(]B.1.26|)I§| A useful check of

the last three identities can be carried out by multiplying these results by g,,g,~ and summing

over the two repeated Lorentz index pairs. We then find:

(@) (0 )y™ = =30 )" (0)2" + 30a70,7 (B.1.28)
(@) (@) s = —3@) (@) 5 + 56407 5, (B.1.29)
(0")a” (@) 7+ = 0. (B.1.30)

Eq. (B.1.30) has already been recorded in eq. (2.84)). To verify eqs. (B.1.28)) and (B.1.29)), we
first rewrite these equations with the interchange of 8 <> 7 and 3 <+ 7. Inserting the resulting
equations back into eqgs. (B.1.28) and (B.1.29) then yields the previously obtained eqs. (2.82))

and (2.83)) [or equivalently, egs. (B.1.7) and (B.1.8])].
A similar check can be performed on egs. (B.1.17)(B.1.19) by multiplying these results by

guv and summing over the repeated Lorentz index pair [with assistance from eq. (B.1.30)]:

a5 = ~0" 54 (B-1.31)
ghaoghl — _guadgla. (B.1.32)
ot 7 = 26,05 (B.1.33)
It follows that:
Cadlupg = 2€aplaf (B.1.34)
S aaagﬁ — 2¥BedB (B.1.35)

since egs. (B.1.31)) and (B.1.32)) are antisymmetric under the separate interchanges of a <+ 3 and
& ¢ 3. The coefficients in egs. (IB.1.34|) and (IB.1.35|) are determined by substituting a = a =1

and 8 = ﬂ = 2. Thus, we have confirmed the results previously obtained in eqs. f.
Eqgs. f can also be used to derive four additional identities, which yield Fierz
identities of a different form. Simply multiply each of these equations by two e symbols (with
appropriately chosen undotted and/or dotted spinor indices), and use egs. and .
Two of the resulting identities coincide with eqgs. and , while the other two are:

€as€’™ = 1 [0a7057 — (0")a (00)57] . (B.1.36)
Ed’gew— = —% [5%5% — (E‘uy)dﬁ(ﬁlw)ﬁff} . (B137)

One can check that eqgs. (B.1.36)) and (B.1.37)) are equivalent to the previously obtained egs. ([2.82))
and (2.83]). Multiplying egs. (B.1.34)—(B.1.37) by four (commuting or anticommuting) two-

component spinors Zi4ZspZ3cZ4p yields the corresponding Fierz identities of the form:

(2T W Zy)(2sT 7 Z4) = (=) > (CENZL (20K Z3) (2,10 Zy) | (B.1.38)
p,q,K,L

91n particular, the identities given in eqs. (B.2.18) and (B.2.19) are especially useful in the evaluation of
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which differs from eq. (B.1.5)) in the ordering of the spinors on the right-hand side.

Finally, we note that the Schouten identities,
€aB€ys + €ar€58 + €as€py = 0, €a4€ss T €aveig T €465 = 0, (B.1.39)

are the basis for Fierz identities given by eqgs. (2.66)) and (2.67]), which do not assume the simple
forms of either eqs. (B.1.5) or (B.1.38]).

B.2 Sigma matrix identities in d # 4 dimensions

When considering a theory regularized by dimensional continuation , one must be careful in
treating cases with contracted spacetime vector indices u, v, K, p,.... Instead of taking on four
possible values, these vector indices formally run over d values, where d is infinitesimally different
from 4. This means that some identities that would hold in unregularized four-dimensional
theories are inconsistent and must not be used; other identities remain valid if d replaces 4 in
the appropriate spots; and still other identities hold without modification.

Two important identities that do hold in d # 4 dimensions are:

(07" + 05" = 2¢"8,° (B.2.1)
[G'o” + 5" 0"]% 5 = 29"6% ;. (B.2.2)
Equivalently,
("5’ = g" 6.7 — 2i(c"),P, (B.2.3)
(70")% 5 = g6 5 — 2i(@)" 4, (B.2.4)

where o#” and " are defined in eq. . The trace identities,
Tr[o#5"] = Tr[c*0"] = 29", (B.2.5)
Trot =Tro" =0, (B.2.6)
then follow. We also note that the spinor index trace identity,
Tr[l] = 6% = 0% = 2, (B.2.7)

continues to hold in dimensional continuation regularization methods. In contrast, the Fierz
identities of Appendix B.1 do not have a consistent, unambiguous meaning outside of four
dimensions [252H255]. However, the following identities that are implied by eq. (B.1.6) do

consistently generalize to d # 4 spacetime dimensions:

(0" ,]a” = do? (B.2.8)

—~~
&
o

~—

[0 0] 5 = do.
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Using egs. (B.2.8) and (B.2.9)) along with the repeated use of egs. (B.2.1)) and (B.2.2)) then yields:

(00" 0] 05 = —(d = 2)0” E (B.2.10)
[7#0,7,]% = —(d — 2)7%" (B.2.11)
(05" 0P 50" = 497758 — (4 — d)[07T")s" (B.2.12)
005 a,)" ;= 49”%3 —(4-d)a0’%, (B.2.13)
00" 0’5" 0], 5 = —2[0"0"0"] 5 + (4 — d)[0"0"0"] 5, (B.2.14)
70" 5075, )% = —2[6"0"5"|% + (4 — d)[c"0PT"|%P (B.2.15)

Identities that involve the (explicitly and inextricably four-dimensional) e*?* symbol

atoVe? = g"'e? — g"T” + g’ — i G, (B-2.16)
TP = gV P — ghPaY + g"Pot + i Pg, (B.2.17)
€uwf/\o_>\p = —i (¢ — g"Pat 4 gHPoVRY | (B.2.18)
eum/\UAp = i (g"PTH — gPPEM + gMPEVR) | (B.2.19)
o P — %z (g"Pa™ — gMPa + i Pha,) | (B.2.20)
FhrEr — %z( VOGH _ ghPEY — jeVPRG, ) | (B.2.21)
oot = Li(g"5P — g"PT — i) (B.2.22)
oHFVP — %2 (g"aP — g"Pa” + i PRa,) | (B.2.23)
GG = (UG GRPGUR G tPRY 4 LU IR L iR GP gl gtR _ Ui pie) (B 2.24)
GHUGPR = (VP g _ gl gUR _ jehPR) | Li(gUPGK L glKGYP _ gpgUs _ gukgie) (B2 95)

are also only meaningful in exactly four dimensions. This applies as well to the trace identities

which follow from themP_z‘] For example,

Te[o"5" 0P5"] = 2 (" gP" — gHPg¥" + gt glP + PR (B.2.26)
Tr[gto"a?o”] = 2 (g" g™ — gHPg"" + g""g"P — ielP") . (B.2.27)

This could lead to ambiguities in loop computations where it is necessary to perform the com-
putation in d # 4 dimensions (until the end of the calculation where the limit d — 4 is taken).
However, in practice one typically finds that the above expressions appear multiplied by the

metric and/or other external tensors (such as four-momenta appropriate to the problem at

hand). In almost all such cases, two of the indices appearing in egs. (B.2.26) and (B.2.27)) are

91 This is analogous to the statement that Tr (y57/y"y°y") = —4ie""* [in our convention where €*'** = +1, and
~5 is defined by eq. } is only meaningful in d = 4 dimensions. In two-component notation, the equivalent
result is Tr[c"5"0”c" — 5"0"5 0" = 4ie"”?". In the literature various schemes have been proposed for defining
the properties of v5 in d # 4 dimensions . In two-component notation, this would translate into a
procedure for dealing with general traces involving four or more o /& matrices.
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symmetrized which eliminates the e*”?* term, rendering the resulting expressions unambiguous.
Similarly, the sum of the above trace identities can be assigned an unambiguous meaning in

d # 4 dimensions:
Tr[o"5" oPT"| + Tr[ct "5 "] = 4 (g" g — g'Pg"" + g""g"") . (B.2.28)

One can recursively derive trace formulae for products of six or more o/ @ matrices by using the
results of egs. (B.2.16) and (B.2.17)) to reduce the number of o/ matrices by two. For example,

TI‘[O'”EVO'[)ERO')\E(;] = g’“’Tr[apE“aAE&] — g“pTr[J”E“U)‘E‘s] + g”pTr[a“E”a)‘Eé]
+ie"PTr[o o 0 5], (B.2.29)

TI‘[E“O‘VEPO'HEAO'(;] = g‘LWTI'[EPO'HE)\O'é] — g“pTr[El’U”E)‘U‘S] + g”pTr[E“a'“E)‘a‘s]

— i Tr[5.0"5 0°] . (B.2.30)

We then use egs. (B.2.26)) and (B.2.27) to evaluate the remaining traces over four o/ @ matrices.

Appendix C Explicit forms for the two-component spinor wave
functions

In this Appendix, we construct the explicit forms for the eigenstates of the spin operator %6”-§,
and examine their properties. For massive fermions, it is possible to transform to the rest frame,
and quantize the spin along a fixed axis in space. The corresponding spinor wave functions will
be called fixed-axis spinors. For either massive or massive fermions, one can quantize the spin
along the direction of momentum. The corresponding spinor wave functions are helicity spinors.
Helicity spinor wave functions are most conveniently applied to massless fermions or fermions
in the relativistic limit of high energy E > m. Fixed-axis spinors are most conveniently applied

to massive fermions in the non-relativistic limit.

C.1 Fixed-axis spinor wave functions

Consider a spin-1/2 fermion in its rest frame and quantize the spin along a fixed axis specified
by the unit vector
§ = (sinfcos¢, sinfsin ¢, cosh), (C.1.1)

with polar angle 6 and azimuthal angle ¢ with respect to a fixed z-axis. The corresponding
spin states will be called fixed-axis spin states. The relevant basis of two-component fixed-axis

. . 1= a -
spinors x, are eigenstates of 508, 1.e.,

(C.1.2)

N[ =

08X, = SXs» s==+

D=

In order to construct the eigenstates of %6” -5, we first consider the case where § = 2. In
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this case, we define the eigenstates of %0’3 to be:

1 0
X1/2(£): 0 ; X,1/2(2)= . . (C.1.3)

By convention, we have set an arbitrary overall multiplicative phase factor for each spinor of
eq. to unity. We then determine y,(8) from x,(£) by employing the spin-1/2 rotation
operator that corresponds to a rotation from 2 to §. This rotation is represented by a 3 x3 matrix
R such that § = R2. However, this rotation operator is not unique. In its most general form,

the rotation operator can be parameterized in terms of three Euler angles (e.g., see refs. ):
R(¢,0,7)=R(2,0)R(G,0) R(2,7), (C.1.4)

The Euler angles can be chosen to lie in the range 0 < § < 7 and 0 < ¢, v < 27. In general,
R(n, 6) is a 3 x 3 orthogonal matrix of unit determinant that represents a rotation by an angle 6

about a fixed axis 7,

—

RY(fy, 0) = exp(—ifn-8) = n'n/ + (6¥ — n'n’)cosh — €*n*sin g, (C.1.5)

where the § = (S!, 8%, 8%) are three 3 x 3 matrices whose matrix elements are given by

(SH)Ik = —iet¥ [cf. eq. ]

However, the angle « is arbitrary, since R(2, )2 = 2. Thus,
3§ =TRZ = (sinfcos¢, sinfsin¢, cosh), (C.1.6)

independently of the choice of v. For § = 0 or § = m, where § is parallel to the z-axis, the
azimuthal angle ¢ is undefined. Since § — —§ corresponds in general to § — 7 — 6 and

¢ — ¢+ 7 (mod 27), we shall adopt a convention whereby:
(C.1.7)

Using the spin-1/2 rotation operator corresponding to R(¢, €, 7), one can compute xs(§),

Xs(8) =D(¢, 0, 7) x,(2), (C.1.8)
where D is the spin-1/2 unitary representation matrix [256]
D(¢,0,v)=D(2,¢)D(g,0) D(£,7), (C.1.9)
and D is the 2 x 2 unitary matrix

D(n,0) = exp (—ifn-6/2) = cosg - iﬁ-&'sing : (C.1.10)
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Eq. 1} yields explicit forms for the eigenstates of %6‘-5:

e_i(¢+7)/2 CcOS g _6_i<¢_7)/2 sin g

X1/2(8) = o |0 xap@®= 0| (C.1.11)
6i(¢77)/2 sin 5 ei(¢+7)/2 CcOS 5

The well-known two-to-one mapping between SU(2) and SO(3) implies that for a given

rotation matrix R there are two corresponding spin-1/2 rotation matrices D. In particular,
D(p+2m,0,v)=-D(¢,0,7), (C.1.12)

which implies that a rotation of a spinor by 2x yields an overall change of sign in the spinor
wave function (an effect that can be observed in quantum interference experiments!). Strictly
speaking, we should take the range of the Euler angles to be 0 < ¢ < 4w, 0 < 0 < 7 and
0 <~ < 27. However, when constructing the spinor wave function of a spin-1/2 particle whose
spin quantization axis is given by eq. , we will fix the overall sign of the spinor wave
function by convention.

More generally, the overall phase of the spinor wave function is unphysical. Noting that
D(2,7) x,(2) = e7¥7x,(£), the choice of 7 is also a matter of convention. First, we will require
that when § = 2, eq. ((C.1.8]) should reproduce the spinor wave functions given in eq. .
This implies that:

v=0, fors=2, (#=¢=0). (C.1.13)
For § = —2, we use eq. (C.1.7) to obtain:
Xo(—2) =ie (=2 (3), s==+1, (C.1.14)

where the notation v(—2) has been employed to allow the possibility that the convention for ~y
depends on the direction indicated by its argument.

Two different conventions are commonly employed in the literature. In the first convention,
one chooses 7 = —¢. This choice has the good feature that R(¢, 0, —¢) = 13«3, independently
of the angle ¢, which is undefined when 6 = Oﬁ Moreover, the rotation matrix R(¢, 0, —¢)
and the corresponding spin-1/2 rotation matrix D(¢, 6, —¢) can be expressed simply as a

single rotation by an angle 6 about a fixed axis that points along a unit vector in the azimuthal

direction:
@ = (—sing, cos¢, 0), (C.1.15)
In particular,
D(¢,0)=D(¢, 0, —¢). (C.1.17)

% However, R(¢, m, —¢) # l13x3 even though ¢ is also undefined when 6 = =.
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Hence, in this convention x,(8) = D(¢, 0)x,(£), which is the most common choice for the

spinor wave function ,.

In the second convention, one chooses v = 0. One motivation for this choice is that the

corresponding rotation matrix is somewhat simpler:

cos 0 cos ¢ —sing sin @ cos ¢
R(¢,0,0)=R(2, ¢)R(F, 0) = | cosfsing cos ¢ sinfsing | - (C.1.18)
—sinf 0 cos 6

Employing the corresponding spin-1/2 rotation operator D(¢, 6, 0) in eq. (C.1.8) yields a
slightly more symmetrical form for the spinor wave function [259].

Explicit forms for the spinor wave functions in the two conventions are obtained from
eq. by taking v(8) = —¢ and (8) = 0, respectively. For example, eq. reduces
to:

X(—2) = 2x=(2) fornl(=2) =g =, s =%l (C.1.19)
iX_J(2)  for 7(—2) =0,
in the convention specified by eq. .

Many of the properties of the spinor wave functions are independent of the choice of the
Euler angle . The spinor wave functions y, defined by eq. (C.1.8) are normalized such that

X5(8)xs(8) = basr (C.1.20)
and satisfy the following completeness relation:

D o x(3)x1(3) = (1)(1) - (C.1.21)

The spinor wave functions x,(8) and x_,(8) are connected by the following relation:
X_,(8) = —2sic” X*(8). (C.1.22)
Consider a spin-1/2 fermion with four-momentum p* = (E, §), with E = (|p]> + m?)'/?,
and the direction of p’ given by

P = (sin b, cos ¢, , sinb,sin ¢, , cosb,) . (C.1.23)

Using eqgs. (2.108) and ([2.109)), one can employ eqgs. (3.1.18)—(3.1.21]) to obtain explicit expres-

sions for the two-component spinor wave functions z(@, s), y(p, s), 2! (5, s) and y (7, s).
Additional properties of the xs can be derived by introducing an orthonormal set of unit
three-vectors §* that provide a basis for a right-handed coordinate system. Explicitly,
5250 = 59 (C.1.24)

5% x §b = etese, (C.1.25)



We shall identify

=3 (C.1.26)

as the quantization axis used in defining the third component of the spin of the fermion in its

rest frame. The unit vectors 81 and §2 are then chosen such that eqs. (C.1.24]) and (C.1.25)

are satisfied. To explicitly construct the §%, we begin with the orthonormal set {&, ¢, £}, and

employ the same rotation operator R used to define x,(8). That is,
(51, 38%2,8%) = (R&, Ry, R2), where R=R(¢,0,7), (C.1.27)

and ¢, 8 and v are the Euler angles used to define the spinor wave function in eq. .
From eq. , one can immediately derive the completeness relation (as a consequence of
RRT =1),
59189 = §U (C.1.28)
where i and j label the space components of the three-vector §%.
We can use the §% to extend the defining equation of x; [eq. ]:

G5y (8) = L% xa(8), (C.1.29)

[l

where the 72, are the matrix elements of the Pauli matricesﬁ That is, %&'(81 +is?) serve as
ladder operators that connect the spinor wave functions x; /2 and x_; /2- Using eq. (C.1.20), it
follows that eq. (C.1.29)) is equivalent to:

xH(8)&-5%y(8) =1, . (C.1.30)

It is instructive to prove eq. ((C.1.30) directly. Employing eq. (C.1.8)) and using the fact

that D is a unitary matrix,
X1(8) 3-8 (8) = xL(2) [D(¢,0, 7)]'&-3°D(, 0, 7)xs (%) (C.1.31)
The above result can be simplified by a repeated use of the following identity,

ei0n3/2 5 o=i07-5/2 _ pik(p g)ok (C.1.32)

which is valid for any fixed axis 72, where R(71, 0) is the rotation matrix defined in eq. (C.1.5)).
It follows that
[D(¢.0, ] o D@0, 7) =R* 0,0, 7) 0", (C.1.33)

where R(¢, 0, 7) is defined in eq. (C.1.4). Since RT = R~!,

A\ = A o A\ = 14 o
xi(8) &8 (8) = xi(2) & [R7'3%] xv(2). (C.1.34)
96We use the symbol 7 rather than o to emphasize that the indices of the Pauli matrices 7¢ are spin labels s, s’
and not spinor indices «, &. The first (second) row and column of the 7-matrices correspond to s =1/2 (—1/2).

For example, 72, = 258,, (no sum over s).
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Eq. (C.1.27) implies that (R~181, R"18%2, R15%) = (£, 9, 2), and it follows that

& [R715%] = o". (C.1.35)
Consequently, we end up with
\1(8) 350 (8) = X (2)0"x (2) = 72 (C.1.36)

which defines the matrix elements of the Pauli matrices, and our proof of eq. (|C.1.30]) is complete.
Using the completeness relation given by eq. (C.1.28]), we can rewrite eq. (C.1.30|) as

XL(8) o'x (8) = T8 (C.1.37)

Taking the hermitian conjugate of eq. ((C.1.37)) is equivalent to interchanging s <> s, since the
o’ are hermitian matrices and (18,))* = 718,. To evaluate expressions similar to eq. 1) that
contain products of o-matrices, it is sufficient to use the relation o'o? = 691 + ie'/*o* as many

times as needed to reduce the final expression to terms containing at most one o-matrix. For

example, using eqs. (C.1.20) and (C.1.37)), it follows that
xH(38) 0707 g (8) = 8,907 + i€k 72, 59F (C.1.38)

ss’

It is sometimes useful to have a more explicit representation of the §%*. In the convention

where v = —¢, eq. (C.1.27) yields:
al 2 .20 . .20 .
§" = (1 —2cos” ¢ sin 5,—sm2d>sm 5,—51](10005(15),
~2 . . 29 . 92 . 20 . .
§% = (—sin2¢ sin 5,1—2SII1 ¢ sin 5,—SIHGSID¢),
5% = (sinfcos ¢, sinfsing, cosh). (C.1.39)

The explicit forms for the §* are somewhat simpler in the convention where v = 0. In this case,

eqs. and yield:

5 = (cosf cos ¢, cosfsin ¢, —sinb),

3% = (—sin ¢, cos ¢, 0),

5% = (sinf cos ¢, sinfsin ¢, cos ). (C.1.40)
C.2 Fixed-axis spinors in the non-relativistic limit

Consider an on-shell massive fermion of three-momentum p, mass m and spin quantum number s,

where s = :t% are the possible projections of the spin vector (in units of /) along the fixed §
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direction [cf. eq. (C.1.2))]. The spinor wave functions, x, y, and their hermitian conjugates are

given by eqgs. (3.1.18)—(3.1.21)). In the non-relativistic limit,
\/p-az\/ﬁ<]1—o-p> , (C.2.1)

2m

— G-p
oas 1T+ — 2.2
Vio=via(1+97), (©22)

where we keep terms only up to O(|p]/m). Inserting the above results into egs. (3.1.18)—(3.1.21))
yields:

talF,5) = v/ (n - ‘Zﬂf) Y(8), (€.23)
2(p,s) ~ —2sv/m x| ,(8) (1 + ‘;f) : (C.2.4)
ol 5) = 25v/m (n - ‘;f) xs(8). (C.25)

) = vid(s) (14 57 (©.2:6)
for the undotted spinor wave functions and
) X—s(8), (C.2.7)
zL (5, s) ~ Vmx1(3) < 2 (C.2.8)
y1405) = vim (14 ‘?W:) X (8), (29
yh (7, 5) ~ 2sv/mx',(3) <]1 — 62:?) : (C.2.10)

for the dotted spinor wave functions.
In the computation of the S-matrix amplitudes for scattering and decay processes, one

typically must evaluate a bilinear product of spinors, i.e. quantities of the form

21(P1, 1) T 22(P5, 82) (C.2.11)

where z; and 2y represent one of the two-component spinor wave functions z, y, z! or y', and T’
is a 2 X 2 matrix (in spinor space) that is either the identity matrix, or is made up of alternating
products of o and @. In the non-relativistic limit, these bilinears take on rather simple forms.

In what follows, we work to first order in |p;|/m;. For example,
. . . gp o-p 5
VB0 Bovsa) = Vi 1, 8) (14 28 - T8 )
2 ZAW
~ TS [ . < L P > -s%ﬁl,sz} , (C.2.12)
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where we have used the results of egs. (C.1.20|) and (C.1.37)). Similarly,

B . 3-51 5'ﬁ2 N
y* (1, 51)0%, ;9" (P2, 52) = /mama x ], (8) [cr" S Tl POAC)
>~ /1Mo Zg752(ﬁ1,ﬁ2), (0213)
wherd”]
Dy D2 X
O <2m1 + 2m2> 8975 for p =0,

Z" (Pr, Pa) = , , . .
o S (22:21 + 2]:32) Ossr + (2}:32 - ;i) ieikgakra,  for p=1i=1,2,3,
(C.2.14)
is obtained after using the results of eqs. (C.1.37) and (C.1.3§).
In summary, we list the non-relativistic forms of the spinor bilinears. Referring to eq. ,

if I' =1, then

(P, 81)Ta (D, 52) = 252/mima [5_52,51 + ( P _ pQ) -§a7“82751] , (C.2.15)

— — Dy Do ~
Y (B, 81)Ya (Pa, 52) = 289y/mima |0s, —s, + <2m1 P -sa7-§17_82] . (C.2.16)
(D1, 51)Ya (P2, 52) = /mama | —0sy.5, + P P 80715 o | (C.2.17)
2,51 2m1 2m2 52,51
ya(ﬁ1781)xa(ﬁ2782) =~ mimso 55 s + ﬂ - ﬁ '§aTa 5 (0218)
1,52 2m1 2m2 51,52
where we have used
The = —4ss'TY, o, s,8 =+1, (C.2.19)

to arrive at the final forms given in egs. (C.2.15) and (C.2.17). However, in using the above

results, one must now pay close attention to the ordering of the subscript indices of the 7¢. The
corresponding formulae for dotted spinor wave function bilinears are obtained by taking the
hermitian conjugates of eqs. (C.2.15)(C.2.18]), which complex-conjugates the 7@ that appear on

the right-hand side of these equations. Since (72,)* =75,

we obtain

2ma 2meo 52,751

= V(o P, P .
zL (B, 51)2T% (B, 52) ~ 251/mima [532,_51 — (1 — 2 ) .50 ] . (C.2.20)

— Y/ = ﬁ ﬁ a
yl(P1,81)yTo‘(p2,52) >~ 2814/mimsa [531,82 - (1 — =2 ) -s“rf%”] ,  (C.2.21)

2m1 2m2

- V(= P P .
yl(PhSl)ﬂfTa(Pmsz) ~ —/mims [532,51 + <2ni1 — 27732) -8“7'8?2’81} , (C.2.22)

xL(ﬁlasl)de(52782) >~ /M1 Mmo |:(581,52 - <2pn1;1 — 21)7732) ‘§a751752:| . (0223)

/97We also define Z" (P2,P1) as the expression given by eq. (C.2.14)) with the interchange of {s, p1, mi} and
{S ) ﬁz ) TTLQ} .
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Likewise, if I' = o, then

2% (1, 51)0" 21 (pa, 52) = dsysay/mimg 2, _, (B1, Pa) (C.2.24)
Y (p1.51)0 3y (P2, s2) = Vi ZL, L, (P, Ba) (C.2.25)
z%(p1, 51)Ugﬁ-ym(pz, s9) ~ —2s1\/mimg 2" . (P1,P2), (C.2.26)
Y (p1,51)0" @1 (D, 52) = —2s0y/mims 2L, (B1.B2) (C.2.27)

where Z" (1, P2) is defined in eq. (C.2.14). IfT = ", one can use zla“zg = z;E"zl i.e. eq. 1)

for commuting spinors] to obtain the corresponding formulae for the spinor wave function bilin-
ears (cf. footnote [07)):

2 (p1,51)5" P2 5(p2, 59) = dsysav/mums 2", (P2, P1), (C.2.28)
vl (p1, 51)5"Pys(pa, 82) = /mimz 2L, , (P2, P1), (C.2.29)
yh (1, 51)5"Pag(pa, s2) ~ —2s0\/mymy 2", | (B2, P1) . (C.2.30)
wl(p1. 51)7Pys(pa, s2) ~ —2s1/muma ZL, (P2, P1) - (C.2.31)

These results can also be derived directly from egs. (C.2.3)—(C.2.10)), after employing eq. (C.2.19).

It is straightforward to evaluate the spinor wave function bilinears when I' is a product of
two or more o /& matrices. As the corresponding expressions are considerably more complicated,

we shall not write them out explicitly here.

C.3 Helicity spinor wave functions

All the results of Appendix C.1 apply to the helicity spinors x,, which are defined to be eigen-

1= A~ -
states of 56°+p, i.e.,

3 Px,\(D) = (D), A==5, (C.3.1)
where p = (sin 6, cos ¢, , sinf,sin ¢, , cosf,). It follows that:
VD0 X,\(P) = w_,(P) x,(P) , VDT X\ (D) = wy(P) X\ (D) , (C.3.2)

where w, (P) = (E + 2\p])"/? and E = /[p]2 +m?. As a result, the explicit forms for the
two-component helicity spinor wave functions [cf. egs. (3.1.18)—(3.1.21))] simplify:

Ta(B,A) = w_y x\(D) (BN = 22 w_x \(B),  (C.3.3)
Ya (P, A) = 2Awy x5 (D), y* (D, ) —W)\X,\( D) | (C.3.4)
2B, N) = —2Xw_\ x_\(B) . zh(B ) = w X1 (B), (C.3.5)
Y (B N) = wy X\ (D), yh (BN = 2 wa x| (), (C.3.6)
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In analogy with the §%, it is convenient to introduce an orthonormal set of unit three-vectors

p® such that p3 = p. Then, eqs. (C.1.24)—(C.1.30) apply as well to the two-component helicity

spinors after taking §% = p®.

In scattering processes, it is often convenient to work in the rest frame of the incoming
particles, in which the corresponding incoming fermion three-momenta are denoted by p and
—p, respectively. The helicity spinor wave function of the second fermion depends on the
definition of x, (—p). In this review, we follow a conventiorﬁ in which x,(—p) is defined to be
the spinor wave function obtained from x,(£) via a rotation by a polar angle 7 — 6, and an

azimuthal angle ¢, + 7 with respect to the 2-direction. Then,

XA(=p) =D(gp + 7, m— by, 7(=P)) x»(£) , (C.3.7)

where we have exhibited the possible dependence of v on the direction —p. Using the properties

of the spin-1/2 rotation matrices, one can derive
D(6p+7, 7 — by, A(=B)) = —D(6p, 0y 1(B)) D(2,—1(B) — ¥(~p) D@ 7). (C38)
Inserting this result in eq. and using the relation
D(&,7)x,(2) = —io'x,(2) = —ix_,(2), (C.3.9)

we obtain
Xx(=B) = EaB)x_\ (D), (C.3.10)

where the phase factor {\(p) is given by

E(p) = iePn@IH Pl A=+, (C.3.11)
Since 7 is a real angle, it follows that:
1
§B) = = = —¢.,(P). (C.3.12)
A N2 A
Using eq. (C.3.11)), we note that x,(p) possesses the peculiar property that:
Xa(=(=P)) = —x»(P) - (C.3.13)

This is a consequence of the fact that the result of two successive inversions is equivalent to

¢p — ¢p+2m, which yields an overall change of sign of a spinor wave function [cf. eq. C.l.lQ]ﬂ

98 An alternative convention (called the second-particle convention) advocated by Jacob and Wick is to
define x, (—p) by starting with x_, (£) and then rotating the spinor by polar and azimuthal angles 6, and ¢,. In
this case, x,(—P) = x_, (D), and the extra phase factors of eq. is absent, i.e. £,(p) =1 in eq. .
However, this convention is less suited to scattering processes involving final states with more than two fermions.
Hence, we do not adopt the second-particle convention in this review.

99 A slightly modified procedure (not adopted in this review) is to take the azimuthal angle of —p to be ¢, & T,
where the =+ sign is chosen according to which of the two conditions 0 < ¢, + 7 < 27 is true. This procedure
would yield an extra minus sign in the definition of &, (p) when 7 < ¢, < 27. In this convention, two successive
inversions are equivalent to the identity rotation so that x, (—(—9)) = x, (D).
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For example, corresponding to the two conventional choices for -,

12N 2ing, AV
6 (p) = (=1)° e for v(p) = —dp, (=P)=—¢p—, (C3.14)

i for y(p) =~v(-p) =0,
with the proviso that for p = +2, we define ¢, according to eq. .

Suppose that the two fermions considered above have equal mass. In the center-of-mass
frame, if the four-momentum of one of the fermions is p* = (E; p), then the four-momentum
of the other fermion is p* = (E; —p). The following numerical identities are then satisfied:
op = o-p and o-p = o-p. However, in order to maintain covariance with respect to the

undotted and dotted spinor indices, we shall write these identities as:

_ap

PO, = V.(p@ po¥’ = aoo‘o‘(p-aaﬁ)ﬁoﬂﬁ. (C.3.15)

) Bﬁ Y
Taking the matrix square root of both sides of the equations above removes one of the factors

of 0¥ and 7, respectively [cf. egs. (2.110)—(2.116)]. Thus, using eqgs. (3.1.18)) and (C.3.10)),
Ta = VPox A (-p) = VT §(B) 0, (B) = 02, &)y (BN . (C3.16)

In this way, we can derive all relations of this kind for the helicity spinor wave functions:

To(=P, =) = f,\Uaﬁ ?JTB(I% A) =w, & x\(D), (C.3.17)
Yo(=P, —A) = 5_,\025 @A) = —2Aw_\E A XA\ (D) 5 (C.3.18)
xm(— D, —A) =&y LA Ys(P, A) = 2Awy &\ x_\ (D), (C.3.19)
Yy (=P, =) = 67" a5(F,N) = w_ 6\ (D) (C.3.20)

where w,, = w,,(P) and &, = &, (P). Raising [lowering] the undotted [dotted] index yields:

(=P, —A) = =y (BN 677 = 2 w6, B). (C.3.21)
y* (=P, —\) = —x;(_', NE P =—w e vhp), (C.3.22)
el (=5, - = =y (BN €405 = —w, E XA (D), (C.3.23)
L (=B, —\) = =27 (B, N) §,08, = 22 w_,&, X"\ (B) .- (C.3.24)

Egs. (C.3.17)—(C.3.24) can also be obtained directly from egs. (C.3.3)—(C.3.6).

Appendix D Matrix decompositions for mass matrix diagonal-
ization

In scalar field theory, the diagonalization of the scalar squared-mass matrix M? is straightfor-
ward. For a theory of n complex scalar fields, M? is an hermitian n x n matrix, which can be

diagonalized by a unitary matrix W:

WIM*W = m? = diag(m?,m3,...,m2). (D.1)

n
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For a theory of n real scalar fields, M? is a real symmetric nxn matrix, which can be diagonalized

by an orthogonal matrix Q:

QTM?*Q = m? = diag(m?, m3,...,m2). (D.2)

n

In both cases, the eigenvalues mi of M? are real. These are the standard matrix diagonalization
problems that are treated in all elementary linear algebra textbooks.

In spin-1/2 fermion field theory, the most general fermion mass matrix, obtained from the
Lagrangian, written in terms of two-component spinors, is complex and symmetric [cf. Sec-
tion . If the Lagrangian exhibits a U(1) symmetry, then a basis can be found such that
fields that are charged under the U(1) pair up into Dirac fermions. The fermion mass matrix
then decomposes into the direct sum of a complex Dirac fermion mass matrix and a complex
symmetric neutral fermion mass matrix. In this Appendix, we review the linear algebra theory
relevant for the matrix decompositions associated with the general charged and neutral spin-1/2
fermion mass matrix diagonalizations. The diagonalization of the Dirac fermion mass matrix is
governed by the singular value decomposition of a complex matrix, as shown in Appendix D.1.
In contrast, the diagonalization of a neutral fermion mass matrix is governed by the Takagi
diagonalization of a complex symmetric matrix, which is treated in Appendix D.ZIT' These two
techniques are compared and contrasted in Appendix D.3. Dirac fermions can also arise in the
case of a pseudo-real representation of fermion fields. As shown in Section this latter case
requires the reduction of a complex antisymmetric fermion mass matrix to real normal form.

The relevant theorem and its proof are given in Appendix D.4.

D.1 Singular value decomposition

The diagonalization of the charged (Dirac) fermion mass matrix requires the singular value
decomposition of an arbitrary complex matrix M.
Theorem: For any complex [or real] n x n matrix M, unitary [or real orthogonal] matrices

L and R exist such that
L"MR = Mp = diag(my, ma,...,my), (D.1.1)

where the m; are real and non-negative. This is called the singular value decomposition of the
matrix M (e.g., see refs. [149[261]).

In general, the my are not the eigenvalues of M. Rather, the my are the singular values
of the general complex matrix M, which are defined to be the non-negative square roots of the

eigenvalues of MTM (or equivalently of MMT'). An equivalent definition of the singular values

1%°One may choose not to work in a basis where the fermion fields are eigenstates of the U(1) charge operator.
In this case, all fermions are governed by a complex symmetric mass matrix, which can be Takagi-diagonalized
according to the procedure described in Appendix D.2.
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can be established as follows. Since MTM is an hermitian non-negative matrix, its eigenvalues
are real and non-negative and its eigenvectors, vy, defined by MTMuv;, = m%vk, can be chosen
to be orthonormalFEI Consider first the eigenvectors corresponding to the non-zero eigenvalues

of MTM. Then, we define the vectors wy, such that
Muvy, = mywy, . (D.1.2)

It follows that m%vk = MMy, = mkMTw}:,, which yields: MTw,’g = myvE. Note that these equa-
tions also imply that M M Tw}; = miw}. The orthonormality of the vy, implies the orthonormality

of the wy, and vice versa. For example,

(Ml Mwf) = —— (| MMwg) = "5 (utjuwf),  (D.13)

(5- = - =
gk <U]|’Uk> mjmk mjmk TTLJ

which yields (wg|w;) = ;. If M is a real matrix, then the eigenvectors v;, can be chosen to be
real, in which case the corresponding wj, are also real.

If v; is an eigenvector of MTM with zero eigenvalue, then 0 = UJMTMUZ' = (Mwv;|Mv;),
which implies that Mv; = 0. Likewise, if w] is an eigenvector of M M f with zero eigenvalue, then
0 = w] MMTw; = (MTw;|MTw;)*, which implies that M Tw; = 0. Because the eigenvectors of
MM [MMT] can be chosen orthonormal, the eigenvectors corresponding to the zero eigenvalues
of M [MT1] can be taken to be orthonormal Finally, these eigenvectors are also orthogonal
to the eigenvectors corresponding to the non-zero eigenvalues of MTM [MMT]. That is, if the
indices 7 and j run over the eigenvectors corresponding to the zero and non-zero eigenvalues of
MTM [MMT1], respectively, then

1
(MTwi|v;) = —(w}i|Mv;) =0, (D.1.4)

(v3l03) = —
Jie mj

1
mj
and similarly (w;|w;) = 0.

Thus, we can define the singular values of a general complex n x n matrix M to be the

simultaneous solutions (with real non-negative my) offrigl
Muvy, = mpwy, w,l—M = mkv;; . (D.1.5)

The corresponding vy (wyg), normalized to have unit norm, are called the right (left) singular
vectors of M. In particular, the number of linearly independent vy coincides with the number

of linearly independent wy and is equal to n.

191We define the inner product of two vectors to be (v|w) = vfw. Then, v and w are orthonormal if (v|w) = 0.
The norm of a vector is defined by ||v || = (v]v)'/2.

102his analysis shows that the number of linearly independent eigenvectors of MM [MMT] with zero eigenvalue
coincides with the number of linearly independent eigenvectors of M [M T] with zero eigenvalue.

1030ne can always find a solution to eq. such that the my, are real and non-negative. Given a solution
where my, is complex, we simply write my = \mk|e“9 and redefine wi — wkew to remove the phase 6.
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Proof of the singular value decomposition theorem: Egs. and imply
that the right [left] singular vectors can be chosen to be orthonormal. Consequently, the unitary
matrix R [L] can be constructed such that its kth column is given by the right [left] singular
vector vy, [wg]. It then follows from eq. that:

wi Mvy =m0y (no sum over k). (D.1.6)

In matrix form, eq. coincides with eq. , and the singular value decomposition is
established. If M is real, then the right and left singular vectors, vy and wy, can be chosen to
be real, in which case eq. holds for real orthogonal matrices L and R.

The singular values of a complex matrix M are unique (up to ordering), as they correspond
to the eigenvalues of MTM (or equivalently the eigenvalues of MMT). The unitary matrices L

and R are not unique. The matrix R must satisfy
RIMTMR = M3, (D.1.7)

which follows directly from eq. by computing MEM D = M12)~ That is, R is a unitary
matrix that diagonalizes the non-negative definite matrix MTM. Since the eigenvectors of MM
are orthonormal, each v, corresponding to a non-degenerate eigenvalue of MM can be multi-
plied by an arbitrary phase e’%. For the case of degenerate eigenvalues, any orthonormal linear
combination of the corresponding eigenvectors is also an eigenvector of MTM. It follows that
within the subspace spanned by the eigenvectors corresponding to non-degenerate eigenvalues,
R is uniquely determined up to multiplication on the right by an arbitrary diagonal unitary ma-
trix. Within the subspace spanned by the eigenvectors of MTM corresponding to a degenerate

eigenvalue, R is determined up to multiplication on the right by an arbitrary unitary matrix.

Once R is fixed, L is obtained from eq. (D.1.1)):
L=(M")"'R*Mp. (D.1.8)

However, if some of the diagonal elements of Mp are zero, then L is not uniquely defined.
Writing Mp in 2 x 2 block form such that the upper left block is a diagonal matrix with positive
diagonal elements and the other three blocks are equal to the zero matrix of the appropriate

dimensions, it follows that, Mp = MpW , where
W= |- ) (D.1.9)

W)y is an arbitrary unitary matrix whose dimension is equal to the number of zeros that appear
in the diagonal elements of Mp, and 1 and O are respectively the identity matrix and zero

matrix of the appropriate size. Hence, we can multiply both sides of eq. (D.1.8) on the right
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by W, which means that L is only determined up to multiplication on the right by an arbitrary
unitary matrix whose form is given by eq. FE'

If M is a real matrix, then the singular value decomposition of M is given by Eq. (D.1.1),
where L and R are real orthogonal matrices. This result is easily established by replacing

“phase” with “sign” and replacing “unitary” by “real orthogonal” in the above proof.

D.2 Takagi diagonalization

The mass matrix of neutral fermions (or a system of two-component fermions in a generic
basis) is complex and symmetric. This mass matrix must be diagonalized in order to identify
the physical fermion mass eigenstates and to compute their masses. However, the fermion mass
matrix is not diagonalized by the standard unitary similarity transformation. Instead a different
diagonalization equation is employed that was discovered by Takagi [112], and rediscovered many
times since FE'

Theorem: For any complex symmetric n X n matrix M, there exists a unitary matrix 2

such that:
Q"M Q = Mp = diag(my,ma, ..., my), (D.2.1)

where the my, are real and non—negative. This is the Takagi diagonalizatiodﬂ_ml of the complex
symmetric matrix M.

In general, the my, are not the eigenvalues of M. Rather, the my are the singular values of
the symmetric matrix M. From eq. it follows that:

QTMTMQ = M3 = diag(m2,m3,...,m2). (D.2.2)

n

If all of the singular values my are non-degenerate, then one can find a solution to eq. (D.2.1))
for  from eq. (D.2.2). This is no longer true if some of the singular values are degenerate.
For example, if M = (7% ’{f), then the singular value |m| is doubly—degenerate, but eq. (D.2.2))
yields QfQ = 1549, which does not specify Q. That is, in the degenerate case, the physical

fermion states cannot be determined by the diagonalization of MTM. Instead, one must make

1040f course, one can reverse the above procedure by first determining the unitary matrix L. Eq. implies
that LYMM'TL* = M3, in which case L is determined up to multiplication on the right by an arbitrary [diagonal]
unitary matrix within the subspace spanned by the eigenvectors corresponding to the degenerate [non-degenerate]
eigenvalues of M M. Having fixed L, one can obtain R = M~ 'L*Mp from eq. . As above, R is only
determined up to multiplication on the right by a unitary matrix whose form is given by eq. (D.1.9).

195Qubsequently, it was recognized in Ref. that the Takagi diagonalization was first established for nonsin-
gular complex symmetric matrices by Autonne . In the physics literature, the first proof of eq. was
given in ref. . Applications of Takagi diagonalization to the study of neutrino mass matrices can be found in
refs. .

1061 Ref. , eq. is called the Takagi factorization of a complex symmetric matrix. We choose to refer
to this as Takagi diagonalization to emphasize and contrast this with the more standard diagonalization of normal
matrices by a unitary similarity transformation. In particular, not all compler symmetric matrices are diagonal-
izable by a similarity transformation, whereas complex symmetric matrices are always Takagi-diagonalizable.
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direct use of eq. . Below, we shall present a constructive method for determining 2 that
is applicable in both the non-degenerate and the degenerate cases.

Eq. can be rewritten as M) = Q*Mp, where the columns of ) are orthonormal. If
we denote the kth column of Q by vy, then,

Muvy, = myvy,, (D.2.3)

where the my are the singular values and the vectors v; are normalized to have unit norm.
Following Ref. , the v, are called the Takagi vectors of the complex symmetric n X n
matrix M. The Takagi vectors corresponding to non—degenerate non-zero [zero| singular values
are unique up to an overall sign [phase]. Any orthogonal [unitary] linear combination of Takagi
vectors corresponding to a set of degenerate non—zero [zero| singular values is also a Takagi
vector corresponding to the same singular value. Using these results, one can determine the
degree of non—uniqueness of the matrix 2. For definiteness, we fix an ordering of the diagonal
elements of M DFE' If the singular values of M are distinct, then the matrix € is uniquely
determined up to multiplication by a diagonal matrix whose entries are either +1 (i.e., a diagonal
orthogonal matrix). If there are degeneracies corresponding to non—zero singular values, then
within the degenerate subspace, €2 is unique up to multiplication on the right by an arbitrary
orthogonal matrix. Finally, in the subspace corresponding to zero singular values, €2 is unique
up to multiplication on the right by an arbitrary unitary matrix.

For a real symmetric matrix M, the Takagi diagonalization [eq. (D.2.1))] still holds for a
unitary matrix €2, which is easily determined as follows. Any real symmetric matrix M can be

diagonalized by a real orthogonal matrix Z,
ZVMZ = diag(eymy , eama, ..., €4my) (D.2.4)

where the my are real and non-negative and the epm; are the real eigenvalues of M with

corresponding signs € = j:lFigl Then, the Takagi diagonalization of M is achieved by taking:
Q. — /2 .
ij =€ Zij » no sum over j . (D.2.5)

Proof of the Takagi diagonalization. To prove the existence of the Takagi diagonaliza-
tion of a complex symmetric matrix, it is sufficient to provide an algorithm for constructing the
orthonormal Takagi vectors vy that make up the columns of . This is achieved by rewriting

the n x n complex matrix equation Mv = mov* [with m real and non—negative| as a 2n x 2n real

matrix equation [265.266]:

Rew ReM —ImM Rew Rewv

My , where m >0.(D.2.6)

Il
I
3

Imwv —ImM —ReM Imwv Imwv

07Permuting the order of the singular values is equivalent to permuting the order of the columns of .
1081y the case of my = 0, we conventionally choose the corresponding e = +1.
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Since M = M, the 2n x 2n matrix Mp = (_Eﬁ% :%2%) is a real symmetric matrixw In
particular, My is diagonalizable by a real orthogonal similarity transformation, and its eigen-
values are real. Moreover, if m is an eigenvalue of My with eigenvector (Rev, Imwv), then —m
is an eigenvalue of M with (orthogonal) eigenvector (—Imwv, Rew). This observation implies
that Mp has an equal number of positive and negative eigenvalues and an even number of zero
eigenvaluesm Thus, eq. has been converted into an ordinary eigenvalue problem for
a real symmetric matrix. Since m > 0, we solve the eigenvalue problem Mpu = mu for the
real eigenvectors u = (Rewv, Imwv) corresponding to the non—negative eigenvalues of M RE
which then immediately yields the complex Takagi vectors, v. It is straightforward to prove
that the total number of linearly independent Takagi vectors is equal to n. Simply note that the
orthogonality of (Rewv;, Imwv;) and (—Imw;, Rewv;) with (Rewvy, Imwy) implies that vJ{vg =0.

Thus, we have derived a constructive method for obtaining the Takagi vectors vg. If there
are degeneracies, one can always choose the v; in the degenerate subspace to be orthonormal.
The Takagi vectors then make up the columns of the matrix 2 in eq. . A numerical
package for performing the Takagi diagonalization of a complex symmetric matrix has recently
been presented in ref. (see also refs. , for previous numerical approaches to Takagi

diagonalization).

D.3 Relation between Takagi diagonalization and singular value decomposi-
tion
The Takagi diagonalization is a special case of the singular value decomposition. If the complex
matrix M in eq. is symmetric, M = M7, then the Takagi diagonalization corresponds to
2 = L = R. In this case, the right and left singular vectors coincide (vy = wy) and are identified
with the Takagi vectors defined in eq. . However as previously noted, the matrix 2
cannot be determined from eq. in cases where there is a degeneracy among the singular
valueslﬂ__gl For example, one possible singular value decomposition of the matrix M = (1% Tg)
[with m assumed real and positive] can be obtained by choosing R = ((1) ?) and L = (? (1)), in
which case LTMR = (’(’} 7?1) = Mp. Of course, this is not a Takagi diagonalization because
L # R. Since R is only defined modulo the multiplication on the right by an arbitrary 2 x 2
unitary matrix O, then at least one singular value decomposition exists that is also a Takagi

diagonalization. For the example under consideration, it is not difficult to deduce the Takagi

109The 2n x 2n matrix M, is a real representation of the n X n_complex matrix M.

HONote that (—=Imwv, Rew) corresponds to replacing v in eq. by ivi. However, for m < 0 these solutions
are not relevant for Takagi diagonalization (where the my are by definition non—negative). The case of m = 0 is
considered in footnote m

HMEor m = 0, the corresponding vectors (Rev, Imwv) and (—Imwv, Rewv) are two linearly independent eigen-
vectors of My; but these yield only one independent Takagi vector v (since v and iv are linearly dependent).

M2This is in contrast to the singular value decomposition, where R can be determined from eq. modulo
right multiplication by a [diagonal] unitary matrix in the [non-Jdegenerate subspace and L is then determined by

eq. (D.1.8) modulo multiplication on the right by eq. (D.1.9).
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diagonalization: QTMQ = Mp, where
Q=— O, (D.3.1)

and O is any 2 x 2 orthogonal matrix.

Since the Takagi diagonalization is a special case of the singular value decomposition, it
seems plausible that one can prove the former from the latter. This turns out to be correct; for
completeness, we provide the proof below. Our second proof depends on the following lemma:

Lemma: For any symmetric unitary matrix V', there exists a unitary matrix U such that
V=U"U.

Proof of the Lemma: For any n X n unitary matrix V', there exists an hermitian matrix H
such that V = exp (iH) (this is the polar decomposition of V). If V = VT then H = H" = H*
(since H is hermitian); therefore H is real symmetric. But, any real symmetric matrix can
be diagonalized by an orthogonal transformation. It follows that V' can also be diagonalized
by an orthogonal transformation. Since the eigenvalues of any unitary matrix are pure phases,
there exists a real orthogonal matrix @ such that QTVQ = diag (ei(’1 elf ew“). Thus, the
unitary matrix,

U = diag (ewl/Q, 22 ew"/Q) Q, (D.3.2)

satisfies V' = UTU and the lemma is proved. Note that U is unique modulo multiplication on
the left by an arbitrary real orthogonal matrix.

Second Proof of the Takagi diagonalization. Starting from the singular value de-
composition of M, there exist unitary matrices L and R such that M = L*MpR', where Mp
is the diagonal matrix of singular values. Since M = M' = R*MpL’, we have two differ-
ent singular value decompositions for M. However, as noted below eq. , R is unique
modulo multiplication on the right by an arbitrary [diagonal] unitary matrix, V', within the
[non-]degenerate subspace. Thus, it follows that a [diagonal] unitary matrix V exists such that
L = RV. Moreover, V = V1. This is manifestly true within the non-degenerate subspace where
V' is diagonal. Within the degenerate subspace, Mp is proportional to the identity matrix so
that L*RT = R*LT. Inserting L = RV then yields VT = V. Using the Lemma proved above,
there exists a unitary matrix U such that V = UTU. That is,

L=RU'U, (D.3.3)
for some unitary matrix U. Moreover, it is now straightforward to show that
MpU* =U*Mp. (D.3.4)

To see this, note that within the degenerate subspace, eq. (D.3.4)) is trivially true since Mp is

proportional to the identity matrix. Within the non-degenerate subspace V is diagonal; hence
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we may choose U = UT = V2, so that eq. (D.3.4) is true since diagonal matrices commute.
Using egs. (D.3.3) and (D.3.4), we can write the singular value decomposition of M as follows

M = L*MpR' = R'UTU*MpR' = (RUT)*MpU*R" = Q*MpQ', (D.3.5)

where Q = RUT is a unitary matrix. Thus the existence of the Takagi diagonalization of an
arbitrary complex symmetric matrix [eq. (D.2.1])] is once again proved.

In the diagonalization of the two-component fermion mass matrix, M, the eigenvalues
of MTM typically fall into two classes—mnon-degenerate eigenvalues corresponding to neutral
fermion mass eigenstates and degenerate pairs corresponding to charged (Dirac) mass eigen-
states. In this case, the sector of the neutral fermions corresponds to a non-degenerate subspace
of the space of fermion fields. Hence, in order to identify the neutral fermion mass eigenstates, it
is sufficient to diagonalize MTM with a unitary matrix R [as in eq. (D.1.7)], and then adjust the
overall phase of each column of R so that the resulting matrix Q satisfies QT MQ = Mp, where

Mp is a diagonal matrix of the non-negative fermion masses. This last result is a consequence

of egs. (D.3.3)(D.3.5)), where Q@ = RVY/2? and V is a diagonal matrix of phases.

D.4 Reduction of a complex antisymmetric matrix to real normal form

In the case of two-component fermions that transform under a pseudo-real representation of a
compact Lie group [cf. eq. ], the corresponding mass matrix is in general complex and
antisymmetric. In this case, one needs the antisymmetric analogue of the Takagi diagonalization
of a complex symmetric matrix [149].

Theorem: For any complex [or real] antisymmetric n x n matrix M, there exists a unitary

[or real orthogonal] matrix U such that:

T ] 0 m 0 mo 0 my
U'MU = N = diag ) s , On—gp p , (D.A41)

-m7 0 —mg 0 -m, 0
where N is written in block diagonal form with 2 x 2 matrices appearing along the diagonal,
followed by an (n — 2p) x (n — 2p) block of zeros (denoted by O,,—s,), and the m; are real and
positive. N is called the real normal form of an antisymmetric matrix ,.
Proof: A number of proofs can be found in the literature [150,|151}/269-271]. Here we
provide a proof inspired by ref. [269]. Following Appendix D.1, we first consider the eigenvalue
equation for MTM:

MTMuy, = mivy, mg >0, and  MTMu, =0, (D.4.2)

where we have distinguished the eigenvectors corresponding to positive eigenvalues and zero

eigenvalues, respectively. The quantities mj are the positive singular values of M. Noting that
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u;,LMTMu;,C = (Muy, | Muy) = 0, it follows that
Muy, =0, (D.4.3)

so that the up are the eigenvectors corresponding to the zero eigenvalues of M. For each

eigenvector of MM with my, # 0, we define a new vector

1
= —M";. D44
Wk - Uk ( )

It follows that m%vk = MTMuv, = mkMTw;;, which yields MTw;; = myvE. Comparing with
eq. (D.1.5)), we identify vy and wy as the right and left singular vectors, respectively, corre-

sponding to the non-zero singular values of M. For any antisymmetric matrix, MT = —M*.
Hence,
Muvy, = mypwy, Muwy, = —myvy,, (D.4.5)
and
MTMuwy, = —m Mo} = m M*v; = miwy, my > 0. (D.4.6)

That is, the wy, are also eigenvectors of MTM.
The key observation is that for fixed k the vectors v, and wy, are orthogonal, since eq. (D.4.5))
implies that:
1 t
(wk|M M’Uk> — (wk\vk> s (D.4.7)

* 1

k

which yields (wg|vg) = 0. Thus, if all the my are distinct, it follows that m? is a doubly
degenerate eigenvalue of MM, with corresponding linearly independent eigenvectors vy, and wy,,
where k =1,2,...,p (and p < %n) The remaining zero eigenvalues are (n—2p)-fold degenerate,
with corresponding eigenvectors uy (for k =1,2,...,n — 2p). If some of the my, are degenerate,
these conclusions still apply. For example, suppose that m; = my, for j # k, which means that
mi is at least a three-fold degenerate eigenvalue of MM . Then, there must exist an eigenvector
v; that is orthogonal to vy and wy, such that MTMUj = mivj. We now construct w; = M*v;‘/mk

according to eq. (D.4.4]). According to eq. (D.4.7), w; is orthogonal to v;. However, we still
must show that w; is also orthogonal to v, and wy. But this is straightforward:

1 1
(wjlwy) = (wilw;)" = —5 (Mug|Muj) = —5 (v MT M) = (vp|vj) =0, (D.4.8)
m mk

k

L (| M M) = — (wplv) = 0, (D.4.9)

% 1

where we have used the assumed orthogonality of v; with v, and wy, respectively. It follows that
vj, wj, v} and wy, are linearly independent eigenvectors corresponding to a four-fold degenerate

eigenvalue m% of MTM. Additional degeneracies are treated in the same way.
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Thus, the number of non-zero eigenvalues of MM must be an even number, denoted by
2p above. Moreover, one can always choose the complete set of eigenvectors {uy , vg, wi} of
MTM to be orthonormal. These orthonormal vectors can be used to construct a unitary matrix

U with matrix elements:

U@,Zk*lz(wk)eu UE,Q’C:(UIC)[7 ]{7:1,2,...,]?,
Ut kt2p = (ur)e, k=1,2,... ,n—2p, (D.4.10)
for ¢ =1,2,...,n, where e.g., (vg)¢ is the ¢th component of the vector vy with respect to the

standard orthonormal basis. The orthonormality of {uy, vi, wi} implies that (UTU)g = dp
as required. Eqs. (D.4.3) and (D.4.5) are thus equivalent to the matrix equation MU = U*N,
which immediately yields eq. (D.4.1)), and the theorem is proven. If M is a real antisymmetric

matrix, then all the eigenvectors of MTM can be chosen to be real, in which case U is a real

orthogonal matrix.

Finally, we address the non-uniqueness of the matrix U. For definiteness, we fix an ordering
of the 2 x 2 blocks containing the m; in the matrix N. In the subspace corresponding to a
non-zero singular value of degeneracy d, U is unique up to multiplication on the right by a

2d x 2d unitary matrix S that satisfies:

STJS =1, (D.4.11)
where the 2d x 2d matrix J, defined by
0 1 0 1 0 1
J = diag , R , (D.4.12)
-1 0 -1 0 -1 0

is a block diagonal matrix with d blocks of 2 x 2 matrices. A unitary matrix S that satisfies
eq. (D.4.11)) is an element of the unitary symplectic group, Sp(d). If there are no degeneracies
among the my, then d = 1. Identifying Sp(1)=SU(2), it follows that within the subspace
corresponding to a non-degenerate singular value, U is unique up to multiplication on the right
by an arbitrary SU(2) matrix. Finally, in the subspace corresponding to the zero eigenvalues

of M, U is unique up to multiplication on the right by an arbitrary unitary matrix.

Appendix E Lie group theoretical techniques for gauge theories
E.1 Basic facts about Lie groups, Lie algebras and their representations

Consider a compact connected Lie Group G [272]. The most general form for G is a direct
product of compact simple groups and U(1) groups. If no U(1) factors are present, then G is

semisimple. For any U € G,
U = exp(—10°T?), (E.1.1)
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where the T'® are called the generators of GG, and the #% are real numbers that parameterize the
elements of G. The corresponding real Lie algebra g consists of arbitrary real linear combinations

of the generators, 0%T®. The Lie group generators T satisfy the commutation relations:
[T%, T = ifoT°, (E.1.2)

where the real structure constants f% define the compact Lie algebra. The generator indices
run over a, b, ¢ = 1,2,...,dg, where dg is the dimension of the Lie algebra. For compact
Lie algebras, the Killing form ¢g® = Tr(T%T?) is positive definite, so one can always choose a
basis for the Lie algebra in which g% o §® (where the proportionality constant is a positive
real number). With respect to this new basis, the structure constants f%¢ = ¢ fcll’c are totally
antisymmetric with respect to the interchange of the indices a, b and ¢. Henceforth, we shall
always assume that such a preferred basis of generators has been chosen.

The elements of the compact Lie group G act on a multiplet of fields that transform under
some dp-dimensional representation R of G. The group elements U € G are represented by
dg x dp unitary matrices, Dr(U) = exp(—i#*Tg), where the Tf are dg X dg hermitian matrices
that satisfy eq. and thus provide a representation of the Lie group generators. For any
representation R of a semisimple group, TrTg = 0 for all a. A representation R’ is unitarily
equivalent to R if there exists a fixed unitary matrix S such that D/(U) = S~'Dg(U)S for all
U € G. Similarly, the corresponding generators satisfy T, = S _ITI‘%S foralla=1,2,...,dg.

For compact semisimple Lie groups, two representations are noteworthy. If G is one of
the classical groups, SU(N) [for N > 2], SO(N) [for N > 3] or Sp(N/2) [the latter is defined
by egs. and for even N > 2|, then the N x N matrices that define these
groups comprise the fundamental (or defining) representation F, with dp = N. For example,
the fundamental representation of SU(NN) consists of N x N unitary matrices with determinant
equal to one, and the corresponding generators comprise a suitably chosen basis for the N x N
traceless hermitian matrices. Every Lie group G also possesses an adjoint representation A, with

da = dg. The matrix elements of the generators in the adjoint representation are given byrrigl
(Tj)bC = —jfabe, (E.1.3)

Given the unitary representation matrices Dr(U) of the representation R of G, the ma-
trices [Dr(U)|* constitute the conjugate representation R*. Equivalently, if the Tf comprise a
representation of the Lie algebra g, then the —(T8)* = —(T8)" comprise a representation R* of
g of the same dimension dgr. If R and R* are unitarily equivalent representations, then we say
that the representation R is self-conjugate. Otherwise, we say that the representation R is com-

plex, or “strictly complex” in the language of ref. [273]. However, the representation matrices

H3Since the f2%¢ are real, the iT'¢ are real antisymmetric matrices. The heights of the adjoint labels a, b and ¢
are not significant, as they can be lowered by the inverse Killing form given by gu» o d4p in the preferred basis.
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Dpg(U) of a self-conjugate representation can also be complex. We can then define two classes
of self-conjugate representations. If R and R* are unitarily equivalent to a representation R’
that satisfies the reality property [Dg/ (U)]* = [Dr/(U)] for all U € G (equivalently, the matrices
iTg, are real for all a), then R is said to be real, or “strictly real” in the language of ref. .
If R and R* are unitarily equivalent representations, but neither is unitarily equivalent to a
representation that satisfies the reality property above, then R is said to be pseudo-real.
Henceforth, we drop the adjective “strictly” and simply refer to real, pseudo-real and com-
plex representations. Self-conjugate representations are either real or pseudo-real. An important

theorem states that for self-conjugate representations, there exists a constant unitary matrix W

such that [273]

[Dr(U)]* = WDR(U)W ™!, or equivalently, (iTg)*=W(GTp)W ™!, (E.1.4)

where
WwW*=1, wT=w, for real representations, (E.1.5)
WW* = —1, Wl =—-w, for pseudo-real representations, (E.1.6)

and 1 is the dr X dp identity matrix. Taking the determinant of eq. , and using the fact
that W is unitary (and hence invertible), it follows that 1 = (—1)?%. Therefore, a pseudo-real
representation must be even-dimensional.

If we redefine the basis for the Lie group generators by T — V*1T1‘;‘£ V', where V is unitary,
then W — VIWV. We can make use of this change of basis to transform W to a canonical
form. Since W is unitary, its singular values (i.e. the positive square roots of the eigenvalues of

WTW) are all equal to 1. Hence, in the two cases corresponding to W' = £W, respectively,
egs. (D.2.1)) and (D.4.1)) yield the following canonical forms (for an appropriately chosen V'),

W=1, for a real representation R, (E.1.7)
wW=4J, for a pseudo-real representation R, (E.1.8)
where J = diag{(fl) (1)) , (7(1) [1)) AR ( 7(1) [1))} is a dg X dr matrix (and dp is even).

There are many examples of complex, real and pseudo-real representations in mathematical
physics. For example, the fundamental representation of SU(N) is complex for N > 3. The
adjoint representation of any compact Lie group is real [cf. footnote. The simplest example
of a pseudo-real representation is the two-dimensional representation of SU(Q)PE] where T* =
%T“ (and the 7% are the usual Pauli matrices). More generally, the generators of a pseudo-real
representation must satisfy

(iTR) = CH(iTa)C, (E.1.9)

H4No unitary matrix W exists such that the Wir®W ! are real for all @ = 1,2,3. Thus, the two-dimensional
representation of SU(2) is not real. However, (i7%)* = (i72)(it®)(it?)"" for @ = 1,2, 3, which proves that the
two-dimensional representation of SU(2) is pseudo-real.
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for some fixed unitary antisymmetric matrix C' [previously denoted by W~! in egs. and
(E.1.6)]. For the doublet representation of SU(2) just given, C% = (i72)% = ¢ is the familiar
SU(2)-invariant tensor.

Finally, we note that for U(1), all irreducible representations are one-dimensional. The
structure constants vanish and any d-dimensional representation of the U(1)-generator is given
by the d x d identity matrix multiplied by the corresponding U(1)-charge. For a Lie group that is
a direct product of a semisimple group and U(1) groups, Tr T is non-zero when a corresponds
to one of the U(1)-generators, unless the sum of the corresponding U(1)-charges of the states of

the representation R vanishes.

E.2 The quadratic and cubic index and Casimir operator

In this section, we define the index and Casimir operator of a representation of a compact
semisimple Lie algebra g. The indez I2(R) of the representation R is defined by [272) 276)

Te(TRTE) = L(R)6™, (E.2.1)

where I5(R) is a positive real number that depends on R. Once I2(R) is defined for one represen-
tation, its value is uniquely fixed for any other representation. In the case of a simple compact
Lie algebra g, it is traditional to normalize the generators of the fundamental (or defining)
representation F' according torligl

Tr(TgTP) = 16°. (E.2.2)

If the representation R is reducible, it can be decomposed into the direct sum of irreducible

representations, R = ), Ry. In this case, the index of R is given by
L(R) =" DL(Ry). (E.2.3)
k

The index of a tensor product of two representations R; and Ry is given by [274]
IQ(Rl &® Rz) = dR1]2(R2) + dRQIQ(Rl) . (E.2.4)

Finally, we note that if R* is the complex conjugate of the representation R, then Io(R*) = I2(R).

A Casimir operator of a Lie algebra g is an operator that commutes with all the generators
T, If the representation of the T is irreducible, then Schur’s lemma implies that the Casimir
operator is a multiple of the identity. The proportionality constant depends on the representation

R. The quadratic Casimir operator of an irreducible representation R is given by

(T3)7 = (TR)" (TE)’ = Crdi? (E.2.5)

H5Tn the literature, the index is often defined as the ratio I>(R)/I2(F), where I>(F) is fixed by some convention.
This has the advantage that the index of R is independent of the normalization convention of the generators. In
this Appendix, we will simply refer to I>(R) as the index.

190



where the sum over the repeated indices are implicit and 4, j, k = 1,2...dg. A simple compu-

tation then yields the eigenvalue of the quadratic Casimir operator, Cg,

I
Cg = Q(f;)dc . (E.2.6)
R

For a simple Lie algebra (where the adjoint representation is irreducible), it immediately follows
that C4 = I3(A). For a reducible representation, T2 is a block diagonal matrix consisting of
dg, X dp, blocks given by Cg, 1 for each irreducible component Ry of R.

The example of the simple Lie algebra su(/V) is well known. The dimension of this Lie
algebra (equal to the number of generators) is given by N2 —1. As previously noted, dr = N and
I(F) = 1. It then follows that Cp = (N?—1)/(2N). One can also check that C4 = I5(A) = N.

The Lie algebras su(NN) [V > 3] are the only simple Lie algebra that possesses a cubic
Casimir operator. First, we define the symmetrized trace of three generators :

D = Str (T*T’T®) = L Te(T*T°T® + perm.) (E.2.7)

where “perm.” indicates five other terms obtained by permuting the indices a, b and ¢ in all

possible ways. Due to the properties of the trace, it follows that for a given representation R,
D(R) = L Ty [{T;,Tg}:rg} . (E.2.8)
For the N-dimensional defining representation of su(N), it is conventional to define
e = 2 Ty [{Tg, Tg,}:r;} . (E.2.9)

One important property of the d®¢ is 279):

(N2 — 1)(N? - 4)
i |

dabeqabe = (E.2.10)

In general, D%¢(R) is proportional to d**°. In particular, the cubic index I3(R) of a representa-

tion R is defined such that [276}278]280],
D(R) = I3(R)d® . (E.2.11)

Having fixed I3(F) = %, the cubic index is uniquely determined for all representations of

su(N) [278 282|. As in the case of the quadratic index Iz(R), we have:

I(R) = Is(Rs), (E.2.12)
k

for a reducible representation R = ), Rj. The cubic index of a tensor product of two represen-
tations Ry and Ry is given by [280]

Ig(Rl & Rz) = defg(RQ) + dRQIg(Rl) . (E.2.13)
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If the generators of the representation R are Tg, then the generators of the complex conjugate
representation R* are —T@'. It then follows that I3(R*) = —I3(R). In particular, the cubic
index of a self-conjugate representation vanishes. Note that the converse is not true. That
is, it is possible for the cubic index of a complex representation of su(N) to vanish in special
circumstances .

One can show that among the simple Lie groups, D¢ = 0 except for the case of SU(N),
when N > 3 . For any non-semisimple Lie group (i.e., a Lie group that is a direct product
of simple Lie groups and at least one U(1) factor), D is generally non-vanishing. For example,
suppose that the T constitute an irreducible representation of the generators of GxU(1), where
G is a semisimple Lie group. Then the U(1) generator (which we denote by setting a = Q) is
Tg = ¢1, where ¢ is the corresponding U(1)-charge. It then follows that DP%® = ql5(R)§.
More generally, for a compact non-semisimple Lie group, D¢ can be non-zero when either one
or three of its indices corresponds to a U(1) generator.

In the computation of the anomaly [cf. Section , the quantity Tr(TI%TI%TI‘%) appears.
We can evaluate this trace using egs. (E.1.2)) and (E.2.11)):

Te(TETETE) = Is(R)d™ + %IQ(R) Fo%e (E.2.14)
The cubic Casimir operator of an irreducible representation R is given by

(T3) = d"(TRTETE) = C3rdi . (E.2.15)

Using egs. (E.2.10) and (E.2.11]), we obtain a relation between the eigenvalue of the cubic Casimir

operator, C3p and the cubic index [278|:

N2 —1)(N? - 4)I5(R)

Csr = ( Ndg

(E.2.16)

Again, we provide two examples. For the fundamental representation of su(N), I3(F) = i
and O3p = (N? — 1)(N? — 4)/(4N?). For the adjoint representation, I3(A) = C34 = 0, since
the adjoint representation is self-conjugate. A general formula for the eigenvalue of the cubic

Casimir operator in an arbitrary su(V) representation [or equivalently the cubic index I3(R),

which is related to Csp by eq. (E.2.16)] can be found in refs. [278]280}282].

Appendix F Path integral treatment of two-component fermion
propagators

In Section [£.2] we derived the two-component fermion propagators in momentum space, which
are the Fourier transforms of the free-field expectation values of time-ordered products of two

two-component fermion fields, for example,
O\ @€} [0y = [ ' QTGN 0) 7, w=a—y. (P
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where the (translationally invariant) expectation values such as (0| T'¢,, (x)fg(y) |0) are functions
of the coordinate difference w = x —y. In Section the Fourier transforms of these quantities
were computed by using the free-field expansion obtained from the canonical quantization pro-
cedure, and then evaluating the resulting spin sums. In this Appendix, we provide a derivation
of the same result by employing path integral techniques. We follow the analysis given in Ap-
pendix C of ref. (with a few minor changes in notation). For a similar textbook treatment
of two-component fermion propagators see for example ref. . For the analogous treatment
of the four-component fermion propagator, see for example ref. .

We first consider the action for a single massive neutral two-component fermion &, (x),

coupled to an anticommuting two-component fermionic source term J,(z) [cf. eq. (3.1.1)]:

S = / die (L +JE+ €1t = / dix {% [z'g*aﬂa,,g + o9t — m(ee +£Tet )} + JE+ gTJT} ,
(F.2)
where we have split the kinetic energy term symmetrically into two terms. The generating

functional is given by
Wi, J'] = N/D»gi)gT Sl 1T (F.3)

where N is a normalization factor chosen such that W[0,0] = 1 and DEDET is the integration
measure. It is convenient to Fourier transform the fields (), £7(z) and sources J(z), Ji(z) in
eq. 1) and rewrite the action in terms of the corresponding Fourier coefficients E (p), gf (p), J (p)
and J1 (p):

d4p —ip-TE T d4p ip-x et
o) = [ e a). o) = [ GEer o). (F.4)
d4p : ~ d4p . ~
- —ip-e M) = [ ——eP*]I(p). F.
To(w) = [ e h . I = [ kel (F.5)
Furthermore, we introduce the integral representation of the delta function:
d4p ; ’
4 _ —ip-(x—x
In order to rewrite eq. (F.3) in a more convenient matrix form, we introduce the following
definitions:
£t (—p) Jo(p) pogs  —mda”
Q)= o X=| , M) = , .
£a(p) J1¢(~p) -md%;  po’
(F.7)

Note that M is an hermitian matrix. We can then rewrite the action [eq. (F.2])] in the following

matrix form [after using egs. (2.60) and (2.61) to write the product of the spinor field and the

source in a symmetrical fashion]:

_ LA o x4 xt
5_2/(277)4 (2tme+ofx + xTQ) . (F.8)
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The linear term in the field Q2 can be removed by a field redefinition
Q=0+ MIX. (F.9)

In terms of €, the action now takes the convenient form:

1 d'p " / Fa—1
S = 2/ i (Q MY — XM X> , (F.10)

where the inverse of the matrix M is given by

.FoB Y,
Mt 1 p-o méo‘ﬁ

= (F.11)

mda” PO

The Jacobian of the field transformation given in eq. (F.9)) is unity. Hence, one can insert
the new action, eq. (F.10)), in the generating functional, eq. (F.3)) to obtain (after dropping the

primes on the two-component fermion fields):

Wi, fT]ZN/DSDSTexp{i/ d'p (QTMQ—XTMlx)}

2] @)
- N [/Dgpgf exp{;QTMQH exp{—;/ (3354 XTM—IX}
—exp{—;/ <;l;’>’4 XU\/l_lX}, (F.12)

where we have defined the normalization constant N such that W[0,0] = 1. Inserting the explicit
forms for X and M into eq. (F.12]), we obtain

A 1 d4p ~ Z’p.ga~ . N ip-?dﬁ -
Wi 7t - exp{_2 [ (J (1) g T )+ T 2T Tl

imdyP ~ imd

WJ,B(?) + jg(p)pg_nfgjw(—p)> } . (F13)

Using eq. (2.62)), it is convenient to rewrite the first two terms of the integrand on the right-hand
side of eq. (F.13) in two different ways:

L[ d'p [+ P 00f g ~t, .\ ipe? o
3 [ o |0 g T ) + i) BT

d4p o ip-aaB . d4p ~ ip-Edﬁ R
2/(2@4‘] (—p)pQ_mQJTB(—p):/(2W)4 Jd(p)pQ_mQJ,B(p), (F.14)

where we have changed integration variables from p — —p in relating the two terms above. The
vacuum expectation value of the time-ordered product of two spinor fields in configuration space

is obtained by taking two functional derivatives of the generating functional with respect to the
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sources J and J' and then setting J = J' = 0 at the end of the computation (e.g., see ref. [115]).

For example,

3 5
<_Z5JO‘($1)> WlJ, J'] <_Z5JTB(332)>

where the functional derivatives act in the indicated direction (which ensures that no extra

=N [ DEDE afan)€l ) exp < [ s z)

J=JT=0

= (0[T€a(x1)€}(

2)0) , (F.15)
minus signs are generated due to the anticommutativity properties of the sources and their
functional derivatives). To obtain the two-point functions involving the product of two spinor
fields with different combinations of dotted and undotted spinors, it may be more convenient
to write J¢ = £J and/or £1JT = Ji¢t in eq. (F.3). One can then easily verify the following

expressions for the four possible two-point functions:

(0T éa(21)€} (x2)[0) = (—z%) W, J*]( i~ m)) N (F.16)
(0|7 (21)€” (a2)]0) = (—z‘ 5 J§x1)> W[, J') ( ST ) o (F.17)
(0IT€™ (@1)€](2)|0) = (—z‘ p J§x1)> W, J7] (—W) o (F.18)
(01T €a (21)€" (2)[0) = (‘win) W1J,J7] ( is Jf(m)) o (F.19)

As an example, we provide details for the evaluation of eq. (F.16). Using egs. (F.13]) and
([F.14), we obtain:

4, Do s <
(OIT€aer)E} (2)]0) = - ij ([ g P mg o TP i )

The chain rule for functional differentiation and the inverse Fourier transforms of eq. (F.5|) yield:

=5, |
o _ /d4p1 0T (=) = d :/d4p1 et ——— 0 , (F.21)
pl) (5JO‘

d0J*(x1) 6J*(z1) §.JB(— (—p1)

T .
'5:/‘14?2 07" p2) 9 :/d4p2 B — (F.22)
8T8 (x2) §JB(2q) 8T 14 (—pg) 6 J 18 (—p2)

Applying egs. and - to eq. -, we obtain:

d4 efip (z1—22) Z.p'o-ocﬂl

0T (@€l @l0) = [ b eitoan el

(F.23)

195



which is equivalent to eq. (4.2.1]) of Section [4.2] With the same methods applied to eqs. (F.17)-
(F.19), one can easily reproduce the results of eqs. (4.2.2))—(4.2.4]).

We next consider the action for a single massive Dirac two-component fermion. We shall

work in a basis of fields where the action, including external anticommuting sources, is given by
Sk xTomnt, Ty, L gy, Tl = /d4:rr [ixTE"ﬁux +in'e"dun — m(xn + x'n')
+Jyx + XTJJ< +Jyn + nTJ; . (F.24)

Following the techniques employed above, we introduce Fourier coefficients for all the fields and

sources and define

~

ﬁTd(_p) Jna(p)
Q.(p) = , Xc(p) = o . (F.25)
%a(p) T (=)
The action functional, eq. (F.24), can then rewritten in matrix form as before (but with no
overall factor of 1/2):

4
S = / (;Zﬂf;l (QZMQC+91XC+XCTQC) , (F.26)

where M is again given by eq. (F.7). The remaining calculation proceeds as before with

few modifications, and yields the Dirac two-component fermion free-field propagators given

in eqs. (L27)-(E210).

Appendix G Correspondence to four-component spinor nota-
tion

G.1 Dirac gamma matrices and four-component spinors

In four-dimensional Minkowski space, four-component spinor notation employs four-component

Dirac spinor fields and the 4 x 4 Dirac gamma matrices, whose defining property is:
") =29"1, (G.1.1)

where 1 is the 4 x 4 identity matrix.
The correspondence between the two-component spinor notation and the four-component
Dirac spinor notation is most easily exhibited in the basis in which v5 is diagonal (this is called

the chiral representatiorE]). In 2x2 blocks, the gamma matrices are given bym

0 a. —57 0
= ) =ity = T |, (G.1.2)
G 0 &,

H16For a review of other representations of the Dirac gamma matrices and their properties, see e.g. refs. .

H7Employing the conventions for the sigma matrices described in Appendix A, it follows that the definition of
~" is independent of the choice of metric signature, whereas v, = g..7y"” changes sign under a reversal of the
metric signature. In the metric signature convention with goo = 41, our gamma matrix conventions follow those
of ref. \\ whereas in the convention with gop = —1, our gamma matrix conventions follow those of ref. .
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and the 4 x 4 identity matrix that appears in eq. (G.1.1)) can be written as:

5. 0
1= . (G.1.3)

0 %

In addition, we identify the generators of the Lorentz group in the (%, 0)®(0, %) representation

7 v Uuyaﬁ 0
7[7!117’7 ] = 3 (G14)

1 v __
LYV HY —
2 4 0 E,uyd )

where Y* satisfies the duality relation,

Vs EH = LiePTS,, . (G.1.5)

Eq. 1} yields the spin—% angular momentum matrix representation { %Zi}, 1=1,2,3, where
— (095, 0

Y= %eijkﬁjk =9y, = . (G.1.6)

0 (ﬁ)ai)dg

A four-component Dirac spinor field, ¥(z), is made up of two mass-degenerate two-component

spinor fields, x4 (z) and 74 (x), of opposite U(1)-charge as follows:

U(z) = xeloh) (G.1.7)

0 (z)
We next introduce the chiral projections operators[ |

) 52 0 . 0 0
Pr=51—n)= : and  Pp=5(l+7)= ] (G.1.8)
0 0 0 0%

and the (left and right-handed) Weyl spinor fields, ¥y (z) and Vg (z), which are defined by:

Xa(z) 0
Up(z) =PV (z) = , Ugr(x) = Pr¥(x) = . (G.1.9)

0 n'e(z)

Equivalently, one can define the Weyl spinors ¥y and Wp as the four-component spinor eigen-

states of 75 with corresponding eigenvalues —1 and +1, respectively (i.e., ;¥ r = FVL R).

H8Tn most textbooks, ¥#” is called ¢*”. Here, we use the former symbol so that there is no confusion with
o P given in eq. .

1971 the earlier literature, a different set of conventions for the sigma matrices in which the roles of ¢ and &
were reversed [e.g, as in egs. and ] resulted in v; = diag(lax2, —12x2) in the chiral representation,
which differs from our convention by an overall sign [cf. eq. ] As a result, in this latter convention, Pp,
[Pr] projects out the raised dotted [lowered undotted] two-component spinor field. This latter convention is still
prevalent in the literature of the spinor helicity method (see footnote in Appendix 1.2).
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The Dirac conjugate field ¥(z) and the charge conjugate field ¥¢ (x) are defined by:

U(z)=0lA = (no‘(x), XL(Z‘)) , (G.1.10)
c — Na ()

U (z) =C¥ ' (z) = , (G.1.11)
x14(x)

where the Dirac conjugation matrix A and the charge conjugation matrix C' satisfy [286/-288]:
A’yuff1 = fyl, C’flfyMC’ = —fy;. (G.1.12)

It is convenient to introduce a notation for left and right-handed charge-conjugated fields (which
are also Weyl spinor fields) following the conventions of refs. | m

PO (z) = CT () = [Up(2)]C (G.1.13)
PrU%(z) = V) (z) = [V, (2)]°. (G.1.14)

v (x)
Wi (x)

To fix the properties of A and C, it is conventional to impose two additional conditions:
U= A1g (W) = . (G.1.15)

The first of these conditions together with eq. (G.1.10) is equivalent to the statement that U
is hermitian. The second condition corresponds to the statement that the (discrete) charge

conjugation transformation applied twice is equal to the identity operator. Using eqgs. (G.1.12))

and (G.1.15) and the defining property of the gamma matrices [eq. (G.1.1)], one can show
(independently of the gamma matrix representation) that the matrices A and C' must satisfy:

AT=A, cT=-C, (AC)™L = (A0)*. (G.1.16)
Following ref. [137], it is convenient to introduce a matrix D such that
D=CAT, D™'y,D = =+, (G.1.17)

and D*D = DD* = 1. The charge-conjugated four-component spinor is then given by:

09 (z) = DU*(x). (G.1.18)

A four-component Majorana spinor field, ¥y, (x), is defined by imposing the constraint W (z) =
U(z) on a four-component Dirac spinor, which sets n = x. That is, the Majorana condition is
* XO!(’:L')
Uyr(x) = DUy, (2) = . . (G.1.19)
X' (@)
For a review of the Majorana field and its properties, see e.g. refs. [145]146].

120The reader is warned that the opposite convention is often employed in the literature (e.g., see ref. [290]) in
which U¢ is a right-handed field and ¥ is a left-handed field.
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For completeness, we also introduce a matrix B that satisfies [286-288},291]:
= -C 1y, By,B™' =] (G.1.20)

The matrix B arises in the study of time reversal invariance of the Dirac equation. In the chiral

representation, A, B, C and D are explicitly given by

0 &% €p 0
A= , C= e (G.1.21)
52 0 0 48
B 0 0 €af
B= , D=| (G.1.22)
0 —€45 e 0

Note the numerical equalities, A = 7°, B = y'43, C = i7°y? and D = —iy?. However these iden-
tifications do not respect either the structure of the undotted and dotted spinor indices specified
in eqs. and , or the four-component spinor index structure introduced below
[cf. egs. and ]Pz-l In translating between two-component and four-component

spinor notation, eqs. (G.1.21)) and (G.1.22)) should always be used. In practical four-component

spinor calculations, there is often no harm in employing the numerical values for A, B, C and D.

Using eqgs. (G.1.12)—(G.1.20)), the following results are easily derived:

1 for ' =1, 4", 4ty , XH
AFA_l — U?FT, 77? _ +1, or , Y 7’;}/ V5 ) (G123)
-1, for I' =~ , X",
_ +1, for ' =1, v, v*,
BIrB~' =TT, n = o (G.1.24)
-1, for I' = ylry, , BHY | By,
1 forT'=1 K
c're =17, nS = {+ o o s (G.1.25)
-1, for I' = ~H XKV B,
1 for T' =1, 4t~ , T
DD = nPT*, gD =T o URCERCE (G.1.26)
r r -1, for I' = H, vy, XH.

The Lorentz transformation properties of the four-component spinor field can be determined

from those of the two-component spinor fields given in Section The 4 x 4 representation

1

matrices of the Lorentz group in the (%, 0) @ (0, ) representation are given by

M 0 i 1.
M= =exp | =0, X" ) = Tyxq — 710,51, (G.1.27)
0 (M—l)T 4

121When treated as ordinary 4 x 4 matrices A, B, C' and D are unitary. But when written in 2 x 2 block
form [noting that 6dﬂ- = (6“¢)* and €*? = (¢#)*, as indicated below egs. EI) and ], the products AAT,
BB, CCT and DD' are not covariant with respect to the dotted and undotted two-component spinor indices.
Similarly, these matrix products are not covariant with respect to the four-component spinor indices. In practice,
only covariant combinations of A, B, C, D and the four-component spinor fields arise in typical calculations.
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where the infinitesimal forms of M and (M ~!)T are given in egs. (2.101)) and (2.102)). Two useful
identities that follow from eqs. (G.1.23), (G.1.25) and (G.1.27) arefrEl

AMA™L = (YT, (G.1.28)
cIMO = (YT, (G.1.29)
The four-component Dirac or Majorana spinor, ¥, , is assigned a lowered spinor index a,

and is defined in terms of two-component spinors by eqs. (G.1.7)) or (G.1.19), respectively. Four-

component spinor indices, which will be chosen in general from the beginning of the lower case

Roman alphabet, a, b, ¢, .. ., can assume integer values 1,2, 3,4. Under a Lorentz transformation,
v, transforms as

U, — M, 0. (G.1.30)
In analogy with the conventions for two-component spinor indices, we sum implicitly over a pair
of repeated indices consisting of a raised and a lowered spinor index. The transformation law for

the Dirac conjugate spinor (often called the Dirac adjoint spinor), ¥ = WTA, is obtained from
eq. (G.1.30) after employing AT = A and eq. (G.1.28),
T Wl (M), (G.1.31)
In particular, WW = ¥ *W,, is a Lorentz scalar, which justifies the assignment of a raised spinor
index for the Dirac conjugate spinor W%,
It is convenient to introduce barred four-component spinor indices [292] in the transforma-
tion laws of the hermitian-conjugated four-component spinors[]
b
vl ol ()’ (G.1.32)
wie o (MY e, (G.1.33)
where there is an implicit sum over the repeated lowered and raised barred spinor indices, and
ol = (w,)1, vhe = (vo)t, (G.1.34)

The spinor index structure of the Dirac conjugation matrix A is then fixed by noting that the
Dirac conjugate spinor, gl = \I':;A‘_’b , has a raised unbarred spinor index, whereas the hermitian-
conjugated spinor has a lowered barred spinor index.

The charge conjugation matrix can be used to raise and lower four-component spinor in-
dices \\ which we shall employ in defining the spinors %, U@ ¥, and @g

\I’a - ab\I]by U = (C_l)ab\pb, (G135)
\I/g — C(_ll_)\I]-ilbu \I}Tﬁ — (C_l)ab\]:/%, (G136)

122Note that eq. (G.1.29) is a direct consequence of the identities in two-component spinor notation given in
egs. |2.103|} and (2.104)).

1230F course, eqs. 1|G.1.30|)—1|G.1.33|) can also be derived directly from the corresponding two-component spinor
transformation laws of Section

124Tn contrast to the epsilon symbols of the two-component spinor formalism, here we prefer to explicitly exhibit
the inverse symbols in (C™1)* and (C71)% [cf. footnote.
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where

Cr = (Cp)*, (C~Hab = [(o—1)eb]* (G.1.37)

Eqgs. (G.1.35) and (G.1.36|) also apply to U%, ¥, and their hermitian conjugates. In particular,
one can identify the Dirac conjugate spinor with a lowered spinor index (¥,) as the charge-
conjugated spinor, ¥¢ = C¥ T, and the Dirac spinor with a raised spinor index (%) as the

Dirac conjugate of the charge-conjugated spinor, € = 9T ¢! That is

vl =T, =C, 00, o =gt = (C~Hty,. (G.1.38)
The rules for raising and lowering spinor indices are consistent with the Lorentz transformation
properties of egs. (G.1.30)—(G.1.33)), as a consequence of eq. . In particular, the condition
for a self-conjugate four-component (Majorana) spinor, ¥, = \I/ac = U,, is Lorentz covariant.
Using egs. (G.1.16|), (G.1.35), (G.1.36]), and the definition of the Dirac conjugate spinor, it
then follows that:

T, = (AH;0t?, T = Ak (G.1.39)
W= T, W= AT, (G.1.40)

One can check that egs. (G.1.39) and (G.1.40) are consistent with the Lorentz transformation
properties of eqgs. (G.1.30)—(G.1.33)), as a consequence of eq. (G.1.28)).

In addition to the Lorentz scalar ¥W = W *W,,, one can construct two additional independent

Lorentz scalar quantities]lzgl
—vTCc v = v, (0 H*y, = vy, (G.1.41)

and its hermitian conjugate,
VOUT =0C,, 00 =T, = vlute = (geg,)t, (G.1.42)

after using C~! and C to raise and lower the appropriate spinor indices, respectively. The
penultimate equality in eq. is a consequence of eq. . The Lorentz invariance of
U, U¥, and \Ifg\IfTa =V W, is manifest and demonstrates the power of the four-component
spinor index notation developed above. After invoking eq. , we note that [analogous
to eq. ] descending contracted unbarred spinor indices and ascending contracted barred

spinor indices can be suppressed in spinor-index-contracted products. For example,

Ty, = TP Wy, = 00, = ¥CU T, =00 = guo (G.1.43)

where the suppression of barred spinor indices is implicit in the definition of ¥° = \Il(‘;Aab.

'?For a Dirac spinor field defined in eq. (G.1.7), ¥a(z) = ¥S () is given in terms of two-component spinors by
eq. (G.1.11)), and ¥ (z) = ¥ *(2) = (Xa(l‘)7 nl(m))

126 A fourth possible Lorentz scalar, U, = (C’*l)“bC’ac\Ilbﬁc =0 U= @267 is not independent. Here,
we have used C7 = —C' and the anticommutativity of the spinors. Equivalently, ¥CWC = U,
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The charge-conjugated spinor can also be written as ¥¢ = DQE\IIE [cf. eq. (G.1.18))]. The

spinor index structure of D (and its inverse) derives from:

Dy’ = Cop(AT)F = Cp A? (D™ 1)3¢ = (C*A)a¢ = Cz AP, (G.1.44)

where we have used D! = D*. Combining the results of egs. (G.1.35), (G.1.36), (G.1.39) and
(G.1.40) then yields:

U, =D, !, Ul = (D71),° 0, (G.1.45)

T — —\I/J[E(D_I)Ea, Ule — _gepe. (G.1.46)

In summary, a four-component spinor ¥, and its charge-conjugated spinor ¥¢ possess
a lowered unbarred spinor index, whereas the corresponding Dirac conjugates, ¥* and ol
possess a raised unbarred spinor index. The corresponding hermitian-conjugated spinors exhibit
barred spinor indices (with the height of each spinor index unchanged). Following eqs.
and , one can also lower or raise a four-component unbarred or barred spinor index by
multiplying by the appropriate matrix C, C~1, C* or (C~1)*, respectively.

The identity matrix, the gamma matrices and their products are denoted collectively by I'.

The spinor index structure of these matrices and their inverses is given by:
5, Lo, (T7ha", (G.1.47)

where the §° are the matrix elements of the identity matrix 1. In this case, the rows are labeled
by the lowered index and the columns are labeled by the raised index. Note that the quantities
UL, W, UoT,b Uy, and UT,2 UP transform as Lorentz tensors, whose rank is equal to the
number of (suppressed) spacetime indices of I'.

For the matrices A, B, C, D and their inverses, the spinor index structure is given by:
A% (AN, B (B ey, Cap, (C7H)P DY (D70 (G.1.48)

The corresponding complex-conjugated matrices exhibit the analogous spinor index structure
with unbarred spinor indices changed to barred spinor indices and vice versa. Matrix transpo-

sition interchanges rows and columns. For example,
CHY =Ty,  ANP=4"  (CNw=Ch, (D)% =D (G.1.49)
Hermitian conjugation is complex conjugation followed by matrix transposition. For example,
%=, (A)® = @by, (Cp=(Cw)*, (D)% = (D). (G.1.50)

Using the above results, it is straightforward to identify the four-component spinor index struc-

ture of egs. (G.1.1)—(G.1.29). For example, specifying the four-component spinor indices of
eq. (G.1.29) yields:

(CTHPMCog = [T = (M1),°. (G.1.51)
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To complete the spinor index formalism, we introduce hybrid quantities L, L, R and R that

contain an unbarred four-component spinor index and a two-component undotted or dotted

spinor index [293]:
L = (laxa  Oax2) , RPY = (Daxa  Tax2), (G.1.52)
_ 1 _ O
LP= %), Ry=| 7). (G.1.53)
(D2><2 ]12><2

These quantities satisfy:

Lo%Lo" = (P)d", Lo"Le" = 6.7, (G.1.54)

Raa R = (PR).", RYR 5 =0, (G.1.55)

where Py, and Pgr are the chiral projection operators defined in eq. . It then follows that:

Lo%(Pp)s” = LY, (PL)"Ly’ = L,°, (G.1.56)

RY%(Pg)," = R, (Pr)a"Ry; = Ry (G.1.57)

The hybrid quantities L, L, R and R connect objects with four-component and two-
component spinor indices. For the Dirac spinor defined in eq. , it follows that:

Xo = Lo U5, n® =" L,*, (G.1.58)
= R, Xk = T Ry . (G.1.59)
The corresponding inverse relations are:
(PL)a” Uy = Lo, T(P)a" =n"Lg", (G.1.60)
(Pr)a" Wy = R, 5n'", T (Pr)a = xLRO. (G.1.61)

One can use egs. (G.1.2)), (G.1.4) and (G.1.21)) to identify:

oy = La®(1")a "Rys . a8 = R (1) VTP (G.1.62)
Uuuaﬁ — Laa(§zul’)abLb ’ lea Raa( S, Rbﬂ’ (G.1.63)
60’ = —La(75)d L 5% 5= RY(5), Ebﬁ’ (G.1.64)
€ap = La"CapLg", P = RY°C,RPY (G.1.65)
P =L, (C H)PL,P = Raa(C™) "R, (G.1.66)
Inverting these results yields:
(V" Pr)e? = Reso"*P Lg?, (v*Pg).t = L. 0" Rﬁd (G.1.67)
2= Pt =T P Lg? (2 PR)t = Rcda“”a BRM, (G.1.68)
(AP.)." = RSPLs", (APR)4 =L 4R, (G.1.69)
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(PLC)ea = €apLe®La” (PrC)eqg = €’ ResR i (G.1.70)
(C1PL) = BL, Ly (C~1PR)*! = e,4R¥ R, (G.1.71)
Likewise, one can introduce LT, LT, RT and R, which are hybrid quantities that contain a

barred four-component spinor index and a two-component undotted or dotted spinor index:

(L1 = (L"), (RN = (RPay*, (G.1.72)

(Ihs = (L) (R)pa = (R,)" (G.1.73)
In particular, using egs. (G.1.60) and (G.1.61)), one can relate the quantities L, L, R and R and
their hermitian conjugates:

(L1 = ARy, (RN = AT, (G.1.74)
(1’5 = R(A Yy, (RYga = L (A )a (G.1.75)
after employing AP, = P;A [cf. eq. 1) and AT = A. The set of equations analogous to

egs. (G.1.54)—(G.1.71)) involving the corresponding hermitian-conjugated quantities can also be

obtained. However, such formulae will rarely be needed in practice.

Egs. (G.1.54)—(G.1.71) [and their hermitian conjugates] can be employed to translate any

expression involving two-component spinors into the corresponding expression involving four-
component spinors, and vice versa. With a little practice, both two-component and four-
component spinor indices can be suppressed, which greatly simplifies the manipulation of the
spinor quantities. In particular, by treating the four-component spinors ¥, and \Ifg as column
vectors and their hermitian (Dirac) conjugates ¥} and \Ifa(“”f (T and UC?) as row vectors, all
equations in the four-component spinor formalism have a natural interpretation as products of
matrices and vectors. Henceforth, we shall suppress all four-component spinor indices.
Multiple species of fermions are indicated with a flavor index such as ¢ and j. Dirac fermions
are constructed from two-component fields of opposite charge, x, and n® (hence the opposite
flavor index heights). Thus, we establish the following conventions for the flavor indices of

four-component Dirac fermions:

(x . 4 : . iz
Ui(x) = "f?< N T - (@), @), v = ) G
& -
() X (@)
Note that x? = (x;) and n;-r = (n")T following the conventions established in Section@ Raised
flavor indices can only be contracted with lowered flavor indices and vice versa. In contrast,
Majorana fermions are neutral so that there is no a priori distinction between raised and lowered
flavor indices. That is,
i c cipr_ [ ail@) T i _ {¢a ti
Vane) = Why() = W) = W@ = | ) Tane) = B = (@), @)
x
(G.1.77)
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In this case, the contraction of two repeated flavor indices is allowed in all cases, irrespective of
the heights of the two indices. In the convention adopted in Section in which all neutral
left-handed (3,0) [right-handed (0, 3)] fermions have lowered [raised] flavor indices, the height
of the flavor index of a four-component Majorana fermion field is meaningful when multiplied
by a left-handed or right-handed projection operator. Thus, the height of the flavor index for

Majorana fermions can be consistently chosen according to one of the following four cases:
PLVyy,  WaPr,  PrVYi, VUi Pg. (G.1.78)
Bilinear covariants are quantities that are quadratic in the spinor fields and transform irre-

ducibly as Lorentz tensors. We first construct a translation table between the two-component

form and the four-component form for the bilinear covariants made up of a pair of Dirac fields.

Using egs. ((G.1.60) and (G.1.61)) to convert the four-component spinor fields into the correspond-

ing two-component spinor fields, and employing the appropriate identities involving products of

the hybrid quantities L, L, R and R, the following results are then obtained:

U'PLY; =n'x;, (G.1.79)

U PRl =yl (G.1.80)
@W“PL% = X“E“Xj, (G.1.81)
Vink PRl = niJ“n} , (G.1.82)
UYMW PLU; =20 0y, (G.1.83)
Ty PRy = 2y 5t (G.1.84)

The first two results above follow immediately after using egs. (G.1.54]) and ( m, respec-
tively, and the last four results are a consequence of egs. (G.1.62)) and (G.1.63).

Egs. (G.1.79)—(G.1.84) apply to both commuting and anticommuting fermion ﬁeldsllzrl

These results can then be used to express the standard four-component spinor bilinear covariants

in terms of two-component spinor bilinears:

@iqj, —p X] +X“ t (G.1.85)
Uyl = —n'x; + x1'n] (G-1.86)
Ty = gty + ity (G.1.87)

Tigbys b = —x oty + nigun;, (G.1.88)
TE; = 2(nioy; + x i) (G.1.89)
VIS5 = 2(—n'o"x; + x”?"”n*-) : (G.1.90)

1271 the case of antlcommutlng spmors, it is often useful to apply eq. to egs. (G.1.82), (G.1.87) and

1) and rewrite n‘o" 77] = —7]]0“77
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Additional identities can be derived that involve the charge-conjugated four-component
Dirac fermion fields. As an example, we may use CT = —C' and e = —0TC1 to prove that
IT e = —(—)ATIOTT O, = — (-1 TIT O, (G.1.91)

where the sign 1719 is given in eq. (G.1.25)). The factor of (—1)4 = %1 [for commuting/anticommut-
ing fermion fields, respectively] arises at the second step above after reversing the order of the

terms by matrix transposition. Identities involving just one charge-conjugated four-component

field can also be easily obtained. For example, using eqs. (G.1.58]) and (G.1.71)),

VEPLU; = U O PLW; = —Waie Lo L' Wy = —ePx X5 = XX - (G.1.92)

In general, if one replaces ¥, with W¢F in egs. (G.1.79)(G.1.90), then in the corresponding

two-component expression one simply interchanges i < n* and ¥ < 77;2.

Eqgs. (G.1.79)—(G.1.90)) also apply to four-component Majorana spinors, Wy, by setting

xi=n"=¢&,and yT? = 173 = ¢1%. This implements the Majorana condition, ¥ y;; = Dvy,,, and
imposes additional restrictions on the Majorana bilinear covariants. For example, eqs. (G.1.25)
and (G.1.91)) imply that anticommuting Majorana four-component fermions satisfy@

UariVar; = War Vg, G.1.93

Uarivs U = Warjvs Vi, G.1.94
Uariv" Uy = =W Vg, G.1.95
G.1.96
G.1.97

G.1.98

Uity ¥nj = Wi v Wi,
WS = =W S0,

U Sy Wy = =W Sy Wy -

( )
( )
( )
( )
( )
( )

By setting i = j, it follows that Uy WU = W S Wy = @ME‘“’VS\I/M = 0. One additional
useful result is:

Ez]'\/[')/MPL\I/Mj = _EMj"YMPR\I/%}\/[y (G199)

which follows immediately from eqgs. (G.1.95) and (G.1.96)). Note that in eq. (G.1.99)), the heights
of the flavor indices follow the convention established in eq. (G.1.78)).

In the four-component spinor formalism, Fierz identities (first introduced in ref. [294])

consist of relations among products of two bilinear covariants, in which the fermion fields appear
in two different orders. The corresponding two-component spinor Fierz identities are treated in
detail in Appendix B.1. In principle, the latter can be converted into four-component spinor
Fierz identities using the techniques developed in this Appendix. However, it is easier to derive
the four-component spinor Fierz identities directly using the properties of the gamma matrix

algebra .

128 ere, one is free to choose all flavor indices to be in the lowered position [cf. eq. ]
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Instead of egs. (B.1.6)—(B.1.8)), the equivalent identity relevant for four-component spinors is:

569 = 1[50+ (1)a15) + (1)a (e’ — (95)aurs)e” + 3 () (S| (G-1.100)
This is the fundamental identity from which many other such identities can be derived
(cf. the Appendix of ref. [288]). Ome of many possible Fierz identities can be obtained by
multiplying eq. (G.1.100) by Ui Wo,WsWyy = (—1)4 U W5 Wyy,, where (—1)4 = +1 [~1] for

commuting [anticommuting] Dirac, Majorana or Weyl spinors. More generally [284][295/[296],

5
(T D) (BT wy) = (~1)A ST FE, (007 0,) (B0 w,),  (G.1.101)
n=1

where the sum is taken over the 4 x 4 matrices, I'™ € I", which have been ordered as follows
D=A{1, ", 5" (p<v), v, 75} (G.1.102)

I, J represent zero, one or two spacetime indices (sums over repeated I and J are implied), and

1 1 1 -1 1
4 -2 0 -2 —4
in 2 0 -2 0 12]. (G.1.103)
—4 -2 0 -2 4
1 -1 11

1
2
For example, taking £ = 1 in eq. (G.1.101]) yields a result equivalent to eq. (G.1.100):
(01 W2)(W3Wy) = §(—1)* [(U104)(P3W2) + (P17504) (P37 W2) + (U1y" Uy) (P37, ¥2)
—(Ui ¥ y5 W) (W75 Ua) + 5 (U187 0y) (03X, Uo)] . (G.1.104)

For a comprehensive treatment of all possible four-component spinor Fierz identities, see
ref. [297]. Simple derivations of generalized Fierz identities have also been given in refs. [296,298].
A Mathematica package for performing Fierz transformations is available in ref. [299].

G.2 Free-field four-component fermion Lagrangians

The free-field Lagrangian density in four-component spinor notation can be obtained from the

corresponding two-component fermion Lagrangian by employing the relevant identities for the

bilinear covariants given in egs. (G.1.79)—(G.1.90)). First, consider a collection of free anticom-

muting four-component Majorana fields, Wy = \I/]\C/h The free-field Lagrangian (in terms of

mass eigenstate fields) may be obtained from eq. (3.2.10|) by converting to four-component spinor
notation using eqs. (G.1.85) and (G.1.87) with y = n = &, which yields [3]:

& = 5i0ni" 0uWari — 5miVasiWari, (G.2.1)

129The 16 matrices of I' constitute a complete set that spans the sixteen-dimensional vector space of 4 x 4
matrices.
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where the sum over 7 is implicit. The corresponding free-field equation for Wys; is the Dirac
equation:

(iv" 0y —m)¥p; = 0. (G.2.2)

For simplicity, we focus on a theory of a single four-component Majorana fermion field,

Uy (z) = ¥§,(z). One can rewrite the free-field Majorana fermion Lagrangian in terms of a

single Weyl fermion, ¥, (x) = PrV(x), where ¥(x) is a four-component fermion field whose

lower two components (in the chiral representation) are irrelevant for the present discussion.

The Majorana and Weyl fields are related by:
Uy () =V, () + 9% (), (G.2.3)

where \I/%(:c) is defined in eq. (G.1.14). The corresponding Dirac conjugate field is given by
U, (z) = U, (2) + 95 (x), where
U, (z) = [PLY(2)]TA = U(z)Pp, (G.2.4)

WO(2) = WO ()P, = 0T (2)C7IP, = W] (x)C L. (G.2.5)

Using the identity{™]
ng“aumyg = —\I/TC’*lPLfy“(?MPRC’@T =W, v*9, ¥, + total divergence, (G.2.6)
the Lagrangian for a single Majorana field can be written in terms of a single Weyl ﬁeldFEl
L = iU A9,V + tm (xp{c—l\yL - ELCEZ) . (G.2.7)
The corresponding free-field equation is
"9, V), = mCT; , (G.2.8)

where we have used (U,C)T = —C@Z and the anticommutativity of Wy, W;. The general-
ization of egs. f to the case of a multiplet of four-component Majorana fields is
straightforward and is left as an exercise for the reader.

Of course, one could have chosen instead to rewrite the four-component Majorana fermion
Lagrangian in terms of a single Weyl fermion, ¥ (z) = Pr¥(x), in which case the upper two
components (in the chiral representation) of ¥(x) are not relevant. In this case, the Majorana
and Weyl fields are related by{™]|

Uy (2) = Up(z) + (), (G.2.9)

1397 deriving eq. , we have used eq. and the anticommutativity of the spinor fields. The total
divergence can be dropped from the Lagrangian, as it does not contribute to the field equations.

131 Using eq. , it follows that (¥TC W)t = WA 1C~ A1 0T = G CU".

1321f ¥ is an unconstrained four-component spinor, then ¥;, and Uy are independent Weyl fields, in which case
U, + 0% and Ui + UF are independent self-conjugate fields.
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where \Ilg(x) is defined in eq. (G.1.13). The corresponding Dirac conjugate field is given by
U, (x) =Up(z) + ?g(m), where

[PRY (2)]TA = T(2)P, (G.2.10)
WO(2)Pr = —UT(2)C7 ' Py = —W [ (2)07 L. (G.2.11)

@R(SU)

v (@)

The corresponding Weyl fermion Lagrangian is given by eq. (G.2.7) with L replaced by R.

Thus, a Majorana fermion can be represented either by a four-component self-conjugate
field W,,(x) or by a single Weyl field [either W, (x) or Wy(x)]. Both descriptions are unitarily
equivalent ; i.e., one can construct a unitary similarity transformation that connects a
Majorana field operator and a Weyl field operator (and vice versa). Of course, this is hardly a
surprise in the two-component spinor formalism, where both the Majorana and Weyl forms of
the Lagrangian correspond to the same field theory of a single two-component spinor field &, (z).

For m # 0, the Weyl Lagrangian given by eq. possesses no global symmetry, and
hence no conserved charge. In contrast, for m = 0 the Weyl Lagrangian exhibits a U(1) chiral
symmetry. In a theory of massless neutrinos, the U(1) chiral charge of the neutrino is correlated
with its lepton number L, and one is free to use either a Majorana or Weyl description. In
the former, the neutrino is a neutral self-conjugate fermion, which is not an eigenstate of L.
In the latter, ¥, (z) corresponds to the left-handed neutrino and \Ilg(x) corresponds to the
right-handed antineutrino, which are eigenstates of L with opposite sign lepton numbers. No
experimental observable can distinguish between these two descriptions.

We now consider a collection of free anticommuting four-component Dirac fields, ¥;. The
free-field Lagrangian (in terms of mass eigenstate fields) may be obtained from eq. by

converting to four-component spinor notation. We then obtain the standard textbook result:
L = iU A9, T, — m T, . (G.2.12)

By writing ¥ = W, + W, we see that the Lagrangian for a single Dirac field can be written in

terms of two Weyl fields:
L =iV A0V + iUy 0, Ur —m (U, Ve + U0, ) . (G.2.13)
The corresponding free-field equations are:
iv' 0,V =mVUp, iv' 0,V =mVp, . (G.2.14)

Summing these two equations yields the Dirac equation, (iy*d, —m)¥ = 0.
As a pedagogical example in which both Dirac and Majorana mass terms are present, we
perform the diagonalization of the neutrino mass matrix in a one-generation seesaw modeFigl us-

ing the four-component spinor formalism. Following Appendix A of ref. [301], we first introduce

133Tn Appendix J.2, the seesaw model of neutrino masses is introduced using the two-component spinor formalism.
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a four-component anticommuting neutrino field vp, and the corresponding Weyl fields,
vy, = Prvp, z/f = PLVg, vgr = Prvp, and l/g = PRVg. (G.2.15)
Note that egs. and imply that the anticommuting Weyl fermion fields satisfy:
Eyg = VRV, EV% =ULVUR . (G.2.16)

A Dirac mass term for the neutrinos in the one-generation seesaw model couples vy, and Vg

(and by hermiticity of the Lagrangian, l/g and vg), and can be written equivalently as:

mp(vfCWE + v 071G = —mD(gug + Eyg) = —mp(VrvL + VLVR) = —MpVpVp ,
(G.2.17)
after making use of eq. . The Majorana mass term for the neutrinos in the one-generation
seesaw model couples I/f to itself (and by hermiticity of the Lagrangian, vg to itself), and can

be written equivalently as:
IM@ETO WY + vf 7 twg) = —SM(@RVE + vCuR). (G.2.18)

We shall define the phases of the neutrino fields such that the parameters mp and M are real
and non-negative.
Thus, the mass terms of the one-generation neutrino seesaw Lagrangian, given in eq. (J.2.18])

in terms of two-component fermion fields, translates in four-component spinor notation to

1 — —_ ~c,c . C,C 1 — C | C
fmass — _imD(VLVR + VRYL + VgVR + V]C{’V ) - QM(VRVL + VLCVR)
C
L~ 0 mp vy, — 0  mp VR
=—: (¢ 7 _ 1 (- C
2\ VR R c 2 \YL L
mp M vy mp M VR
0 mp VL
=1 (Vz VLCT) o1 +h.c., (G.2.19)
mp M V¢

where we have used eq. to write the first line of eq. in a symmetrical fashion
and eqs. and to obtain the final form above. Note that if M = 0, then one can
write Zmass = —mpVpvrp and identify vp as a four-component massive Dirac neutrino.

The Takagi diagonalization of the neutrino mass matrix yields two mass eigenstates, which
we designate by v, and v;, where £ and h stand for light and heavy, respectively. The mass
eigenstate Weyl neutrino fields are related to the interaction eigenstate Weyl neutrino fields via

vy, Pry,

=U , (G.2.20)
I/g PLV}?
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where U/ is a 2 x 2 unitary matrix that is chosen such that

Z,{T 0 mp Y — myz 0
mp M 0 m,

(G.2.21)
h

For M # 0, the neutrino mass eigenstates are not Dirac fermions. In the seesaw limit of
M > mp, the corresponding neutrino masses are m,, =~ mZD/M and my, ~ M + mQD/M, with

my, < my, . In terms of the mass eigenstates, the neutrino mass Lagrangian is:
Lrnass = % [mVKZ/ZC_IPLI/Z + mth}?TC_IPLV}ﬂ +h.c., (G.2.22)

after using eq. (G.1.25)). We now define four-component self-conjugate Majorana neutrino fields,
denoted by ¥, and ¥ respectively, according to egs. (G.2.3)) and (G.2.9),

U, = Py, + PrC7; , U, =v,Pr—v,C 'Pp, (G.2.23)
U, = PRVh + PLC§;IL— , Wh = thL — V}—:—CilPR. (G.2.24)

Then, eq. (G.2.22) reduces to the expected form:
Lrnass = *% [m%@g% + myhﬁhwh] . (G.2.25)

A comparison with the analysis of the neutrino mass matrix given in Appendix J.2 exhibits the
power and the simplicity of the two-component spinor formalism, as compared to the rather

awkward four-component spinor analysis presented above.

G.3 Gamma matrices and spinors in spacetimes of diverse dimensions and
signatures

The translation from two-component to four-component spinor notation given in Appendix G.1
is specific to 3 + 1 spacetime dimensions. In d = 4 Euclidean space dimensions (independently
of the choice of convention for the Minkowski metric), the Dirac gamma matrix algebra is
defined by {v%, 7%} = 20/1, where 6" = diag(1, 1, 1, 1). Using eqs. and , the
Euclidean gamma matrices (defined for i, v =1, ..., 4) are hermitian and given by %I% = —ivk
(k =1,2,3), 74 = 1° and v = —vEV2VevE = 75 (e.g, see Appendix A.1.2 of ref. )Pizl
The four-dimensional reducible (Dirac) spinor representation corresponds to the (3,0) ® (0, 1)
representation of SO(4), although the (3,0) and (0, ) representations are independent pseudo-
real representations of SO(4) not related by hermitian conjugation, as noted at the end of

Section A complete treatment of Euclidean two-component spinors can be found in ref. [130].

340ne can also choose to define the Euclidean Dirac algebra by {v%, v4} = —25*"1 (simply by multiplying
all gamma matrices by a factor of 7), in which case the Euclidean gamma matrices, v = 7 and v = i7° are
anti-hermitian, and v;, = —EVEvENE = 75 is hermitian (e.g., see ref. ) These conventions arise more
naturally in the general treatment of gamma matrices in d spacetime dimensions as defined in eq. . The
corresponding Euclidean sigma matrices would then be defined as in footnote
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The Euclidean space formalism for fermions is necessary for a rigorous definition of the
path integral in quantum field theory [122,|123]. Using the Euclidean Dirac gamma matrices
introduced above, one can express the four-component Dirac Lagrangian directly in Euclidean

space [223]. Carrying out the same procedure for the four-component Majorana Lagrangian is
3
gates of each other, a self-conjugate Euclidean Majorana fermion does not exist. Nevertheless, it

problematical. Because the (3,0) and (0, ) representations of SO(4) are not hermitian conju-
is possible to devise a continuous Wick rotation from Minkowski spacetime to Euclidean space
for Dirac, Majorana and Weyl spinor fields and the gamma matrices. In particular, one can
construct a non-hermitian Euclidean action for a single Majorana or Weyl field whose Green
functions are related to the usual Minkowski space Green functions by analytic continuation and
a Wick rotation of the spinor fields. Further details can be found in refs. IEEI

The two-component spinor technology of this review is specifically designed to treat spinors
in three space and one time dimension. In theories of d spacetime dimensions (where d is any
positive integer), more general techniques are required. By considering spinors in this more
general setting, one gains insight into the concepts of Majorana, Weyl and Dirac spinors and
their distinguishing features.

The mathematics of spinors in spacetimes of dimension d = ¢ + s (where ¢ is the
number of time dimensions and s is the number of space dimensions) is most easily treated by

introducing higher-dimensional analogues of the gamma matrices, I'*, which satisfy the Clifford

algebra [911[02][129}[133}[138][142}144][292][304) [*7]

{re, v =291, n :dlag(+++v ___ "'_,)7 (G.3.1)
t s

where the identity matrix 1 and the T'* are 2[9/2l x 29/2] matrices, and [d/2] is the integer part
of d/2,

d/2 for d
a2 = Y% o @ even (G.3.2)
(d—1)/2, ford odd.
The choice of (s,t) denotes the signature of the spacetime. One can choose T*T = T'* for
p=12..tand "*T = —TH for p=t+1,t+2,...,d Weidentify 13# = 1i[[*, '] as

the generators of SO(s,t) in the spinor representation. Next, we introduce the [d/2]-component
(complex) Dirac spinor ¥ and its Dirac conjugate ¥ = U A, where A = T''T'2...T? is a unitary
matrix that satisfies{™'|

ADHATY = (—1)tFipet At = (—1)1t=D/24 (G.3.3)

135Previous attempts in the literature to define Euclidean Majorana field theories can be found in ref. \\

135This includes the Euclidean case corresponding to ¢t = 0 and s = d [cf. footnote , and the Minkowski
case corresponding tot =1 and s =d — 1.

137In d-dimensional Euclidean space (where ¢t = 0), I*f = —TH for all p = 1,2,...,d. As a result, we may
choose A = 1, in which case ¥ = ¥T,
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One can now build SO(s, t)-covariant bilinears, WI'W¥, where I is a product of gamma matrices.
Biquadratic spinor Fierz identities involving quantities such as (V1T Wy)(W3T' ;W) can also be
derived || where the IV = {1, T¥*,T" (4 < v), TATTA (p< v < A), ..., I''T2. --I‘Q[d/z}}
are a complete set of 221%/2] linearly independent matrices [which generalizes eq. ]

If d is even, one can also introduce the d-dimensional analogue of -5 by deﬁnin

Dgyq = i02002... 104 (G.3.4)

which is hermitian and satisfies (Iy;1)? = 1 and {I'*, T'y;1} = 0. In the case of even-dimensional

spacetimes, there are two possible choices for the charge-conjugated spinor \I/C
C — 1%
v =B, v, where 7= +1, (G.3.5)
and the B, are unitary matrices that satisfy:
BByt =g, n=+l. (G.3.6)

For even d, a convenient choice is By = B_T'g41 .

If d is odd with signature (s,t), then the 2(4=1/2 x 2(d=1/2 gamma matrices I* (p =
1,2,...,d) consist of {Fl, 2 ... et :tiFd+1} of the (d — 1)-dimensional theory of signature
(s —1,t). By assumption, u = d is a space index, so that ' = 44l"44, is anti-hermitian. In the
case of odd d, only one sign choice for 77, namely 1 = (—1)®~#+1/2 s consistent with eq.
as applied to Fd Consequently, only one definition of the charge-conjugated spinor is viable,
namely W¢ = B~'W* for s —t =1, 5 (mod 8) and ¥¢ = B;l\I/* for s —t =3, 7 (mod 8).

One important property of the B, is [129}[133}136]/142,/143]:

B. By = &y, en = =£1, (G.3.7)

for n = +1 in even-dimensional spacetimes and 7 = (—1)©~*+1)/2 in odd-dimensional spacetimes.

In particular Pzrl

+1, fors—¢=0,1,2 (mod 8), +1, fors—t=0,6,7 (mod 8),
E_ = £ =
-1, fors—t=4,5,6 (mod 8), * —1, fors—t=2,3,4 (mod 8).
(G.3.8)

Using the charge-conjugated spinor defined in eq. (G.3.5)), one can define a self-conjugate

spinor, ¢ = W. Two cases arise depending on the sign of 7 [136 ,

Majorana spinor: ¥ =By, (G.3.9)
pseudo-Majorana spinor: U= B;l‘lf* . (G.3.10)
138For t = 1 and d even, one traditionally takes 4 =0,1,2,...,d —1 (where 0 is the time index), in which case,

Tayy = i@=2/2 007 . pd—1,

1%9Tn four-dimensional Minkowski spacetime, we identify D = B~! [cf. eq. (G.1.18)] and v, D = B;l.

19T he two sign choices for I'? correspond to two inequivalent representations of the Clifford algebra [eq. (G.3.1))]
for d odd. Nevertheless, the corresponding 3*” yield equivalent spinor representations of SO(s,t).

“!For d even, one can use By = B_T'qy1 and B,l'qy1 B, " = (—1)=D2T% | to derive g4 = (—1)==D/2¢
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Due to the reality conditions [egs. (G.3.9)) and (G.3.10))], the (pseudo-)Majorana spinor possesses
2[d/2] real degrees of freedom. Using eq. 1) one immediately sees that eqs. and
are respectively consistent if and only if ¢, = +1|z?| The possible existence of Majorana
[pseudo-Majorana] spinors in d-dimensional spacetime depends on the choice of s — ¢ such that
e = +1 [ex = +1]. Using eq. , it follows that Majorana spinors can only exist in

spacetimes where s — ¢t = 0, 1, 2 (mod 8), and pseudo-Majorana can only exist in spacetimes

where s—t = 0, 6, 7 (mod 8)@ In particular, a Majorana spinor cannot exist in four-dimensional
Euclidean space.

Given a choice of sign for 7 = £1, one can define a corresponding charge conjugation matrix
(', which is unitary and is defined by@

C, = B;;_A, where Cnf‘“(ﬁ’n_1 = p(=1)Tre T, (G.3.11)

Eq. (G.3.5) then yields U¢ = Cy T'. The unitary matrices A, B, and C;, satisfy the following

useful identities [136][142]:

By =e;B,,  C)=ep'(-1)!""V20,,  A'B,=9'B,A, ATC,=n'C,A7".
(G.3.12)

In the case of even d, one can define left and right-handed chiral projection operators:

Pr=1(1-T4n), Pr=1(14Tg41), (G.3.13)
and introduce Weyl fermions, U7, and W, which satisfy I'y; 1V g 1, = £V g 1. Equivalently,

\I/L EPL\II, \I/REPR\I/, (G.3.14)

(@=2)/2 complex degrees of freedom. It is possible

so that ¥y (and likewise Wg) possesses 2
for a spinor to be simultaneously a (pseudo) Majorana and a Weyl spinor if the spinor and
its charge conjugate have the same chirality, in which case Byl'q11B, = | (for even d).
The latter condition holds when =% = 1 or equivalently s — ¢ = 0 (mod 4). Combining this
requirement with the condition for the existence of a (pseudo) Majorana spinor, it follows that a

4-2)/2 yeq] degrees of freedom, can only exist

(pseudo) Majorana-Weyl spinor, which possesses 2
in spacetimes where s — ¢ = 0 (mod 8). For further details, see refs. [92,[133H136][142{144][292].

As in Section one can also consider a multiplet of fermions W; that transforms under a

complex, real or pseudo-real representation R of the flavor group G as

U, — (DR)’V;, Dp = exp(—i0*TH), i,j=1,2,...,dg, (G.3.15)

1421p €y = —1 then one can introduce a generalized reality condition [cf. eq. (G.3.16)], which constrains the
structure of a multiplet of Dirac fermions that transforms under a pseudo-real representation of the flavor group. In
this case, the corresponding (generalized) self-conjugate spinors are called symplectic (pseudo-)Majorana spinors,

as discussed below eq. (G.3.20)).

143 A5 shown in ref. no SO(s, t)-invariant mass term is allowed for a pseudo-Majorana spinor.

1410 four-dimensional Minkowski spacetime, we identify C' = (CT)™' = C* [cf. eq. } and B = Cy
[cf. eq. ] In this case, one cannot use C+ to consistently define a self-conjugate spinor, as the corresponding
E4 = —1.
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where Dp is unitary and the corresponding generators T'g are hermitian. The dimension of R
is denoted by dp, which must be even in the pseudo-real case. In both the real and pseudo-
real cases, one can also impose a reality condition that generalizes the Majorana conditions of

egs. (G.3.9) and (G.3.10)),
(0,)* =0 =WYB,¥;, (G.3.16)

where W is a unitary matrix and B,, acts on the (suppressed) spinor indices of ¥;. Additional
constraints on the form of W are obtained as follows. First, taking the complex conjugate of

eq. (G.3.16]) and inserting the result back into the same equation, it follows that
W*W =¢e,1, (G.3.17)

after making use of eq. (G.3.7). Second, eq. (G.3.16) must hold true if ¥ is replaced by DrW¥
on both sides of the equation, in order to be compatible with the flavor symmetry group trans-

formation law [eq. (G.3.15)]. This latter requirement combined with eq. yields:
Dp =e,W*DRW = W DRIV . (G.3.18)
Eq. can be expressed in terms of the flavor group generators,
TR =W GTE)*W. (G.3.19)
Comparing with egs. 7, we conclude that the unitary matrix W satisfies:

W =¢e,WT,

+1, R is a real representation,
ey = { P (G.3.20)

—1, R is a pseudo-real representation .

When R is a real representation, W = W7, and a basis for the flavor group generators can
be chosen such that W =1 [cf. eq. ], in which case Dp is a real orthogonal matrix. Since
en = +1, eq. yields (pseudo-)Majorana spinors (depending on the sign of ) as defined
previously in egs. (G.3.9) and (G.3.10).

When R is a pseudo-real representation, W = —WT, and a basis for the flavor group
generators can be chosen such that W = J = diag {(7(1) (1)) , (7(1) (1)) y ( 7(1) (1))} isadpxdpr
matrix, where dp is even [cf. eq. ] In this case, D}EJ Dpr = J, which implies that Dpg is
a unitary symplectic matrix . Moreover, €, = —1, which was incompatible with the reality

conditions of egs. (G.3.9)) and (G.3.10)), but is compatible with the generalized reality condition
of eq. .

Therefore, we define symplectic (pseudo-)Majorana spinors [136}|138}|139}(144}292] to be
spinors that transform as a pseudo-real representation under some flavor group and satisfy the
generalized reality condition of eq. , where W is a unitary antisymmetric matrix, de-
pending on the choice of n = +1 (with n = —1 yielding the “pseudo” designation). As suggested

by egs. (3.2.35)—(3.2.40), 2dr symplectic (pseudo-)Majorana spinors are equivalent to dg Dirac
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fermions. The possible existence of symplectic (pseudo-)Majorana spinors in a d-dimensional
spacetime is governed by eq. . Requiring that €, = —1 implies that symplectic Majorana
spinors exist in spacetimes where s — ¢ = 4, 5, 6 (mod 8), and symplectic pseudo-Majorana
spinors exist in spacetimes where s —t = 2, 3, 4 (mod 8). Using this nomenclature, the fermions
described by the four-dimensional Minkowski space Lagrangian given in eq. are sym-

plectic pseudo-Majorana spinors.

G.4 Four-component spinor wave functions

In four-dimensional Minkowski space, the free four-component Majorana field can be expanded

in a Fourier series; each positive [negative| frequency mode is multiplied by a commuting spinor

wave function u(p, s) [v(P, s)] as in eq. 3.2.11@

P p, 5, s)e P 5 =\ ipw
\I/Mz Z/ 2ﬂ. 3/2 2E )1/2 |:u(p7 S)Gi(p, S)e p —i—?}(p, S)a;.r(p’ S)ep ] ’ (G.4.1)

T

where Ep; = (|p]?> + m?)l/ 2 and the creation operators a] and the annihilation operators a;

satisfy anticommutation relations:
{ai (ﬁ: 8)7 a} (ﬁla S/)} = 53(ﬁ_ ﬁ/)dss’dij 5 (G42)

with all other anticommutation relations vanishing. We employ covariant normalization of the

one-particle states given by eq. (3.2.13)). It then follows that
(0] W () B, 5) = w(B, s)e™ ", (0 War(z) P, s) = 0(F,s)e” ", (G.43)
(P, s| Upr(x) |0) = a(P, s)e? ™, (P, s| Upr(x) |0) = v(P, s)e™ ™. (G.4.4)

These results are the four-component spinor versions of egs. and -

Likewise, the free Dirac field can be expanded in a Fourler series,

3_’ .
Z/ 27) 5/jw /2 (u(B,$)ai(B, s)e™ 7 + 0B, (B, )| (GAS)

T

where the creation operators a; and sz and the annihilation operators a; and b; satisfy anticom-

mutation relations:
{ai(F,s),al(5,8")} = 0°(F — B)0sw iy (G.4.6)
{bi(B, 5), b5 (5, §')} = 6% (5 — B')dsw i (G.A.T)

with all other anticommutation relations vanishing. We employ covariant normalization of the

fermion (F) and antifermion (F) one-particle states given by eq. (3.2.22)). It then follows that
(019 (@) 15,55 F) = u(F, s)e 7", 01T () 7,5 F) = o(F s)e 7, (GAS)
(5. 51 F|T() 10) = (. 5)e" (7.5 F|¥@)[0) = o )P, (G.9)

1455ome subtleties arise in the choice of relative phases of the creation and annihilation operators, which are
related to the C, CP and CPT transformation properties of the Majorana field. For further details, see ref. \\
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and the four other single-particle matrix elements vanish. These results are the four-component

spinor versions of eqs. (3.2.23))—(3.2.26)). The Fourier expansion of the charge-conjugated free
Dirac field U¢(z) = C@;r(x) is given by:

3= i .
vi(a) =Y / (%)3/5(2’0Ep)1/2 (@), 5)e ™7 + 0B, $)al (B s)e” 7] (GA10)

where we have used eq. . That is, the charge conjugation transformation interchanges

the annihilation and creation operators, a; <+ b; and a;-r - bz. Thus, if ¥¢(z) = ¥(z), then we

must identify a = b and a = bf, corresponding to the free Majorana field given in eq. .
The two-component spinor momentum space wave functions are related to the traditional

four-component spinor wave functions according to:

. T (P, 5) . . b
uwp.s)=| , u(p,s) = (y* (P, s), v4(P.s)), (G.4.11)
y'(p, s)
. Ya(P, ) o Lt
U(p, S) = ) 5 U(pa S) = (:Ua(pv 8)’ ya(pa 8))7 (G412)
1% (p, 5)

where the u and v-spinors are related by

(P, s) = Cu(p,s)", u(p,s) = Co(p,s)", (G.4.13)
o(P, s) = —u(p,s)TC, u(p,s) = —v(p,s)TC. (G.4.14)

S

<

1

The spin quantum number takes on values s = +1, and refers either to the component of

2
the spin as measured in the rest frame with respect to a fixed axis or to the helicity (as discussed

in Section and Appendix C). Note that the v and v-spinors also satisfy:

U(ﬁa 3) = _2875,“(15: _5) ) U(ﬁ, S) = 25752}(15: _8) ) (G415)

which follows from eq. (3.1.22). Explicit forms for the four-component spinor wave functions in

the chiral representation can be obtained using egs. (3.1.18)—(3.1.21)), where x,(3) is given in
eq. (C.1.11)). For helicity spinors, further simplifications result by employing egs. (C.3.3)—(C.3.6)).

One can check that u and v satisfy the Dirac equations

(p—m)u(P,s) = (p+m)v(p,s) =0, (G.4.16)
u(P,s) (p —m) = v(p,s) (p+m) =0, (G.4.17)
corresponding to egs. (3.1.9)—(3.1.12)), and
(25758 — 1) u(P,s) = 25756 — 1) v(P,s) =0, (G.4.18)
(P, s) (25758 — 1) = 0(P, ) (255§ — 1) = 0, (G.4.19)
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corresponding to eqs. (3.1.23)—(3.1.26)), where the spin vector S* is defined in eq. 3.1.15@
For massive fermions, eqgs. (3.1.45))—(3.1.48|) correspond to

w(P, s)u(P, s) = 3(1+25758) (p+m), (G.4.20)
v(F, 8)0(P, s) = 2 (1 +25758) (p — m). (G.4.21)

To apply the above formulae to the massless case we must employ helicity states, where s
is replaced by the helicity quantum number A, and S* is defined by eq. (3.1.16]). In particular,
in the m — 0 limit, S* = p*/m + O(m/E). Inserting this result in eqs. (G.4.18) and (G.4.19)

and using the Dirac equations, it follows that the massless helicity spinors are eigenstates of s,
Ysu(P, A) = 2 u(p, N) , Ysv(D, A) = =2 (P, A) . (G.4.22)
Combining these results with eq. (G.4.15)) [with s replaced by A] yields:

v(p, A) = =2 y5u(p, —A) = u(p, =), A==+3, (G.4.23)

D=

and we see that the massless u and v spinors of opposite helicity are the same.

Applying the above m — 0 limiting procedure to eqs. (G.4.20) and (G.4.21)) and using the
mass-shell condition (pp = p> = m?), one obtains the massless helicity projection operators

corresponding to egs. (3.1.53)—(3.1.56):
u(@, Nu(P, A) = 5(1+2M5) B, (G.4.24)
v(P, (P, A) = (1 —2\y;) p. (G.4.25)

Summing over the spin degree of freedom, we obtain the spin-sum identities corresponding

to cas. (10 (BIT0.

zs:u(ﬁ, s)a(p,s) = p+m, (G.4.26)
; o(F, $)o(B.s) = p—m, (G.4.27)
> _ul@s)oT(F.s) = (p+m)CT (G4.28)
Zsj u' (P, s)0(p,s) = C ' (p—m), (G.4.29)
Y 0T (Bs)ups) = C T (p+m), (G-4.30)
> o(@s)u (B s) = (p—m)CT, (G.4.31)

which are valid for both the massive case and the massless m — 0 limit.

146We use the standard Feynman slash notation: p = y,p" and § = ~,.S".
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As previously noted, the results for the bilinear covariants obtained in eqs. (G.1.79)—(G.1.90))

can also be applied to expressions involving the commuting spinor wave functions. Various
relations among the possible bilinear covariants can be established by using egs. (G.4.13]) and
(G.4.14). As an example, for I' = 1, 5, v#, yHyy, ZH, By,

N

(P, 51)T0(By, 52) = —v(Py, 51) TCTITCU(Py, 52)7 = —77?12(]5’2, so)Tv(p, s1), (G.4.32)
(B, 51)Tu(Py, $2) = —v(P), 51) T C~ ' TCO(Py, 52) " = —77195(527 so)l'v(pY, s1), (G.4.33)

Sl

where the sign nlg [defined in eq. (G.1.25)] arises after taking the transpose and applying
eq. (G.1.25)). In particular, the (commuting) u and v spinors satisfy the following relations:

u(py, $1)Pro(Py, s2) = —u(Py, s2) Pro(py, s1) (G.4.34)
u(py, s1)Pro(Py, s2) = —u(Py, s2) Pro(P1, $1) (G.4.35)
u(py, s1)7" PLo(Py, 52) = (P, s2)7" Pru(PY, 51) (G.4.36)
u(py, s1)v" Prv(Dy, s2) = (P, s2)Y" Pru(py, 51) (G.4.37)

and four similar relations obtained by interchanging v(p,, s2) <> u(Ps, s2).

G.5 Feynman rules for four-component fermions

We now illustrate some basic applications of the above formalism. In particular, we shall estab-
lish a set of Feynman rules for four-component fermions that treat both Dirac and Majorana
fermions on the same footing. These rules generalize the standard Feynman rules for four-
component Dirac fermions found in most quantum field theory textbooks. Two advantages of
the rules presented here are: (i) no factors of the charge conjugation matrix C' are required for
fermion interaction vertices and propagators, and (ii) the relative sign between different diagrams
corresponding to the same physical process is simply determined. Our rules have been obtained
by translating our two-component fermion Feynman rules into the four-component spinor lan-
guage. The resulting Feynman rules for four-component Majorana fermions are equivalent to
the set of rules independently obtained in ref. (see also refs. [308][309]).

Consider first the Feynman rule for the four-component fermion propagator. Virtual Dirac
fermion lines can either correspond to ¥ or W¢. Here, there is no ambiguity in the propagator

Feynman rule, since for free Dirac fermion ﬁeldsm
= TCb
(O] T[Wa ()W ()] 10) = (O] T[Wg (2)¥C ()] [0) (G.5.1)

so that the Feynman rules for the propagator of a ¥ and ¢ line, exhibited in Fig. are

identical. The same rule also applies to a four-component Majorana fermion.

147y deriving eq. l) we have used C¥,C™! = 0S¢ and CUC™! = 5 ¥C?, where C is the charge
conjugation operator that acts on the quantum Hilbert space and 7. is a convention-dependent phase factor ‘
Note that C is a unitary operator and C |0) = |0) in the free-field vacuum.
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. i+ m)a

b a p? —m? + e

Figure G.5.1: Feynman rule for the propagator of a four-component fermion with mass m.
The same rule applies to a Majorana, Dirac and charge-conjugated Dirac fermion. The four-
component spinor labels a¢ and b are specified.

Using eq. (G.1.2)), the four-component fermion propagator Feynman rule can be expressed

as a partitioned matrix of 2 x 2 blocks,

-— —~—— ; moaP PO,
a—(—b = = o miiic . E (G.5.2)
— P mé A
where a and b are four-component spinor indices. That is, eq. is a partitioned matrix
whose blocks consist of two-component fermion propagators defined in Fig. with the
undotted and dotted « [5] indices on the left [right] and with the momentum flowing from right
to left.

The derivation of the four-component Dirac fermion propagator is treated in most modern
textbooks of quantum field theory (see, e.g., ref. [115]). Here, we briefly sketch the path integral
derivation of the four-component fermion propagator by exploiting the path integral treatment
of the two-component fermion propagators outlined in Appendix F. Consider a single massive

Dirac fermion ¥(z) coupled to an anticommuting four-component Dirac fermionic source term

Jpa(T
Jy(z) = :.( ) . (G.5.3)
Iy (x)
The corresponding action [eq. (F.2)] in four-component notation is given by
S = /d4x (L +TpU+ T Jy) = [ d*a [T(id —m)V + T, U + U Jy] . (G.5.4)

Introducing the momentum space Fourier coefficients:
d*p PN dp .~
V() = TPy J, = g G.5.5
@ = [ e b w). e = [ G R ), (@.5.5)
we can identify the following four-component quantities with matrices of two-component quan-
tities given in eqgs. (F.7) and (F.25):
Vp) =A%),  Jyp) =Xelp), P-m=Mp)A, (G.5.6)

where A is the Dirac conjugation matrix defined in eqs. (G.1.10)) and (G.1.12)). Using the results

of Appendix F, one easily derives:

%
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Jyp=J,=0




where

- [ dp s pEm S
Using the analogues of egs. (F.21]) and (F.22]), we end up with the expected result
s d4p —ip-(x1—x Z(}é—i_m)

In principle, the analogous computation can be carried out for a single four-component Ma-
jorana fermion field Wy (z) coupled to a Majorana fermionic source, J¢(x). The corresponding
action is similar to that of eq. , with an extra overall factor of 1/2. However, in eval-
uating the functional derivative in eq. , one must take into account that the Majorana
fermionic source J¢(x) satisfies J ¢ = ng = J¢. Consequently, the functional derivative with
respect to J¢ is related to the corresponding functional derivative with respect to J¢. Hence,
the calculation of eq. will yield two equal terms that will cancel the overall factor of
1/2, resulting again in eq. . Nevertheless, this computation is somewhat awkward using
four-component spinor notation, in contrast to the straightforward calculation of Appendix F.

We next examine the various interactions involving four-component fermions. First, we
consider the interactions of a neutral scalar ¢ or a gauge boson Aj, with a pair of Majorana
fermions To obtain the interactions of the four-component fermion fields, we first identify the
neutral two-component fermion mass eigenstate neutral fields &. Using eqgs. and ,

the interaction Lagrangian in two-component form is given by:
L = —5(NVEE + Nl EV) o — (G €Mt Ay (G.5.10)

where ) is a complex symmetric matrix with A\ = A [ef. eq. ], the Af, are the mass
eigenstate gauge fields, and the corresponding hermitian matrices G* are defined in eq. (4.3.16]).

It is now simple to convert this result into four-component notation:
Lt = —%()\ij@MiPL\I/Mj + )\”EMPR\I/%J)Qﬁ — (Ga)ijﬁﬁ/[’yuPL\IfMjAZ , (G511)

where the Wj;; are a set of (neutral) Majorana four-component fermions. It is convenient to use

eq. (G.1.99) to rewrite the term proportional to (G%);/ in eq. (G.5.11]) as follows

(GO A PV = $(GY) Wiy Pr¥asj — Uarjy" PrY G,

Upry* (G4 Pp — (G*);'Pr]| W - (G.5.12)

Nl N

In the last step above, we have lowered the flavor indices of the four-component Majorana
fermion fields, as the heights of these indices can be arbitrarily chosen [cf. eq. ]

Using standard four-component spinor methods, the corresponding four-component spinor
Feynman rules are displayed in Fig. A Majorana fermion is neutral under all conserved

charges (and thus equal to its own antiparticle). Hence, an arrow on a Majorana fermion line
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Figure G.5.2: Feynman rules for neutral scalar and gauge boson interactions with a pair of
four-component Majorana fermions (labeled by four-component spinor indices b and ¢). The G®
are defined in eq. (4.3.16). The index a runs over the neutral (mass eigenstate) gauge bosons.

simply reflects the structure of the interaction Lagrangian; i.e., Wy [¥y,] is represented by an
arrow pointing out of [into] the vertex. These arrows are then used for determining the placement
of the v and v spinors in an invariant amplitude, according to the rules of Appendix G.6. In
particular, the four-component spinor labels of Fig. indicate that one should traverse any
continuous fermion line by moving antiparallel to the direction of the fermion arrows.

Next, we consider the interactions of a (possibly complex) scalar ® or a gauge boson A, with
a pair of Dirac fermions. The Dirac fermions are charged with respect to some global or local U(1)
symmetry, which is assumed to be a symmetry of the Lagrangian. To obtain the interactions of
the four-component fermion fields, we first identify the mass-degenerate oppositely charged pairs
X; and n; (with U(1)-charges ¢; and —g;, respectively) that combine to form the mass eigenstate
Dirac fermions. The scalar field ® carries a U(1)-charge ¢5. We also identify the gauge boson

mass eigenstates of definite U(1)-charge by A, as described in Section (cf. footnote .
Using eqs. (4.3.9) and (4.3.18]), the interaction Lagrangian in two-component form is given by:

L = —r' i’ @ — ki 'l @7 — [(G‘i)ijx“i“Xj - (G“R)jingﬁ“nj} A, (G.5.13)

where k;/ = (F&ij)* [cf. eq. (3.2.28)] and « is an arbitrary complex matrix coupling, subject to the

conditions that ' j = O unless g4 = q; —¢;. For the gauge boson couplings, we follow the notation

of egs. (4.3.19) and (4.3.20). In particular, AjG¢ and AjG% are hermitian matrix-valued gauge

fields, which when summed over a can contain both neutral and charged [with respect to U(1)]

mass eigenstate gauge boson fields. Converting to four-component notation yields:
Lo = —K ;U PLU® — kU PrU;®T — [(G)7 U A" P, + (GR) Uy Pri;| A% (G.5.14)

where the ¥; are a set of Dirac four-component fermions. If ® is a real (neutral) scalar field,
then we shall write ¢ = ® = ®f. The corresponding four-component spinor Feynman rules

are exhibited in Fig. The rules involving the charge-conjugated Dirac fields have been
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Figure G.5.3: Feynman rules for neutral scalar (¢), charged scalar (®) and gauge boson (A#%)
interactions with a pair of four-component Dirac fermions (labeled by four-component spinor
indices b and ¢). In each case, one has two choices for the corresponding Feynman rule: one
involving ¥ and one involving the oppositely charged ¥ (with the arrows of the corresponding
U and UC lines pointing in opposite directions). The arrows indicate the direction of flow of the
U(1)-charges of the Dirac fermion and charged scalar fields. The index a runs over both neutral
and charged (mass eigenstate) gauge bosons, consistent with charge conservation at the vertex.

obtained by using eq. (G.1.91)). Note that the arrows on the charged scalar and Dirac fermion
lines depict the flow of the conserved U(1)-charge.
Finally, we treat the interaction of a charged scalar boson ® (with U(1)-charge gg) or a

charged vector boson W (with U(1)-charge gy;,) with a fermion pair consisting of one Majorana
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and one Dirac fermion. We denote the neutral fermion mass eigenstate fields by &; and pairs of

oppositely charged fermion mass eigenstate fields by x; and 7/ (with U(1)-charges q; and —gj,
respectively). Using egs. (4.3.9) and (4.3.21]), the interaction Lagrangian is given by:

Lo = —(k1)' 56 + (k2)i5E X V)@ = [(52)7&x; + (m)ijdin}]@

—[(G1); X175"E — (Go)is T Wy — [(Gr) €15 — (Ga) et |, (G.5.15)
where k1, ko, G1, and G9 are arbitrary complex coupling matrices, subject to the conditions
that (k1)’; = (k2)ij = 0 unless g = ¢, and (G1);* = (G2);; = 0 unless gy, = g;. Converting to
four-component spinor notation yields:

Lt = — [(k1)" U PLVU g + (k2)i; U PrUY, | @
— [(G1); WA PLW ap; + (Ga) iUy PRy, | Wy, + hec. (G.5.16)

The corresponding four-component spinor Feynman rules are exhibited in Fig.

There is an equivalent form for the interactions given by egs. (G.5.13)) and (G.5.16|) where
Lt 1s written in terms of charge-conjugated Dirac fields [after using eq. (G.1.91))]. The Feynman
rules involving Dirac fermions can take two possible forms, as shown in Figs. [G.5.3] and [G.5.4]

As previously noted, the direction of an arrow on a Dirac fermion line indicates the direction
of the fermion charge flow (whereas the arrow on the Majorana fermion line is unconnected to
charge flow). However, we are free to choose either a W or UC line to represent a Dirac fermion at
any place in a given Feynman graphlzgl For any decay or scattering process, a suitable choice of
either the W-rule or the ¥C-rule at each vertex (the choice can be different at different vertices),
will guarantee that the arrow directions on fermion lines flow continuously through the Feynman
diagram. Then, to evaluate an invariant amplitude, one should traverse any continuous fermion
line (either ¥ or ¥) by moving antiparallel to the direction of the fermion arrows, as indicated

by the order of the four-component spinor labels in the Feynman rules of Figs. [G.5.3| and [G.5.4]

Examples will be provided in Appendix G.6.

G.6 Applications of four-component spinor Feynman rules

For a given process, there may be a number of distinct choices for the arrow directions on the
Majorana fermion lines, which may depend on whether one represents a given Dirac fermion by
U or ¢, However, different choices do not lead to independent Feynman diagrams When
computing an invariant amplitude, one first writes down the relevant Feynman diagrams with

no arrows on any Majorana fermion line. The number of distinct graphs contributing to the

148Gince the charge of W is opposite in sign to the charge of W, the corresponding arrow directions of the ¥
and U¢ lines must point in opposite directions.

19Ty contrast, the two-component Feynman rules developed in Section [4] require that two vertices differing by
the direction of the arrows on the two-component fermion lines must both be included in the calculation of the
matrix element.
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Figure G.5.4: Feynman rules for charged scalar and vector boson interactions with a fermion
pair consisting of one Majorana and one Dirac four-component fermion (labeled by four-
component spinor indices b and ¢). In each case, one has two choices for the corresponding
Feynman rule: one involving ¥ and one involving the oppositely charged W¢ (with the arrows
of the U and W€ lines pointing in opposite directions). The arrows of the Dirac fermion and
charged bosons indicate the direction of flow of the corresponding U(1)-charges. That is, the
charge of the boson (either ® or W above) must coincide with the charge of ¥;. The arrows
of the Majorana fermions satisfy the requirement that the fermion line arrow directions flow
continuously through the vertex. 295



process is then determined. Finally, one makes some choice for how to distribute the arrows on

the Majorana fermion lines and how to label Dirac fermion lines (either as the field ¥ or its

charge conjugate UC) in a manner consistent with the rules of Figs. [G.5.2 and [G.5.4 The end

result for the invariant amplitude (apart from an overall unobservable phase) does not depend
on the choices made for the direction of the fermion arrows.
Using the above procedure, the Feynman rules for the external fermion wave functions are

the same for Dirac and Majorana fermions:
e u(p,s): incoming ¥ [or U] with momentum § parallel to the arrow direction,
e (P, s): outgoing ¥ [or \IIC] with momentum p parallel to the arrow direction,
e v(f,s): outgoing ¥ [or U] with momentum § antiparallel to the arrow direction,
e (P, s): incoming ¥ [or Y] with momentum § antiparallel to the arrow direction.

The proof that the above rules for external wave functions apply unambiguously to Majorana
fermions is straightforward. Simply insert the plane wave expansion of the Majorana field given
by eq. into eq. , and evaluate matrix elements for, e.g., the decay of a scalar or
vector particle into a pair of Majorana fermions.

We now reconsider the matrix elements for scalar and vector particle decays into fermion
pairs and 2 — 2 elastic scattering of a fermion off a scalar and vector boson, respectively. We
shall compute the matrix elements using the Feynman rules of Fig. and check that the
results agree with the ones obtained by two-component methods in Section

Consider first the decay of a neutral scalar boson ¢ into a pair of Majorana fermions,
¢ — Wi (P, s1)Var(Dy, s2), of flavor 4 and j, respectively. Here, Wys;(p, s) denotes the one-
particle state given by eq. . The matrix element for the decay is given by

iM = —iu(Py, 51)(AY P + Aij Pr)v(Dy, s2) - (G.6.1)

One can easily check that this result matches with eq. , which was derived using two-
component spinor techniques. Note that if one had chosen to switch the two final states (equiv-
alent to switching the directions of the Majorana fermion arrows), then the resulting matrix
element would simply exhibit an overall sign change [due to the results of eqgs. and
(G.4.35)]. This overall sign change is a consequence of the Fermi-Dirac statistics, and corre-
sponds to changing which order one uses to construct the two-particle final state.

Consider next the decay of a (neutral or charged) scalar boson ® into a pair of Dirac
fermions, ® — F;(py,s1)F 7 (Dy, s2), where by F(p,s) and F(p,s) we mean the one-particle
states given by eq. . The matrix element for the decay is given by

iM = —iu(p, 51)(k P + ki Pr)v(Py, 52) (G.6.2)
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which is equivalent to eq. (4.5.5)), which was derived using two-component spinor techniques.
For the decay of a neutral vector boson (denoted by A,,) into a pair of Majorana fermions,
Ay — War(Py, 1)V (Pa, 52), we use the Feynman rules of Fig. to obtain:

iM = —ia(py, si)v" (G P — G Pr] v(B, s2)ep (G.6.3)

The above result is equivalent to eq. (4.5.8)), which was derived using two-component spinor
techniques. Again, we note that if one had chosen to switch the two final states (equivalent
to switching the directions of the Majorana fermion arrows), then the resulting matrix element

would simply exhibit an overall sign change [due to the results of egs. (G.4.36]) and (G.4.37))].
For i = j, eq. (G.6.3) simplifies to

iM = iGu(py, s1) v v5v(Ds, $2)eu (G.6.4)

where G = G;*. The absence of a vector coupling of the vector boson to a pair of identical
Majorana fermions is a consequence of the identity Wy;v*W;; = 0 noted below eq. (G.1.98)).
For the decay of a (neutral or charged) vector particle A, into a fermion pair consisting of

a Dirac fermion and antifermion, A, — F;(p, 51)F7(y, s2), the matrix element is given by:
iM = —iu(py, s)V" [(GL)i? Pr + (GRr)i’ Pr| v(Py, s2)ep (G.6.5)

which matches the result of eq. (4.5.12)).

Finally, we consider the decay of a charged boson to a fermion pair consisting of one Dirac
fermion and one Majorana fermion. Using the Feynman rules of Fig. we see that we
have a choice of two rules for each decay process. As an example, consider the decay W —

Uari(P1, 1) F; (D, s2). If we apply the W W, ¥ Feynman rule of Fig. (G.5.4] we obtain:
iM = —iu(Py, s2) [(G1);'Pp + (G2)ij Pr] v(B, 51) - (G.6.6)

If we apply the corresponding W ,;U¢ Feynman rule, we obtain the negative of eq. (G.6.6)
with Pr, <> Pr and (P}, s1) <> (Db, s2). Using egs. and ((G.4.37)), the resulting amplitude
is the negative of eq. , as expected since the order of the spinor wave functions in the
two computations is reversed. A similar conclusion is obtained for the decay ® — Wy, F.
Turning to the elastic scattering of a Majorana fermion and a neutral scalar, we shall
examine two equivalent ways for computing the amplitude. Following the rules previously stated,
there are two possible choices for the direction of arrows on the Majorana fermion lines. Thus,

we may evaluate either one of the following two diagrams:
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plus a second set of diagrams (not shown) where the initial and final state scalars are crossed.
Evaluating the first diagram above, the matrix element for ¢Wy; — Wy, is given by:

iM = ﬁ U(Py, 52)(APL + A" Pr)(p + m)(APL + XN Pr)u(p), s1) + (crossed)
i . . -
=— U(Py, 52) [|)\|2]5 + ()\QPL + (A )QPR) m] u(py, s1) + (crossed) , (G.6.7)

where m is the Majorana fermion mass and /s is the center-of-mass energy. Using eqs. (G.1.2))
and (G.4.11)), one recovers the results of eq. (4.5.13). Had we chosen to evaluate the second
diagram instead, the resulting amplitude would have been given by:

_;2 (P, 1) [—|)\\2]6 + ()\QPL + ()\*)QPR) m] v(P, s2) + (crossed) . (G.6.8)

M=

S —

Using eq. (G.4.33)), it follows that:

@<ﬁ17 Sl)”(ﬁ2? 82) = —ﬂ(ﬁ2, SQ)U’(ﬁh 31) ) (GGQ)

—

’D(ﬁlv sl)ﬁyuv(p% 82) = ﬂ(ﬁ% 32)’}/““(15’17 31) . (G610)

Consequently, the amplitude computed in eq. (G.6.8)) is just the negative of eq. (G.6.7). This
is expected, since the order of spinor wave functions in eq. (G.6.8) is an odd permutation of

the order of spinor wave functions in eq. [(12) and (21), respectively]. As in the two-
component Feynman rules, the overall sign of the amplitude is arbitrary, but the relative signs of
any pair of diagrams is unambiguous. This relative sign is positive [negative] if the permutation
of the order of spinor wave functions of one diagram relative to the other diagram is even [odd].

Next, we consider the elastic scattering of a charged fermion and a neutral scalar. Again,
we examine two equivalent ways for computing the amplitude. Following our rules, there are two
possible choices for the directions of the fermion line arrows, depending on whether we represent

the fermion by ¥ or ¥, Thus, we may evaluate either one of the following two diagrams:

N e . ) N e
N p 7 N —p 7
—_— -«

A . e RN
plus a second set of diagrams (not shown) where the initial and final state scalars are crossed.
Evaluating the first diagram above, the matrix element for ¢ F' — ¢F is given by eq. (G.6.7)), with
A replaced by x. Had we chosen to evaluate the second diagram instead, the resulting amplitude

would have been given by eq. (G.6.8]), with A replaced by . Thus, the discussion above in the

case of neutral fermion scattering processes also applies to charged fermion scattering processes.

In processes that only involve vertices with two Dirac fields, it is never necessary to use

charge-conjugated Dirac fermion lines. In contrast, consider the following process that involves
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a vertex with one Dirac and one Majorana fermion. Specifically, we examine the scattering of
a Dirac fermion and a charged scalar into its charge-conjugated final state, via the exchange
of a Majorana fermion: ®'F — ®F. If one attempts to draw the relevant Feynman diagram
employing Dirac fermion lines but with no charge-conjugated Dirac fermion lines, one finds that
there is no possible choice of arrow direction for the Majorana fermion that is consistent with
the vertex rules of Fig. The resolution is simple: one can choose the incoming line to be

U and the outgoing line to be ¥ or vice versa. Thus, the two possible choices are given by:

plus a second diagram in each case (not shown) in which the initial and final scalars are crossed.

If we evaluate the first diagram, the resulting amplitude is given by:
iM= ﬁ u(Py, s2) (ko Pr + K1 PRr)(p + m) (ko Pr + k1 Pr)u(p], s1) + (crossed)

= ﬁ U(Py, S2) [/{{/{2]6 + (/@%PL + (/@”{)QPR) m] u(py, s1) + (crossed) , (G.6.11)
where m is the Majorana fermion mass. This result is equivalent to eq. obtained via
the two-component spinor methods. Had we chosen to evaluate the second diagram instead,
the resulting amplitude [after using egs. and ] would have been found to be the
negative of eq. , as expected. As before, the relative sign between diagrams for the same
process is unambiguous.

In the literature, there are a number of alternative methods for dealing with scattering
processes involving Majorana particles. For example, one can define a fermion number violating
propagator for four-component fermions (see, e.g., ref. ) Using the methods of ref. , factors
of the charge conjugation matrix C' appear both in fermion-number-violating propagators and
vertices. However, all such factors of C eventually cancel out by the end of the computation
of any S-matrix amplitude. Moreover, such methods often involve subtle choices of signs that
require first-principles computations to verify. As previously noted, our four-component fermion
diagrammatic techniques do not suffer from either of these complications.

In the case of elastic scattering of a Majorana fermion and a neutral vector boson, the two

contributing diagrams include the following diagram:

p Aﬁ
—
plus a second diagram (not shown) where the initial and final state vector bosons are crossed.
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Consider first the scattering of a neutral Majorana fermion of mass m. Using the Feynman
rules of Fig. the Feynman rule for the A#EM\I/ M vertex is given by iGy#v;. Hence, the

corresponding matrix element is given by

—iG?
iM = S_Zimﬁi(ﬁ% 52)y-€5 (P —m)y-e,u(py, s1) + (crossed), (G.6.12)

where we have used "5 (p+m)v*v; = 7" (p—m)y*. Using egs. (G.1.2)) and (G.4.11)), one easily
recovers the results of eq. (4.5.14)).

The scattering of a Dirac fermion of mass m and a neutral vector boson can be similarly

treated. The relevant Feynman graphs are the same as in the previous case, and the matrix
element is given by

. _Z. — = * —
iM = mu(wa s2)7-€5 (GLPL + GrPR)(p + m)v-&, (GLPL + GrPr)u(pP], 51) + (crossed)
_Z. — * —
= mﬂ(;&, 59) v-€5 [(G%PL + GQRPR)]é + GLGRm] v-equ(P7, s1) + (crossed). (G.6.13)
One can easily check that this result coincides with that of eq. (4.5.18|).
Finally, we examine the elastic scattering of two identical Majorana fermions via scalar
exchange. The three contributing diagrams are:

»
>

Y
\/

»
>

Y
Y

and the corresponding matrix element is given by

—1

IM = > [ﬁl(APL + )\*PR)UQ ﬁg()\PL + )\*PR)U4]
e
— . B N
+ (_l)t 2 [ﬂ3<)\PL—|—/\ PR)u1 U4<)\PL—|—/\ PR)UQ]
R
+ = —:nQ [as(APL + N Pr)uy G3(APL + N Pr)ug] | (G.6.14)
-

where u; = u(p;, si), v; = v(P},s;) and mgy is the exchanged scalar mass. The relative minus
sign of the t-channel graph relative to the s and u-channel graphs is obtained by noting that
3142 [4132] is an odd [even] permutation of 1234. Using egs. (G.1.8)), (G.4.11) and (G.4.12)), one

easily recovers the results of eq. (4.5.19)).

G.7 Self-energy functions and pole masses for four-component fermions

In this section, we examine the self-energy functions and the pole masses for a set of four-

component fermions. We first consider four-component Dirac fermion fields W,;, where a is
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the four-component spinor index and ¢ is the flavor index. The full, loop-corrected Feynman
propagators with four-momentum p* are defined by the Fourier transforms [cf. footnote of
vacuum expectation values of time-ordered products of bilinears of the fully interacting four-

component fermion fields:

(O] T4 ()T (y) [0y = i(Sa”)i () , (G.7.1)
with [3101317]
S(p)=p [PLSI(p2> + PRSR(pQ)] + PLS (%) + PrSp(p%), (G.7.2)

where the four-component spinor indices ¢ and b and the flavor indices i and j have been

suppressed. As in Section [£.6] we shall organize the computation of the full propagator in terms
of the 1PI self-energy function \|

3(p) = p [PL2L(p2) + PREL(ﬁ)] + PLEp(0%) + PREL(p?). (G.7.3)

Diagrammatically, iS and —iX are shown in Fig.

p p
<« -«
a b a b
< <«
i J ? J
z(Sab)z] (p) _i(zab)z] (p)

Figure G.7.1: The full, loop-corrected propagator for four-component Dirac fermions,
i(Sab)ij(p), is denoted by the shaded box, which represents the sum of all connected Feyn-
man diagrams, with external legs included. The self-energy function for four-component Dirac
fermions, —i(3,%);/(p), is denoted by the shaded circle, which represents the sum of all one-
particle irreducible, connected Feynman diagrams with the external legs amputated. In both
cases, The four-momentum p flows from right to left.

The hermiticity of the effective action implies that S and 3 satisfy hermiticity condi-

tions [302]
[ST]" = ASA~L, (=T = AxA !, (G.7.4)

where A is the Dirac conjugation matrix [A = 4" in the standard representations; see eq. (G.1.21))
and the text that follows] and the star symbol was defined in the paragraph below eq. .
Applying eq. (G.7.4) to eqs. (G.7.2) and (G.7.3) then yields the following conditions for the

complex matrix functions:

[ST*=SL, [SE =Sk, Sp=S5p, (G.7.5)

1590ur notation in eq. (G.7.3) differs from that of ref. \\ as we employ X% instead of ¥ . Our motivation
for this choice is that in the case of Majorana fermions [cf. eq. (G.7.15)], we simply have 31 = X g, without an
extra transpose (or conjugation). We have also chosen to employ S} in eq. |G.7.2|i for similar reasons.
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S =%, S-Sk, Sp-3j. (G.76)
Starting at tree level and comparing with Fig. the full propagator function is given
by:
Si(p) = (p+m)s! /(P> —mi) + ..., (G.7.7)
with no sum over ¢ implied. The full loop-corrected propagator can be expressed diagrammati-

cally in terms of the 1PI self-energy function:

a b a b a c d b
o< <« = ' < : + . <
1 J 7 J ) k V4 J
(G.7.8)

As in Section the algebraic representation of eq. (G.7.8) can be written as [cf. footnote :

S=T+TES=(T""'-%)", (G.7.9)

)

writing the expressions for § and X given in egs. (G.7.2)) and (G.7.3)) and T in block matrix form

using eq. (G.1.2)), one can verify that eq. (G.7.9)) is equivalent to eq. (4.6.26]). Consequently, the
complex pole masses of the corresponding Dirac fermions are again determined from eq. (4.6.31}).

where T/ = (p +m)8? /(p? — m2) is the tree-level contribution to S given in eq. (G.7.7). By

In the special case of a parity-conserving vectorlike theory of Dirac fermions (such as QED
or QCD), the pseudoscalar and pseudovector parts of S(p) and ¥(p) must be absent. Thus,
the following relations must hold among the loop-corrected propagator functions and self-energy

functions, respectively:

Sp=S5], Sp =[SPI*, (G.7.10)
YL =2g, p = [Zf%, (G.7.11)

in agreement with eqgs. (4.6.32) and (4.6.33]).

In the case of a set of four-component Majorana fermion fields, we can still use the results
of egs. (G.7.2)—(G.7.9). However, one obtains additional constraints on the full propagator

and self-energy matrix functions due to the Majorana condition W;; = C'V,;. Inserting this
result into eq. (G.7.1)), and making use of the anticommutativity of the fermion fields, one easily

derives:
(O] TW a3 (2) T 5 (1) 10)pp = Clae (0] TW 103 ()W 55 (y) [0)pp (CTH® (G.7.12)

Consequently,
cstcl=8, cxTel=x. (G.7.13)
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Inserting the expressions for S and X [egs. (G.7.2)) and (G.7.3)] and using the result of eq. (G.1.91)),
it follows that:

S, =Sk, Sp=SI. Sp=5p, (G.7.14)
Y, =%r, Xp=3L, Ip=3%,. (G.7.15)

As expected, with these constraints the form of eq. matches precisely with the form
of eq. , corresponding to the equation for the full propagator functions for a theory of
generic two-component fermion fields. In the notation of Section [4.6] we can therefore identify:
C=85,=Sr, D=Sp, E=3X1 =3, and Q= Xp.

Appendix H Covariant spin operators and the Bouchiat-Michel
formulae

Bouchiat and Michel derived a useful set of formulae [113] that generalize the spin projection
operators used in four-component spinor computations. In this Appendix, we establish the two-
component analogues of the Bouchiat-Michel formulae, and demonstrate their equivalence to

the corresponding four-component spinor formulae.

H.1 The covariant spin operators for a spin-1/2 fermion

Consider a massive spin-1/2 fermion of mass m and four-momentum p. We define a set of
three four-vectors S™ (a = 1,2,3) such that the S and p"/m form an orthonormal set of

four-vectors. In the rest frame of the fermion, where p* = (m; 6), we can define
S =(0; 8%, a=1,2,3, (H.1.1)

where the unit vectors §% are a mutually orthonormal set of unit three-vectors that form a basis
for a right-handed coordinate system. Explicit forms for the §* depend on the Euler angle
used to define the spinor wave function x,(8). Two common choices corresponding to v = —¢
and v = 0 are given in egs. (C.1.39) and (C.1.40]), respectively. Using eq. , the three four-

vectors S in a reference frame in which the four-momentum of the fermion is p* = (F; p),

are given by:
= sa :
Sau:<ps;§a+<ps>p>7 a=1273. (H.1.2)

As discussed in Appendix C, we identify § = 83 as the quantization axis used in defining the
third component of the spin of the fermion in its rest frame. It then follows that the spin

four-vector, previously introduced in eq. (3.1.15) is given by S* = S3#.
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The orthonormal set of four four-vectors p#/m and the S* satisfy the following Lorentz-

covariant relations:

p-S“=0, (H.1.3)
54.8% = g (H.1.4)
A 81383 = —m, (H.1.5)
S2Sh — 5258 = €%, 5 % , (H.1.6)

a qa PubPv
S,u S, = —Guv + T};LQ ) (H.1.7)

where the sum over the repeated indices is implicit. It is convenient to define a matrix-valued

spin four-vector .##, whose matrix elements are given by:

S, = ST s,8 =+1i, (H.1.8)

ss’

where 7¢, are the matrix elements of the Pauli matrices (see footnote . Then, we can rewrite

egs. (H.1.4) and (H.1.6) as:

Y9I = —laxa, (H.1.9)
N

SRSV — SIS = oo g (H.1.10)
m

where the product S#.7 corresponds to ordinary 2 x 2 matrix multiplication. The .#* serve as
covariant spin operators for a spin-1/2 fermion. In particular, in the rest frame, the %Y ¢ satisfy
the usual SU(2) commutation relations, with (%57 )2 = 3 as expected for a spin-1/2 particle.

It is often desirable to work with helicity states. In this case, we choose:

8% =p*, (H.1.11)
where the p® are an orthonormal triad of unit three-vectors with p3 = p. Moreover, since
p®-p = 0 for a # 3, it follows that S% = (0; p*) for a = 1,2 in all reference frames obtained

from the rest frame by a boost in the p direction. Hence, in a reference frame where p* = (E'; p),

eq. (H.1.2) yields,

S —=(0; p'), (H.1.12)

S = (0; p?), (H.1.13)
- E .

3k = ('Z'; mp) , (H.1.14)

in a coordinate system where p = (sin 6 cos ¢, sin 6 sin ¢, cos#). One can check that egs. (H.1.1)—
(H.1.7) are also satisfied by the S% defined in eqgs. (H.1.12)—(H.1.14)).
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As expected, S is the spin four-vector for helicity states obtained in eq. (3.1.16)). In the
high energy limit (E > m),
mS™ = ph 5% 4+ O(m). (H.1.15)

Explicit forms for p! and p? are convention dependent and depend on the conventional choice

of the Euler angle ~. For example, consider the quantities:

St

(el

STy 4 = 5(SM —isH), St =lgenze,  — 1(glk 4 9%y (H.1.16)

1 1
2°2

Nl

Using eqgs. (H.1.11)—(H.1.14)) and employing eq. (C.1.27) with R given by eq. (C.1.4)),

) o0 . , 0
% sin 0 e~ gin? 3 % sin 6 —e 1 cos? =
o-S_=¢e" 0 , o0-Sy=e" 0
—e'? cos? 3 —% sin 6 €'? gin? 3 —% sin 0

(H.1.17)
In the convention of eq. (C.1.39) [eq. (C.1.40)], we take v = —¢ [y = 0], respectively.

H.2 Two-component spinor wave function relations
In Section [3.1] we wrote down explicit forms for the undotted spinor wave functions
za(P,s) = /PO Xs» (P, s) = —2sXJLS\/p'E, (H.2.1)
Ya(B,s) = 25D X_, . Y (B.s) =x[Vpa, (H.2.2)
and the dotted spinor wave functions

2P, s) = —2s\/pTx_,, ol (B,s) = xIvpa, (H.2.3)
Yy (F,s) = VDT X, i (@ s) =25t b, (H.2.4)

where /p-o and \/p-@ are defined by egs. (2.108) and (2.109)), respectively.

As shown in Appendix C, the two-component spinors x, satisfy:

$5-8%y = 378 Xs XE(8)xs (8) = byt = (H.2.5)

Next, we use eq. (2.118)) to obtain:

which extends the results of eq. (3.1.17). As a result, we obtain a generalization of egs. ([3.1.23)—
(13.1.26)):
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(5*2)Pas(B,s") =18y (F,s) . (5%0)uy 0 (B.8) = =18 xa(Bs),  (H.2.8)

(50) 52" (B,s') = =78 ya(B.5) ,  (S°0)Vys(P,s') = 75 2 (Bs) ,  (H.2.9)

lﬂ(ﬁ) S/)(Sa'a)aﬁ = _Tjsy;(ﬁ7 S) ) yl(ﬁ: S,)(Sa'a)dﬂ = T§5$6(ﬁ> 5) ) (H210)
xl(ﬁ, 8’)(Sa.5)dﬂ — T:s/yﬁ(ﬁ? s), ¥ (P, 5/)(Sa.g)a6~ = —T;ls,$g(ﬁ: s), (H.2.11)

where there are implicit sums over the repeated labels s = j:%. As expected, the case of a = 3
simply reproduces the results of eqs. f obtained previously. The above equations
also apply to helicity wave functions x(p, \) and y(p, A) by replacing s, s’ with A, \ and defining
the S by eqgs. (H.1.12)—(H.1.14)).

The derivation of eqgs. f for arbitrary a closely follows the corresponding
derivation for @ = 3 previously given. For example, using egs. and and the
definitions for z, (P, s) and 3% ({5, s), we find (suppressing spinor indices),

VP oS8T x(p,s) =\/poS*T\poxy =m&-8%xy =mTd X, (H.2.12)
after using eq. . Multiplying both sides of eq. by /p-@, we end up with
ST x(p,s T8\ T X, = 7%y (P ) . (H.2.13)
Similarly,
S0zt (p,s') = 25'7 NP OX_y = —Tosy(D,s), (H.2.14)

where we have used:
4ss'TY g = —Tog, for s,8' =+1/2. (H.2.15)

S

All the results of egs. (H.2.8)—(H.2.11)) can be derived in this manner.

H.3 Two-component Bouchiat-Michel formulae

To establish the Bouchiat-Michel formulae, we begin with the following identity:

(65 + 3 Z tht Xy i (H.3.1)
t=+1/2

To verify eq. (H.3.1)), we first make use of eq. (H.2.5)) to write &-5%x, = 757,x,» and evaluate the

product of two Pauli matrices:
Tgs’ngt = 268t(58’t’ - 535/5157&/ . (H32)

We then use eq. (H.2.6|) and the completeness relation given in eq. (C.1.21)) to rewrite eq. (H.3.1))

in terms of ., defined in eq. (H.1.8)),
XS’XS = (555 + — \/ﬁyss’ o > . (H33)
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Hence, with both spinor indices in the lowered position,

(P, s )z (B,s) = Vo xgx| vpo
=1/po [%1 + % VP o ST p'a] VDo
=1 [p-adss' + %p-a yssf-ap-a}
=5 (p-0dsy —mFsy-0) . (H.3.4)

In the final step of eq. (H.3.4]), we simplified the product of three dot products by noting that
p-S® = 0 implies that .ss-G p-0 = —p-7 Sg-0. Eq. (H.3.4) is the two-component version of
one of the Bouchiat-Michel formulae. We list below a complete set of Bouchiat-Michel formulae,

which can be derived by similar techniques:

Zo (P, s')xg(ﬁ, s) = %(péssx - mYSS,)-UaB, (H.3.5)
yTa(ﬁ: S,)yﬁ(ﬁ: S) = %(p 533/ + myss’) Eaﬂ 9 (H36)
2085V (B,5) = 4 [mi,8.° — [(0-7,0) @p)a”] | (H.3.7)
Y1858 )al (B, 5) = § [mi 8% + (0 (0-p))5] - (H.3.8)

If we set s = s’, we recover eqgs. (3.1.45))—(3.1.48]|) as expected. The Bouchiat-Michel formulae can
also be verified directly by using the explicit forms for the two-component spinor wave functions
leq. (C.1.11)] and the ., [defined in eq. (H.1.8)]. The latter depends on the explicit form of

the 8% via eq. (H.1.2).

An equivalent set of Bouchiat-Michel formulae can be obtained by raising and/or lowering
the appropriate free spinor indices using eqgs. (2.32)) and (2.79):

215, (B 5) = Yoy, —mTy) 7, (H3.9)
Yo (P, 8’)y2(ﬁ, 8) = 5(POys + M) 0, (H.3.10)
valB,5)a” (75) = = [mdy,da” +[(0-74,) (TPl (H3.11)
2B,y (B, 5) = — 4 [moy 0% — [7-70,) (0-p)]7) (H3.12)

In this derivation, the spin labels in eqs. (H.3.9)—(H.3.12) are reversed relative to those in
egs. (H.3.5)—(H.3.8)) due to eq. (H.2.15). Eight additional relations of the Bouchiat-Michel type

can be obtained by replacing one z-spinor with a y-spinor (or vice versa). Recalling that the x
and y spinors are related by [cf. eq. (3.1.22)],

y(P, s) = 2s2(P, —s), y' (B, s) = 2527 (B, ), (H.3.13)
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all possible spinor bilinears can be obtained from eqs. (H.3.5)—(H.3.12)).

Note that eqs. (H.3.5)—(H.3.12) also apply to helicity spinor wave functions z(p, A) and
y(P, A) after replacing s, s with A\, X" and using the S% as defined in eqs. (H.1.12)—(H.1.14).

Strictly speaking, all results involving the spinor wave functions obtained up to this point apply
in the case of a massive spin-1/2 fermion. If we take the massless limit, then the four-vector
31 does not exist, as its definition depends on the existence of a rest frame. (In contrast, the
four-vectors S and S?* do exist in the massless limit.) Nevertheless, massless helicity spinor

wave functions are well defined; explicit forms can be found in eqgs. (3.1.36)—(3.1.39)). Using

these forms, one can derive the Bouchiat-Michel formulae for a massless spin-1/2 fermion:

za(P, X):v}-(ﬁ, N =(3=Nowpo, (H.3.14)
y BN (B A) = (5 +N) o pa®?, (H.3.15)
2a(@N )Y (BN = =(5 = N) G+ N [(0-5-) (@), 7, (H.3.16)
Y93 N)2l (B, 0) = (5 + X)(3 = N (@S (ep)* 4, (H.3.17)

where S* and S’_f_ are defined in eq. (H.1.16|). The equivalent set of Bouchiat-Michel formulae,

obtained by raising and/or lowering the appropriate free spinor indices, is given by:

2B, N2’ (B, \) =
a7 Xy (5, A
Ya (B \)a” (5, A (
£ BN) = (= V) + N [ 820 p) 5
FEight additional relations of the Bouchiat-Michel type can be obtained by replacing one z-spinor
with a y-spinor (or vice versa), using the results of eq. . As a check, one can verify that
the above results follow from egs. — by replacing s with ), setting mS® = p* §3,
applying the mass-shell condition (p?> = m?), and taking the m — 0 limit at the end of the
computation.
We now demonstrate how to use the Bouchiat-Michel formulae to evaluate helicity ampli-
tudes involving two equal mass spin-1/2 fermions. A typical amplitude involving a fermion-

antifermion pair, evaluated in the center-of-mass frame of the pair has the generic structure:
2PN T2 (=P N), (H.3.22)

where z is one of the two-component spinor wave functions x, z', y, or yf, and T'is a 2 x 2
matrix (in spinor space) that is either the identity matrix, or is made up of alternating products

of o and @. As an illustration, we evaluate:

(B, N Ty (—5, N) = 2X T g (—5, ~N)a (5. ) = 2X' &, () T07), 4 (5. N )2k (5. )

& & &

(H.3.23)
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where &,/(p) is defined in eq. (C.3.14)), and we have used egs. (C.3.17) and (3.1.22). We can

now employ the Bouchiat-Michel formula to convert the above result into a trace. By a similar

computation, all expressions of the form of eq. (H.3.22)) can be expressed as a trace:

oL (BN TP ys(—F, V) = X §4(p) Tr [T 0”(mdry + 7S o-p)] | (H.3.24)
Y (BT, 52T (—p,N) = =N &, (B) Tr [ 5°(mby —o-Fnvap)] . (H3.25)
y* (P, )Faﬁ yb’( P, N) =N &y (D) Tr [Lo%(@-poay +mo-Sw)] (H.3.26)
L (BN T B—pN) = =N & (p) Tr [T5%(o-poay —mo-Fn)] ,  (H.3.27)

after making use of egs. (H.3.5) and (H.3.8|). Similarly, there are four additional results that
make use of egs. (H.3.9)) and (H.3.12)):

YL BN TP 25(—p, ) = X €y (B) Tr [[ o (mdys — 7S op)] (H.3.28)
2 (F N T3y (~BN) = N €y (B) Tr L5 (moys + o~ Fanop)] . (H:3.29)
(BN To’ (=P, X) = =N & (P) Tr [ 0@ -poyn —mo-yy)],  (H.3.30)
yL BN Ty P () = XN €y (D) Tr [T%(0-p o +mo-Si)] - (H.3.31)

For amplitudes involving equal mass fermions (or equal mass antifermions), other combinations
of spinor bilinears appear in which one z-spinor above is replaced by a y-spinor or vice versa.
These amplitudes can be reduced to one of the eight listed above by using eq. (3.1.22]).

In the massless limit, one can again put mS® = pt§®3, set p?> = m? and take m — 0 at the

end of the computation. Alternatively, one can repeat the derivation of egs. (H.3.24)—(H.3.31)
using the results of egs. (H.3.14)) and (H.3.21)). For completeness, we record the end result here.

e BN T ys (=P N) = (3 + V)G = N & (B) Tr(Po'5-S_o-p), (H.3.32)
v (BT, AFN) = =L = N)E+ N EP) TH(T %S 5p),  (H.3.33)
Y (7)) Lo ys (=5, ) = (5 + A) dax &y () Te(T o’ 7-p), (H.3.34)
zh (PN T4, xTﬁ(— 5, \) = (1 = N) o & (®) Tr(TEop). (H.3.35)

The equivalent set of formulae, obtained by raising and/or lowering the appropriate free spinor

indices as before, is given by:

y BN TP 25(-pN) = (5= X)(3 + N &y () Tr(l 0% Sy 0-p) (H.3.36)
(BN sy (B N) = (G + X) G = V€ () Te(To% Sy 7p),  (H337)
(BN T’ 25(=F,X) = (3 = A) v &y (B) Tr(T 0T p), (H.3.38)
yL BN Ty P (B N) = (3 +A) G €y (B) Te(T% o). (H.3.39)

The traces are easily evaluated using the results of Appendix B. Here, we apply the above

results to the amplitude for the decay Z° — ff [see Section . The corresponding center-of-

mass frame helicity amplitude is a linear combination of eqs. (H.3.24)) and (H.3.25) with ' =&
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and I' = o, respectively. Evaluating the corresponding terms, we find for I' = 7,

(B NT (P N) = 2N €y (D) [mg" S +p Sy — "I = 2m(SH S0 = SO )]
(H.3.40)
where we have used eq. (H.1.10]) to replace the term with the Levi-Civita tensor. Similarly, we

calculate for I' = o,

y(@ Notzl (=P, N) = 2X &(D) [-mg"0un + " S — "L + 2m(SH S0 = SO\

(H.3.41)
Eqgs. and provide explicit forms for the Z° — ff decay helicity amplitudes
defined in egs. and .

The above method is not applicable if the two fermions have unequal mass. In order
to compute the helicity amplitudes of the form given by eq. for unequal masses, a
generalization of the above techniques is required. Some methods for four-component spinor
wave functions have been proposed in ref. . We leave it as an exercise for the reader to
translate these techniques so that they are applicable to helicity amplitudes expressed in terms
of two-component spinor wave functions. An alternative approach, which is applicable to the
computation of helicity amplitudes for processes involving multi-fermion final states of arbitrary

mass, is reviewed in Appendix I.1.

H.4 Four-component Bouchiat-Michel formulae

Using the results of Appendix G, the translation of the results of Appendix H.3 into four-

component spinor notation is straightforward. First, we consider a massive spin-1/2 fermion.

Egs. (H.2.8)—(H.2.11)) yield [288]:
B U ) =T uBrs), (B s) = 78 u(Fs) (HA41)
u(p,s') 158" = 7o u(P, 5) 0(P. ) 153" = T, 0(P,s). (H.4.2)

In the case of a = 3, egs. (H.4.1)) and (H.4.2)) reduce to those of egs. (G.4.18)) and (G.4.19)).
The four-component Bouchiat-Michel formulae [113] can be obtained from eqgs. (H.3.5])—
(T3.12):

u(B, s )u(B,5) = } 8 + 757,70 B+ m), (H.4.3)
0B, )05, ) = 3 [0s + 157,70 (9 —m), (H.4.4)

where . s’;/ = 5712, As expected, the above results for s = s’ correspond to the spin projection

operators given in eqs. ((G.4.20) and (G.4.21)). Related formulae involving products of u and v-
spinors can be obtained by using [cf. eq. (G.4.15)]:

o(f.s) = ~2s7;u(B, ), u(, s) = 25750(F, ). (HA5)
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Egs. (H.4.1))-(H.4.4) also apply to helicity u and v-spinors, after replacing s, s’ with A\, \" and
using the S as defined in eq. ([I.1.14)). The four-component versions of eqs. (C.3.17)(C.3.20)
yield:

u(_p7 _)‘)
ﬁ(_pa _)‘)

5)\(13) ,YO u(p7 )‘) ) U(—p, _)‘) = 5—)\(13) ’YO U(p, )‘) ) (H46)
—u(p, \) 7€), o(—p, —A) = —v(p, N EB), (HAT)

where the phase £, (p) was defined in eq. . In order to consider the massless limit, one
must employ helicity spinors, as discussed in Appendix H.3. For a = 1,2, egs. and
apply in the m — 0 limit as written. The corresponding massless limit for the case of
a = 3 is smooth and results in eq. . Similarly, the massless limit of the Bouchiat-Michel
formulae for helicity spinors can be obtained by setting m.S = pt §%3, applying the mass-shell
condition (p? = m?), and taking the m — 0 limit at the end of the computation. The end result

is given by

L1+ 2005) Boan + 31sl8" iy + 8270019, (HA8)
0(p, X)5(p, A) = 11— 2)95) Poa + 2 [§'7s + 82731 6. (H.4.9)

As expected, when A = )\, we recover the helicity projection operators for massless spin-1/2

particles given in eqs. (G.4.24) and (G.4.25)).

As before, we can use the Bouchiat-Michel formulae to evaluate helicity amplitudes involving
two equal mass spin-1/2 fermions. A typical amplitude involving a fermion-antifermion pair,

evaluated in the center-of-mass frame of the pair, has the generic structure:
w(P,\) Tw' (=P, \), (H.4.10)

where w is either a u or v spinor, w’ is respectively either a v or u spinor, and I' is a product of

Dirac gamma matrices. For example,

(BN D o(=F. ) = —2XA(F.\) Ty u(=F. —X) = —2X €(B) (5. \) T 57" u(B, V)
(H.4.11)
where we have used the results of egs. and . We can now employ the Bouchiat-
Michel formula to convert the above result into a trace. By a similar computation, all expressions
of the form of eq. can be expressed as a trace:

W(F N T o(=F,N) = =X &0(B) Tr [D957 (G + 957, 745) B+ m)| . (H412)
BN Tu(—p,N) = X €y (B) Tr (D157 (brn + 957, Z) (B —m)| . (HA13)

These results are the four-component analogues of eqs. (H.3.24)(H.3.27) and eqs. (H.3.28)—
(H.3.31)), respectively. For amplitudes that involve a pair of equal mass fermions [or equal mass
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antifermions|, w and w’ in eq. (H.4.10) are both u-spinors [or v-spinors|. Using eq. (G.4.15)),
these amplitudes can then be evaluated using the results of eqs. (H.4.12)) and (H.4.13|) above.

In the massless limit, one can again put mS®™ = pt§®3, set p?> = m? and take m — 0 at the

end of the computation. Alternatively, one can repeat the derivation of egs. (H.4.12)—(H.4.13)
using the results of eqs. (H.4.8) and (H.4.9). For completeness, we record the end result here.

u(@,\) To(=p,\) = &y (ﬁ){§5w Te[Cy° (1 + 2My5)p] + X Te[D7° (8 7y + ‘$2T>2\)\’)7$]}7
(H.4.14)

(PN Tu(—p,N) =&y (ﬁ){;m Tr[Ty°(1 = 2My5)p] — ' Te[[y°($ vy + $QT§/A>¢]}-
(H.4.15)

As an example, we consider once again the decay Z° — ff. The decay amplitude is equal
to eq. (H.4.12)), where I' is a linear combination of $7#(1 —~;) and 37/(1 + 7;). Evaluating the

corresponding traces yields:

w(P,A) 37 (1= 5) v(=P, N) = 2X &y (D) [mg"0an + " S — "Ly + i€ P (San)upy)
(H.4.16)

ﬂ(ﬁ, )‘) %’yu(l + ’75) v(_ﬁ’a A/) - 2)‘1 §A’ (ﬁ) [_mguo(;)\)\’ +Puy>?,\/ - poy){t\/ - ifowjp(yk)\’)upp] .
(H.4.17)

Using eq. (H.1.10), we see that eqgs. (H.4.16) and (H.4.17) reproduce exactly the results of
egs. (H.3.40) and (H.3.41)), respectively.

Finally, we note that if the two fermions do not have the same mass, then the method
presented above is not applicable. However, generalizations of the above method exist in the
literature that can be employed to evaluate helicity amplitudes of the form of eq. for
unequal mass fermions; see, e.g., ref. . An alternative approach due to Hagiwara and
Zeppenfeld is reviewed in Appendix I.1.

Appendix I Helicity amplitudes and the spinor helicity method

In Appendix H, we showed how to use the Bouchiat-Michel formulae (with versions applicable to
both two-component and four-component spinor wave functions) to construct helicity amplitudes
for processes with two initial state and two final state equal mass fermions (or a fermion-
antifermion pair) in the center-of-mass frame of the two fermions. For practical applications,
it is important to extend these techniques to allow for final states with an arbitrary number of
particles. The techniques should be powerful enough to allow for pairs of fermions of unequal
mass, and both massless and massive spin-1 particles. Ideally, these techniques should produce
simple analytic results (when possible) and yield efficient numerical algorithms for the evaluation

of the helicity amplitudes.
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DHM Formalism | HZ Formalism

To(p, A) u(p, A)—
z%(p, \) vt (p, A+
21%(p, A) v(p, N+
wl(p, ) ul (p, \) -
Ya(ps A) v(p, A)-
y*(p, \) ul (p, A)+
y(p, N) u(p, \)+
yl (N ol (p, A)—

p-o )+
pT (#)-

ot ol

ot o

Pr Py

Pr, P_
A==43 A=+1
Xx(—2) —xA(—2)

Table I.1.1: Translation between our notation (denoted by DHM) and the notation of Hagiwara
and Zeppenfeld (HZ) [106]. The sign convention governing the definition of v(p, A)+ is opposite
to that of HZ (cf. footnote [151]).

1.1 The helicity amplitude technique of Hagiwara and Zeppenfeld

One method for computing helicity amplitudes for multi-particle final states that is easily
amenable to numerical analysis was developed by Hagiwara and Zeppenfeld (HZ) . The HZ
formalism was subsequently employed in refs. in developing a fast numerical algorithm
for the computation of multi-parton processes. In this section, we demonstrate how our two-
component formalism (denoted by DHM) can be connected to theirs. In particular, we present
a translation between the two formalisms in Table [Tl

After removing the propagator factors, an arbitrary tree amplitude with external fermions

can be expressed in terms of a four-component fermion string

U, Prighy . . gV, 7=, (L1.1)
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where W is a four-component spinor wave function u(p;, A;) or v(pj;, —)\j) and Pp = %(1:&75)
are the chiral projection operators. Furthermore, ¢ = 'yua’,: where aj represents an arbitrary
Lorentz four-vector, which can be a four-momentum pz, a vector boson wave function e*(pg, \x),
an axial vector (e.g., €P7pp,PmpPns) or another fermion string with uncontracted Lorentz
indices (e.g., W, 7"¥,,).

In order to rewrite the fermion string, eq. ([.1.1)), in terms of two-component spinors, HZ
decomposes the four-component spinors as follows:

(1)~ u(pj, Aj)— v(Pjs Aj)

U, = , u(pj, \j) = , v(pj, Aj) = . (112)
(¥5)+ u(pjs Aj)+ (P Aj)+

Comparing with egs. (G.4.11)) and (G.4.12), the corresponding expressions in our notation are
given in Table Note that A = 1 in the notation of HZ, whereas in our notation (which

we follow below) A = +1.

The four-component fermion string is then replaced by the two-component fermion string:

TiPrifn . ¥y = (W)L (d2) s (), -(8y) 5,0+ T =L, where 6, = (~1)".

(I.1.3)
In the notation of HZ,
(f)+ = auoll (1.1.4)
where o/, = " and o' =" In eq. (I.1.3), the helicity labels are suppressed; more explicitly,
(Vr)r = Vr(pr, M) = ulpr, M)z o v(pe, —Ak)r- (I.1.5)

This convention of HZ (note the —\j argument of v) allows one to write simple generic formulae
in terms of (1)1 that are applicable to both uy and v..

Using the results of Table one can verify that eq. is covariant with respect
to dotted and undotted indices. That is, the sign 7 of z/);r must match the sign of the first o-
matrix in the string (d1)-(d2)—r ... (¢n)—s,r- The signs of the sigma matrices within this string
alternate (either + — + — ... or — 4+ — + ... in the case of 7 = +1 or —1, respectively). Finally,
the sign of the last o-matrix in the string [which must be equal to —d,,7 in light of the previous
statement] must match the sign of ¢; as indicated.

As noted above, it is possible that one of the (¢;), could be of the form o multiplied

by another fermion string with a free u-index. One can uncouple the two fermion strings by
employing the Fierz identities given by eqgs. (2.68)—(2.70)). For example,

()™ (1) - 0% (o) - (ua) -] [(ua) " (h3) — s (ha) - () -]
= [(un)T (1)~ (da)-+ (v3)-+][(04) () + (h2) - (u2) -] (L1.6)

151HZ defines v(p, \) = C@' (p, A), where C' = i7*4°, which differs by an overall minus sign from the conventions
employed in this review [cf. eq. (G.1.21))]. In this section, we will modify the HZ results in order to be consistent
with our sign convention.
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which is easily derived after translating to the DHM notationFEl As a result, the helicity tree
amplitude for any process can be expressed as the product of uncoupled strings of two-component

fermion spinors
FS = (Vi) (d1)r(d2)—r - (dn) -5, (05) 57 - (1.1.7)

To evaluate the fermion string F'S, we employ the explicit forms for the two-component

helicity spinor wave functions given in eqs. ((C.3.3)—(C.3.6)), which can be rewritten as

¢(pk, )\k?)T = Ck: wT)\k (ﬁ) X)\k (ﬁk) ) (118)

where, following the convention of eq. ([.1.5)),

1 for (¢k)T = u(pk’a Ak)T ’
Oy = T=41, A ==£1/2, (I.1.9)
2 g7 for (wk)T = U(plm _)‘k)T ’
(E+2)|p])Y/? for A = +£1/2. Hence, the fermion string [eq. (I.1.7)] is given by [106]

FS - CZ C_] wT}\i (ﬁ@) W—ém)\j (ﬁ]) S(ph ap,az, ..., anapj);,b-)\j ) (1110)

and w, (P)

where the function S is defined as

S(pi7a17a27" (ln,P]))\A —XI\ ( )

H(ﬁk) 64 Xy, (B;) . (L1.11)

k=1

where 6, = (—1)’“ . In the absence of the ¢4 factors, we define

S(pis pi)an; = T(Diy Djlaxion;, = XL (Bi)x,, (Py) (I.1.12)

where the T'(p; , ﬁj)”\ 2), are proportional to the (massless) spinorial products introduced by

Kleiss [cf. egs. ) and ([.2.23))].

To evaluate S , we assume that the four-vectors a’,: are realFEl Then, we may employ the

following identity {7
()r = D [a" = 7'71@] o o(@)x]. (@) , (I1.1.13)
/=%
where x_ /Q(d) is a two-component helicity spinor with three-momentum @. Using eq. ([.1.13))
in eq. ([.1.11]), we end up with the desired expression:

S(pi7a17a2a" anapj H Z ak+7—k5k‘7—|ak|j| (piva'l)Q)\i,TlT(a'ladQ)Tﬂ'Q
k=1T=%

X o T(@n—1,8n)r, 17,1 (Gns D)7, 20 - (I.1.14)

152Here, we differ from HZ, who employ a Fierz identity that is not covariant with respect to the dotted and
undotted indices [note the comment below eq. (2.55)]. Thus, eq. differs from the result obtained in
eq. (3.17b) of HZ.

15311 the case of complex a*, one should decompose a* into its real and imaginary parts and evaluate separately
the real and imaginary parts of S.

1540 obtain eq. ([.1.13), we make use of eq. (3.1.42) applied to helicity spinors: X,\X; = %(1 + 2)\&-P).
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All that remains is to evaluate the spinorial product T'(a, b).ra - 7, = £1) for arbitrary

(Ta
unit three-vectors @ and b. Two properties of the spinorial product T'(a, )Ta,Tb are noteworthy
bl

)7a,m,- Hence, eq.

T(a,b),, -, = T(b,a)’ . . (1.1.15)

First, as this product is a scalar, it follows that T'(a, b)*

Ta,Tb (

implies that

Second, we use eq. (C.1.8) to write:

~

T(@,5)r, n, = X', 15(2) exp(ina0®/2) exp(iba0?/2) explidas®/2)
x exp(—igyo> /2) exp(—ifyo?/2) exp(—ivyo>/2) Xr,2(2) . (1.1.16)

Complex conjugating this result, and using the fact that x(2), o' and ¢® are real and o is pure

imaginary,

T(a,b);, ., = T X', 5(2) 0 exp(—i7a0®/2) exp(iflao”/2) exp(—igao®/2)
x exp(igpo /2) exp(—ifyo?/2) exp(ivyo®/2) o X_r2(2), (L1.17)

after using eq. (C.1.22)). Since ¢? anticommutes with o2, we end up with:

T(a,0);, 5, = am X', 5(2) exp(i740°/2) exp(i6a0®/2) expliac™/2)
x exp(—igpo® /2) exp(—ifho?®/2) exp(—ino®/2) X_,, jo(2)

= 747, T(@,0) 7, _, - (I.1.18)

Since 74, T, = %1, it follows that

~

T(a,b)_r, 7, =TamT(a,b) (1.1.19)

TaTp *

Using egs. ([.1.15) and ([.1.19)), it is sufficient to give explicit forms for only two of the spinorial

products [100,[106]. Eq. (L.1.16) yields:

. : 0 6 , 0 0
T(@,b),y = elPa=dH1a=m)/2 cog 5(1 Ccos Eb + e P00t W)/2 gip Ea sin 56 (I.1.20)

)

—i(¢a=Pp+YatM)/2 (g ba sin O _ e Ba=db=ra=1)/2 gip ba cos O (1.1.21)
2 )

Q")

T(a,b)_4 =e

where (6, ¢,) are the polar and azimuthal angles of p (for p = a and b, respectively). In the
case where @ and /or b are parallel to the negative z-axis, we employ the convention of eq.
and choose the corresponding azimuthal angle equal to 77]25' Note that HZ employ a convention
for their spinor wave functions [cf. eq. ] in which v = —¢, although the convention in

which v = 0 yields a slightly more symmetrical form for the spinorial products.

155 This convention yields a value of X, (—2) that is opposite in sign to the convention adopted by HZ.
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Egs. (I.1.7)), (I.1.10) and (I.1.11)) can be written in a form that is reminiscent of the results
obtained in Appendix H.3. For example, using eqs. ({C.3.3)—(C.3.6)),

x5 (P, >raﬁy5< P/, —N) = —2Xw_x(B)w_x (B )L (B)Txy (B) (11.22)
Y (BN TP (5, -N) = 2V wa(Bwn (53, (B)Txy (B, (1.1.23)
v (P, >ra6yg<ﬁ’,—x>:—uwﬁ)w( 5 ) x (B () (I.1.24)
sl (BNT P (5, -N) = 2V s (Box (X BTy () (1.1.25)

where I' is a product of alternating ¢ and & matrices. The spinor index structure determines
the identity of the first and last matrix (e.g., ¢ F indicates a string of matrices that begins
with a & and ends with a o, etc.). By suitable interchanges of = and y, twelve additional
equations of similar type may be written. Note that XJ,r\FX v |appearing on the right-hand side of

eqgs. (I.1.22)—(I.1.25)] corresponds precisely to the S(p, a1, as,...,an,p")},, of eq. (I.1.11), where

the four possible (7, d,) combinations are in one-to-one correspondence with the four possible

spinor index structures of I'. If 5" = —p, then one should recover eqs. (H.3.24)(H.3.27). Thus,

the HZ method provides a powerful generalization of the helicity amplitude methods derived in
Appendix H.3.

1.2 The spinor helicity method

In many practical calculations, the masses of the fermions can be neglected. In this case
the computation of multi-particle helicity amplitudes simplifies considerably. In this section,
we give a brief introduction to the spinor helicity method; for a review, see refs. .
The spinor helicity method is a powerful technique for computing helicity amplitudes for multi-
particle processes involving massless spin-1/2 and spin-1 particles. Although initially applied to
tree-level processes, more general techniques have also been developed that are applicable to one-
loop (and multiloop) diagrams . Rules for computing dimensionally regularized amplitudes
within the framework of the spinor helicity method have been given by ref. [326]. The spinor
helicity techniques are ideal for QCD where light quark masses can almost always be neglected.
Generalizations of these methods that incorporate massive spin-1/2 and spin-1 particles exist,
although they tend to be quite cumbersome [327] - A Mathematica implementation of the
spinor helicity formalism can be found in ref. [329 - In this section, we restrict the discussion to
the massless case.

The spinor helicity technique described below is based on a formalism developed by Xu,
Zhang and Chang (denoted henceforth by XZC), which is a modification of techniques
established by the CALKUL collaboration [330]. The XZC formalism (which was also indepen-
dently developed in refs. ) is based on the four-component spinor formalism. Using
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eq. (G.4.23)), XZC introduce a very useful notation for massless spinors

Ip£) = u(p, &
(p£| = u(p, +

Using these spinor wave functions, they define two non-trivial (massless) spinor products (which
are equivalent to the spinorial products introduced by Kleiss )FE'

The + notation specified by the bra and ket indicates the chirality (i.e. the eigenvalue of ;) of
the corresponding four-component spinor [cf. eq. ]

However, the two-component spinor formalism is especially economical in the case of mass-
less spin-1/2 fermions. Hence, we shall reformulate the XZC approach using two-component

spinor notation. First, we consider the explicit forms for the two-component helicity spinor

wave functions [given by egs. (3.1.36)—(3.1.39)] in the massless limit:

where E' = |p]. For all other choices of helicities, the corresponding helicity spinor wave functions
vanish. Hence, we define{™|

p+) =y (B, 3) = 2TB,-3), (p+ =y, ) = 2°(B, — 1), (1.2.7)
p—) = 2a(P,—3) = ya(P. 3) | =zl (B -3 =yL (B 1), (L.2.8)

The |p£) and (p=£| satisfy the massless Dirac equation [cf. egs. (3.1.9)—(3.1.12))]:
p-o+ p+) =0, (p£|p-or =0, (1.2.9)

where 0y = 0 and 0_ = 7 as indicated in Table The above and the following equations

should each be read as two separate equations corresponding to the upper and lower set of signs,

156Note that (p — |[¢g—) = (p + |¢+) = 0 due to P, Pr = PrPr = 0.

157The association of undotted and dotted indices in egs. ([.2.7) and is a consequence of our convention
for the Dirac gamma matrices given in Appendix G [cf. eq. (G.1.2))]. Note that in this convention, the left-handed
[right-handed] projection operator Pr, [Pr| projects out the lowered undotted [raised dotted] index components
of the four-component spinor [cf. eq. } However, the reader is warned that in the literature on the spinor
helicity method, one often finds |p+) associated with a lowered undotted index and |p—) associated with an upper
dotted index. This is due to a different convention for the sigma matrices, such as the Wess and Bagger definition
given in eqgs. and (A.12). Numerically, this is equivalent to a convention for the Dirac gamma matrices in
which o* and " are interchanged in eq. , resulting in an overall change of sign in the matrix representation
of 5. As a result, in this latter convention the lowered undotted [raised dotted] index components are associated
with positive [negative| chirality. For an historical perspective, see the discussion following eq. .
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respectively. The following properties are also noteworthy:

lp%) (p£[ =p-os, ( )
(px| ot Ip£) = 2p*, (1.2.11)
(p £ |gF) = — (g £ [pF) , (1.2.12)
(p+] o} lg+) = (g—] o [p—) , (L.2.13)
) ( )

(p£| oo laF) = — (g£] o%ok [pT) .

Note that egs. ([.2.9)—([.2.14) are covariant with respect to the undotted and dotted spinor
indices. Egs. ([.2.10) and (I.2.11] follow from eqs. (3.1.53) and (3.1.54)). For example,

P(B.5) =0l y (B, 3y (B 3) = Tre(o"pd) =2, (12.15)

and similarly for (p—|o” [p—). Eqgs. ([.2.12)—(L[.2.14)) follow immediately from egs. (2.60)—(2.64)).

Eqgs. ([.2.13) and ([.2.14)) generalize easily to the case of a product of an even and odd number

of 0/ matrices. For any positive integer n,

(p+| ok Ip+) =y (B, 5)0t 5y

(p+] o a2 - o ) = (g—| 0"t ) | (I.2.16)
(p£|otlol? - o |gF) = — (q=[ ol - ool |pF) - (1.2.17)

Spinor products can be formed from the bras and kets in the usual way and satisfy:

(p£leF)" = (g F Ip%) (1.2.18)
(p+|oltlqt)" = (g |opE) , (1.2.19)

where we have used the fact that the o/ are hermitian. Covariance with respect to the undotted

and dotted spinors allows only two possible spinor productsFigl

), (1.2.20)
). (1.2.21)

[\')\H

(pq) = (p—lg+) = 2T(B.—3) y'(q,

padl = (p+lg—) =y 3)=(q —

w\»—\

In particular, the products (p+ |¢+) and (p —|¢—) never arise in a computation using two-

component spinor notation. In terms of the spinorial products defined in eq. ([.1.12]),

(pa) = (p— lg+) = (2E,)*E)*T(p, §)—~ . (1.2.22)
pd = (p+lg—) = (2E,) 2 (2E)'*T (5, 4)+—, (1.2.23)

158Gince we wish to preserve the definition of the spinor products given in eq. , (pq) is a sum over dotted
indices and [p ¢] is a sum over undotted indices in our two-component spinor conventions. This is to be contrasted
with most of the literature on the spinor helicity method, in which (pgq) is written as a sum over undotted indices
and [pg] as a sum over dotted indices. The origin of this difference is explained in footnote
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where E, = [p] and E, = |q]. Explicit forms for T'(p, §)—4 and T'(p, §)+— = —T(p, §)* | can

be obtained from eq. ([.1.21]). Using eqs. ([.1.15]) and ([.1.19) [or equivalently, using eqgs. ([.2.12))
and ([.2.18))], the spinor products satisfy the following relations:

pa) =—{ap) (1.2.24)
[pa) = —lqpl, (1.2.25)
(pg)" =—Ipdl. (1.2.26)

One immediate consequence of the above results is:

{pp)=(p—Ip+) =0, (1.2.27)
[pp] = (p+[p—) =0. (1.2.28)

We next compute the absolute square of the spinor product:

[(pa) [P =2l (5, —3) ¥ (@ §) 2a(B,— ) v* (@, §) = 2a(F,—3) 2L (5. —3) (@, 3) v*(@, })
= POpq q T = Puqy Tr(c"c”) = 2p-q (1.2.29)
Using this result and eq. ([.2.26)) yields
[ (pg) I =lpdl* = 2p-q, (1.2.30)

which indicates that the spinor products are roughly the square roots of the corresponding dot

products. One other noteworthy relation is:

(p1p2) [P2 3] (P3pa) [Pap1] = Tr (0-p1T-p2o-p3T-pa)
= 2(9uw9pr — JupGvr + Gurgvp + ieuupn)p‘fp%pépif , (1.2.31)

where the trace has been evaluated using eq. . Note that the first line of eq.
immediately follows from eqs. and after plugging in the definition of the spinor
products.

In Appendix 1.1, we showed that a fermion string can be expressed in terms of products of
the spinorial products T [cf. eq. ] When applied to massless spinors, eq. indicates
that the square of the helicity amplitude of a multi-fermion scattering process can be expressed
in terms of products of dot products of pairs of fermion momenta. If more than one diagram
contributes to a helicity amplitude, then it is often possible to combine the contributions after

a rearrangement of momenta via the Fierz identities. Using egs. (2.66)—(2.70), it follows that:

(p1p2) (P3pa) = (p1p3) (P2pa) + (P1pa) (P3D2) » (1.2.32)
[p1 p2] [P3 pa] = [p1p3] p2pal + [p1p4] [P3D2], (1.2.33)
(p1+ 0" |pa+) (p3 + |otulpat) = 2 [p1p3] (pap2) , (1.2.34)
(p1— 0" | p2—) (p3 — lo—pulpa—) = 2 (p1p3) [pap2], (1.2.35)
(p1 + |0k [p2t) (p3 — [o—plpa—) = 2[p1 pa] (P3p2) - (1.2.36)
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Eqs. ([.2.32)) and (I.2.33)) are often called the Schouten identities, as they follow from eq. (2.28)).

It is desirable to extend the spinor helicity formalism to multi-particle processes involving
massless fermions and massless spin-1 bosons. In particular, XZC developed a simple technique
for expressing the squares of the corresponding helicity amplitudes in terms of ratios of products
of dot products. Their trick was to introduce a convenient expression for the massless spin-1
polarization vector in terms of products of massless spin-1/2 spinor wave functions. Before
exhibiting their result, we provide a brief review of spin-1 polarization vectors in the helicity
basis.

We first consider a massless spin-1 particle moving in the z-direction with four-momentum
k# = E(1;0,0,1). The textbook expression for the helicity +1 polarization vectors of a
massless spin-1 boson is given by :

1
V2

Note that the e#(2, ) are normalized eigenvectors of the spin-1 operator S -2,

e(2,41) = — (0; F1, —i, 0) . (1.2.37)

(8-2),e¥(2,0) = Ael(2,)\), (1.2.38)

where S* = %eijksjk, and the matrix elements of the 4 x 4 matrices Sj;, are given by eq. 1}
If we transform e(2, \) by employing a three-dimensional rotation R such that kE=R32,
then we can obtain the polarization vector for a massless spin-1 boson of energy E moving in

the direction k = (sinf cos ¢, sinfsin ¢, cosf). That is,
Pk, N) = AL (h,0, ) eV (2,0, (1.2.39)
where
A =1, ANog=A%=0, and A";=R9(4,0,7), (1.2.40)
and R(¢,0, ~) is the rotation matrix introduced in eq. . A simple computation yields:

~ 1 .
et(k,+1) = ﬁe:Fw (0; Fcosbcosp+ising, Fcosfsing —icosp, £sinb) . (1.2.41)

Note that 5“(12:, +1) depends only on the direction of k and not on its magnitude F = |E|
One can easily check that the s“(lzr, +1) are normalized eigenstates of Sk with corresponding
eigenvalues +1.

Similar to the corresponding discussion in Appendix C for the spin-1/2 spinor wave func-
tions, the Euler angle ~ is arbitrary. In the literature, one typically finds conventions where
y=—0¢ orv=20 , and we will consider both possibilities below.

Although we will not need it here, the expressions given by eqs. and also

apply in the case of a massive spin-1 particle. In addition, there is a helicity A = 0 polarization

vector which depends on the magnitude of the momentum as well as its direction:

e"(|k|2, 0) = (|k|/m: 0,0, E/m), (1.2.42)
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where E = (k|2 +m?2)Y/2. One can use eq. (.2.39) to obtain the helicity zero polarization vector

for a massive spin-1 particle moving in an arbitrary direction
Mk, 0) = % (|E| . Esinfcos ¢, Esinfsing, Ecose) . (1.2.43)
Note that both the massless and massive spin-1 polarization vectors satisfyFigl
ek, A = (=) ek, —N). (1.2.44)

One can check that the 5“(75, A) also satisfies the standard conditions for a valid polarization

four-vector:

-

ke(k,\) =0, ek, A)-e(k, N)" = =6 . (1.2.45)

If the spin-1 boson three-momentum is —E, then its polarization vector can be obtained
from eqs. ([.2.41)) and ([.2.43)) by taking 6 — 7 — 0 and ¢ — ¢ + 7. It can also be derived from

egs. ([.2.39) and ([.2.40)) by making use of the spin-1 analogue of eq. (C.3.8]),

where we have exhibited the possible dependence of « on the direction of I::, and R is the rotation

matrix given by eq. (C.1.5). Introducing the notation e = (" ; €), and noting the relations:

R(&,m)é(2,\) = —&(2,-)), (1.2.47)
R(2,8)é(2,)) = e M eg(2,)\), (1.2.48)

it follows that:
(=K, \) = —guu& (k) (B, =X),  A=0,%1, (1.2.49)

where there is no sum over the repeated index g, and
Ex(k) = —ePD®HR] N — g 4, (1.2.50)

Note that for A = 41, the phase factor 5/\( ) depends on the convention for the definition of
the Euler angle v used to define the spin-1 polarization vector. As an example, corresponding

to the two conventional choices for -,

& (k) = {<—1>”62“¢ for y(k) ==¢, (=k)=—¢-m, (12.51)

-1 for v(k) =~(—k)=0.

1593ome authors 1ntroduce polarization vectors where the sign factor (—1) in eq. is omltted One
motivation for eq. is to maintain consistency with the Condon-Shortley phase conventlons 333| for the
eigenfunctions of the spin angular momentum operators S? and S. (for spin-1 particles). In partlcular note
the relation 7-&*(2,+1) = (47/3)'/2Y1,+1(0, ¢) between the polarization three-vector and the £ = 1 spherical
harmonics without any additional sign factors.
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To motivate the XZC form for the massless spin-1 polarization vectors, we first introduce

a four-vector

k= E(1; k), (1.2.52)

corresponding to the four-momentum k* = E(1; 12:) of the massless spin-1 boson. A straightfor-

ward calculation then shows that

1 (k¥|o"|k

ek, +1) = —= M (1.2.53)
V2 (k+ |kF)

precisely reproduces the result of eq. ([.2.41]), where the massless spinor wave functions are

defined according to eq. (C.1.8). Eq. ([.2.53]) is somewhat inconvenient because the four-vector

k cannot be covariantly defined in terms of k. XZC finessed this problem by introducing a

“reference” four-vector p (in practical computations, p is taken to be another four-momentum

vector in the scattering process of interest), with the properties that p?> = 0 and p-k # 0. The
XZC spin-1 polarization vectors are given by [cf. eq. (2.34))] FEU]

k K
ek, +1) = 1 (kFlozlpF) (1.2.54)

V2 (k+[pF)
One can immediately check that £*(k, \) so defined satisfy the standard conditions for a valid
polarization four-vector given in eq. and the phase convention of eq. . The repre-
sentation of the massless spin-1 polarization vector in terms of spinor products [egs. and
(1.2.54))] is an application of the spinor calculus that was first developed by van der Waerden .
The significance of the reference four-vector p can be discerned from the property that if
a different reference momentum is chosen then e# is shifted by a factor proportional to k*.

Explicitly, if e#(k, p, ) is a polarization vector with reference momentum p, then@

V2 (g £ |pT) n

ek, q, 1) ="k, p, £1)+
( ) =& T g

(1.2.55)
In particular, if we choose ¢ = E, we see that the difference of the XZC spin-1 polarization
vector and the polarization vector given by eq. ([.2.41]) is proportional to k*. This shift of the
reference momentum from p to ¢ in the XZC definition of the polarization vector does not affect
eq. ([.2.45)) since k? = 0 for massless spin-1 particles. Moreover, this shift does not affect the

final result for any observable (in particular the sum of amplitudes of any gauge invariant set of

60T the literature on the spinor helicity method, the spin-1 polarization vector e is employed in Feynman
diagram computations for an outgoing final state boson, in contrast to the standard conventions of most quantum
field theory textbooks. In this review, we subscribe to the latter [as indicated at the end of Section. Hence, to
be consistent with our conventions above for the spin-1 polarization vector, we have taken the complex conjugate
of the original definition of the XZC spin-1 polarization vectors. In addition, we have removed an overall 4+ sign

in order to conform to eq. (I.2.44) [cf. footnote .

6176 derive eq. ([.2.55), evaluate ek, q,A) — e*(k,p, A), and simplify the resulting expression using

eqs. |I.2.10|), |I.2.13|i and ([.2.1

253



Feynman diagrams remains unchanged). Thus, the presence of the arbitrary four-vector p just
reflects the gauge invariance of the theory of massless spin-1 particles.

We can also verify that e#(k, p, A) defined in eq. behaves as expected under rota-
tions. Using eq. , massless spinors transform as:

|k+) — D(,0,7) |k=+) , (k%| — (kx| [D(6,6,7)]7, (1.2.56)

under a rotation specified by the Euler angles ¢, 6§ and . We shall rotate the spin-1 polarization
vectors by rotating both k and the reference momentum P simultaneously (since one is always
free to shift the reference vector with no physical consequence). Using eq. , it follows
that:

[D(¢,6,7)] " ok D(6,6,7) = A0, (1.2.57)
where A¥, is specified by eq. . Indeed, if we simultaneously rotate both k£ and p via
k* — A* kY and p* — A*,pY, then

Eu(kv b, )‘) — AMV Ey(ka b, A) ) (1258)

as expected. By a similar computation, one can check that under k — —k and P — —p,

eq. ([.2.49) is satisﬁed@ In terms of the ;/y defined in eq. (C.3.11), we find
- EVICAY 2+ 72
(k) = - (” = [6p®] . A=, (1.2.59)

which agrees with eq. ([.2.50)).
The following additional properties of e#(k, p, \) defined in eq. ([.2.54)) are noteworthy:

pelk,p, \)=0, (1.2.60)

* D kl/ +pyk'
S cull, by Neulh, p, A) = g + TR
A==+1 p-

For example, to prove eq. ([.2.61)), we use eqs. ([.2.18]) and ([.2.19]), and simplify the resulting
expression with the help of egs. ([.2.10) and (I.2.16|), which yields:
(k+[(oup-00, + 0vp-00,) [K+)
> cull vy Naulh, p, A =
=, 2(k+|p-o|k+)
Using eq. (B.2.17) to simplify the product of three ¢/ matrices, and employing eq. ([.2.11))
then yields eq. ([.2.61]).

Finally, using the Fierz identities given in eqs. (B.1.6)—(B.1.8)), one derives from eq. ([.2.54))
that

(1.2.61)

(1.2.62)

V2 |pF) (k| V2 |kF) (pF]
or-elk, £1) = ——————, oy-elk, £1) = ——L 1.2.63
)= T s ) = ey 12O
V2|kt) (p] V2|p) (k|
or-elk, £l) = ——mm—— or-e(k, £1) = ————— | 1.2.64
v el ) (k £ pF) + el ) (p F |kL) (1.2.64)
'%’Here, we have used egs. (B.2.16) and (B.2.17) to write Uicfiai = —ol +2g"°0% = g"o’ (no sum over ).
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Note that each equation in egs. ([.2.63) and ([.2.64)) represents two separate equations, corre-

sponding to the upper and lower signs in each equation, respectively.

It should now be clear how to convert the square of a helicity amplitude for a multi-particle
process involving massless spin-1/2 and massless spin-1 particles into a ratio of products of
dot products of momenta. By writing all massless spin-1 polarization vectors in the form of
eq. ([.2.54) and using the properties given above, the helicity amplitudes can easily be expressed
as a ratio of two quantities, each of which is a product of spinor products. Squaring the corre-
sponding amplitude then yields a ratio of products of dot products of four-momenta. A following
simple example will demonstrate the technique.

Consider Compton scattering in QED, e~ (5}, M )y(k1, N)) — e~ (Fy, Aa)v(Ka, X)), in the
limit of massless electrons. The amplitude for this process is given by eq. with m =0
and Gy, = Gr = —e. Writing out the “crossed” term explicitly, and noting that for massless

particles, s = (p1 + k1)% = 2p1-ky and u = (p1 — k2)? = —2p1-ko,

) —ie? . . - . . B
iM= oo {xT(p27)\2)0'-€20'-(p1 + k1) T-ey 2(Py, M) + y(Do, A2) 0657 (p1 + k1) U.gly‘r(ph)\l)}
ie? . .. B o
+2p1-k2 {;z:T(p2a)\2)O'-51 o-(p1 — k2)5-62 (P, M) + y(Da, A2) oy 7-(p1 — k) U'EQZJT(pla/\l)} ‘

(1.2.65)

The results of eqs. (3.1.36)—(3.1.39) imply that the helicity amplitudes with A\; # Ao vanish.
Using eqs. ([.2.7)) and (I.2.8]), we identify:

)
; —ie .
IM(A =Xy = %) = (p2+ oy -e5o_-(pr + k1) oy -e1|pr+)
2p1 -k
ie? .
+2p1‘k‘2 (p2 + o -e10_-(p1 — k2) 04 -€5|p1+) , (1.2.66)
. 1 *2'62 .
ie? .
+2p1-k:2 (p2 —lo—-e104-(p1 — ko) o—-e5lp1—) . (1.2.67)

Further simplification ensues when we apply the results of eqs. ([.2.63) and ([.2.64). To use

these results, we must select a reference momentum p, which can be any lightlike four-vector
that is not parallel to the corresponding photon polarization vector. One is free to choose a
different reference momentum for each photon polarization vector. Moreover, when computing
two different helicity amplitudes (each of which are gauge invariant quantities), one may select a
different reference momentum for the same photon polarization vector in the two computations.
The decision on which reference momenta to choose is somewhat of an art; experience will teach

you which choices lead to the most simplification in a given calculation.
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We shall consider two possible choices for the reference momenta for e; and o, which we

denote as p™") and p®@, respectively:
1. pM = p; and p® = ps,

With either choice, it is straightforward to show that M(A = Ay = j:%) vanish unless the
photon helicities are equal, i.e. A} = X,. This leaves only four possible non-vanishing helicity
amplitudes.

For the case of \j = Ay = £3 and A| = N, = £1 (i.e., 1A} > 0), we choose reference

momenta p) = py and p® = p;. Then, the second term vanishes on the right-hand side of

egs. (1.2.66) and (I.2.67)), respectively. Making use of egs. ([.2.10)), (1.2.63)) and (I.2.64)), we find
—ie? (p + |ko—) (p1 — |k1+) (k1 +Ip2—) (k1 —Ip1+)

MM =de=5, N =X =1)=
(M1 2=3,71 2 =1) D1k (p1 — |ka+) (k1 + |p2—)
_. 2
_ —ie? (p k1) (kapu) [pa ko] (1.2.68)
p1-ki <p1 k2>

Using eqgs. ([.2.24]) and (1.2.30)) to write the dot product in terms of spinor products, we obtain:
(pLk1) [p2 kol

iIMAL =X =3, N =), =1) = 2ie? . . 1.2.69
Cr=ro=z X=X =1 =2, ) k) (-2.69)
A similar computation yields
k k
iMOAL =X = =3, N = My = —1) = 2i¢? pika] (p2 ka) (1.2.70)

[p1 Fka]* [p1 ko]

For the case of A\; = Ao = £5 and \| = X, = F1 (i.e., MA] < 0), we choose reference
momenta p!) = p; and p@ = py. Then, the first term vanishes on the right-hand side of
eqs. ([.2.66)) and ([[.2.67)), respectively. A similar calculation to the one given above yields:

[p1 k2] (p2 k1)

IMOA\ =Xdo=—1 N =X, =1) =2ie? , 1.2.71
( 1 2 2 1 2 ) [pl k?]* [pl kl] ( )
. . ko) [p2 k1]
ML =g = LN = N, = 1) = 22 PLR2) : 1.2.72
( 1 2 2 1 2 ) <p1 k2> (pl ]€1> ( )
Note that each pair of helicity amplitudes above is simply related:
M)q S AL A2, A (Sa 0, (JS)* = M—/\1 L =A== (Sa 0, ¢) ) (1273)

which is a consequence of rotational and parity invariance (as shown below). Thus in this
example, we only need to evaluate two non-zero helicity amplitudes. It is clear that we have
simplified the computation enormously by our choice of reference momenta. With a less judicious
choice, the calculation is significantly more tedious, although gauge invariance guarantees that

one must arrive at the same result for the helicity amplitudes quoted above.
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One can easily evaluate the spinor products above in the center-of-mass system. Writing
pl = FE(Q; 2), ki = E(1; —2), py = E(1; pcym) and kY = E(1; —pcy), and using the results
of egs. (L.1.21)) and ([.2.22), we obtain:

(p1 k1) = 2EE_12(2), (p1 ko) = 2E€i[¢+7(ﬁCM)V2§—1/2(ﬁCM) cos(0/2), (1.2.74)
(p2k2) = 2E€ 1 2(Pem) » (pa k) = 2B~ 10H1Pewl2¢_ o(2) cos(6/2),  (1.2.75)

where 6 and ¢ are the polar and azimuthal angles of pcy;. Phase factors involving §_; /5 arise
from the use of egs. (C.3.10)) and (C.3.11)). For example, corresponding to the two conventional
choices for v, we use eq. ((C.3.14]) to obtain

A\ -1 for 7(2) :07 ’7(_2) =-m,
S12(8) = { i fory(2) =y(—2) =0, (1.2.76)
. —e for y(pem) = —b, V(—Pcm) =—0—7
i _ 1.2.77
$1y2(Pon) { i for v(pom) = v(=Pem) = 0. ( )

All other relevant spinor products can be found using eqs. ([[.2.24)—(I.2.26]).
It is always possible to define the plane of the scattering process to be the x—z plane,

in which case ¢ = 0 and all the spinor products in eqs. ([.2.74) and ([.2.75)) are manifestly

real. Nevertheless, by keeping the explicit ¢-dependence, one maintains a useful check of the
calculation. Inserting the explicit forms for the spinor products into egs. ([.2.69)—(1.2.72)), we
confirm that the ¢-dependence of the helicity amplitudes is given by [259,/334]:

ei(/\1—>\'1—>\2—>\'2)¢./\/(/\1 7)\/1 ; Ao ,)\/2 (S, 9) s fOI' ’y(ﬁCM) — —QS s and
M>\1,)\'1;>\2,)\’2(8707¢): 'Y(_pCM):_QS_ﬂ',
ei(>\1—>\'1)¢/\/l>\17/\/1 ;)\27/\/2 (57 9) R for ’y(ﬁCM) = ’y(—ﬁCM) — 0’
(1.2.78)

as a consequence of rotational invariance \| The remaining #-dependent amplitudes are
easily evaluated and are in agreement with the results of refs. [259,/335]. Note that parity

invariance implies that eqs. ([.2.69)—-([.2.72)) must satisfy [259,[260L[335]
My, DVEPY ,XQ(S»@) = Mf)\l,f)\ll;f)\g,*)\é(‘% 0). (1.2.79)

Indeed, in our computation above, eq. ([.2.73) is satisfied, which is consistent with eq. ([.2.79)
in light of eq. ([.2.78]).
To compute the unpolarized cross-section for Compton scattering, one must sum the ab-

solute squares of the helicity amplitudes and divide by 4 to average over the initial helicities.

63T the first case, where y(Poy) = —¢ and y(—Pey) = —¢ — 7, the sign of A} in the ¢-dependent phase factor
of eq. is opposite to the one given in ref. [260|, due to the Jacob-Wick second-particle convention, which
we do not employ here. Since A\; = Ay and A} = A}, the latter would imply that the ¢-dependent phase cancels
exactly if the Jacob-Wick second-particle convention is used. This is easily checked by putting v(pPcy) = —¢ and
& = 1in egs. ([.2.74) and ([.2.75), in which case all the spinor products are real.
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Since quantities such as (p; k1) / (p1 k1)™ are pure phases, one immediately obtains:

-k
yM(Al:AQZ%,A’IZA’FUP:W(AFAQ:_%,Xl:Xz:_1)\2z4e4z;k;,(1.2.80)
MO =do= L N =M= D)2 = MO ==L N =X = 1) = 42?172 (1081
’(1—2— 2,1—2—)’—\(1—2—2,1—2— )\—6 ,()

p1-k1
after employing eq. ([.2.30) and noting that p;-k1 = p2-ke and p; -k = pa-k1 (which follow from
four-momentum conservation, p; + k1 = p2 + ko, for the scattering of massless particles). Thus,

1 2 4 [ P1-F1 p1'k2>
LNT M = 2¢ + : 1.2.82
4 Z M (pl'kz p1-k1 ( )

spins

which coincides with the well-known result quoted in ref. [115].

Appendix J The Standard Model and its seesaw extension

In the Standard Model, three generations of quarks and leptons are described by the two-
component fermion fields listed in Table where Y is the weak hypercharge, T3 is the third
component of the weak isospin, and @ = T35 + Y is the electric charge. After SU(2);,xU(1)y
breaking, the quark and lepton fields gain mass in such a way that the above two-component
fields combine to make up four-component Dirac fermions:
u; d; ¢;
Ui = ; D; = : L;= ; (J.1)
aft i i
while the neutrinos v; remain massless. The extension of the Standard Model to include neutrino
masses will be treated in Appendix J.2.
Here, we follow the convention for particle symbols established in Table Note that u,
@, d, d, £ and ¢ are two-component fields, whereas the usual four-component quark and charged
lepton fields are denoted by capital letters U, D and E. Consider a generic four-component field

expressed in terms of the corresponding two-component fields:

!
F= . (J.2)
fT
The electroweak quantum numbers of f are denoted by T?fc , Yy and @, whereas the correspond-
ing quantum numbers for f are T?{ =0and Q7 =Yy = —Qy. Thus we have the correspondence
to our general notation [eq. (G.1.7))]
f X, fe—n. (J.3)

We can then immediately translate the couplings given in the general case in Fig. to the
Standard Model.
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Two-component

fermion fields SU(3) SU(2). Y T3 Q=T3+Y

Uu; triplet 1 1 2

Q, = ' doublet 6 ? ’
d; triplet % — % — %
a anti-triplet singlet — % 0 — %
d anti-triplet singlet % 0 %
v; singlet — % % 0

L, = doublet
¢ singlet — % — % -1
Iz singlet singlet 1 0 1

Table J.1: Fermions of the Standard Model (following the naming conventions of Table
and their SU(3)xSU(2)1,xU(1)y quantum numbers. The generation indices run over i = 1,2, 3.
Color indices for the quarks are suppressed. The bars on the two-component antifermion fields
are part of their names, and do not denote some form of complex conjugation.

J.1 Standard Model fermion interaction vertices
The QCD color interactions of the quarks are governed by the following interaction Lagrangian:
Lt = *gsA'qumi Eu(Ta)anni + gsAZLQLi Eu(Ta)mnqmi ) (J~1-1)

summed over the generations i, where ¢ is a (mass eigenstate) quark field, m and n are SU(3)
color triplet indices, A% is the gluon field (with the corresponding gluons denoted by g,), and
T are the color generators in the triplet representation of SU(3). The corresponding Feynman

rules are given in Fig.

Next, we write out the Feynman rules for the electroweak interactions of quarks and leptons.

Using eqs. (4.3.11)) and (4.3.12)), the interactions of the gauge bosons and quarks are given by:

Lot = —\% (@' d + oV E W + (Vi a; + (o)W, |

—é > {(Tsf — sty Q) flie" fi + ngfoTiﬁ”fi} Z,
f=u,d,vt
—e Y Qf(ffierfi - fligh ) Ay, (J.1.2)
f=u,d}t

where sy = sinfy, ¢y = cos Oy, the hatted symbols indicate fermion interaction eigenstates

and 7 labels the generations. Following the discussion of Section we must convert from
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i950) (T*) " 731"

Figure J.1.1: Fermionic Feynman rules for QCD that involve the gluon, with ¢ = u,d, ¢, s, t, b.
Lowered (raised) indices m, n correspond to the fundamental (anti-fundamental) representation
of SU(3)c. The gluon interactions are flavor-diagonal (where 4, j are flavor indices). For each
rule, a corresponding one with lowered spinor indices is obtained by Effﬁ — —0uB6-

fermion interaction eigenstates to mass eigenstates. In order to accomplish this step, we must
first identify the quark and lepton mass matrices. In the electroweak theory, the fermion mass
matrices originate from the fermion-Higgs Yukawa interactions.

The Higgs field of the Standard Model is a complex SU(2) doublet of hypercharge Y = %,

Pt
@, = : (J.1.3)

0
where the SU(2); index a = 1,2 is defined such that ®; = ®* and ®; = ®°. Here, the
superscripts + and 0 refer to the electric charge of the Higgs field, Q = T5+Y, with Y = % and
T3 = j:%. Since @, is complex, we can also introduce the complex conjugate Higgs doublet field

1

with hypercharge Y = —3,

pfa = (cp*, (<1>0)T) , (J.1.4)

where @~ = (®+)f. The SU(2);,xU(1)y gauge invariant Yukawa interactions of the quarks and
leptons with the Higgs field are then given by:

Lo = V(Y ) 8,010 — (V) ;@190 ,,d — (V)81 Lyil? +hec. (J.1.5)

where € is the antisymmetric invariant tensor of SU(2)y, defined such that ¢'? = —€2! = +1.
Using the definitions of the SU(2);, doublet quark and lepton fields given in Table one can

rewrite eq. (J.1.5) more explicitly as:

~ Ay = (V) |00 — 04 | +(Y o) |07 wd! + OV did) |+ (Y1) 975l + @0l | e
(J.1.6)

The Higgs fields can be written in terms of the physical Higgs scalar hgy and Nambu-Goldstone

bosons G, G* as

@0 —’U+\2(h5M+iGO), (J.1.7)

Pt =Gt = (@) =(G)". (J.1.8)
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where v = v/2my /g ~ 174 GeV. In the unitary gauge appropriate for tree-level calculations,
the Nambu-Goldstone bosons become infinitely heavy and decouple. We identify the quark and
lepton mass matrices by setting ®° = v and ®* = &~ = 0 in eq. (J.1.6):

(Muyj = U(Yu)ij ) (Md)ij = U(Yd)ij ) (Me)ij = U(Yg)ij . (J.1.9)

The neutrinos remain massless. An extension of the Standard Model that incorporates massive
neutrinos is treated in Appendix J.2.

To diagonalize the quark and lepton mass matrices, we introduce four unitary matrices for
the quark mass diagonalization, L,, Lg, R, and R4, and two unitary matrices for the lepton

mass diagonalization, Ly and Ry [cf. eq. (3.2.31))] such that

= (Lo)duy,  di=(La)dd;, @ =(R)y@, d=(Rg)yd, (J.1.10)
U= (Lo)idt;, 0= (Ry)';0 (J.1.11)
where the unhatted fields u, d, @ and d are the corresponding quark mass eigenstates and v, £ and
¢ are the corresponding lepton mass eigenstates. The fermion mass diagonalization procedure

consists of the singular value decomposition of the quark and lepton mass matrices:

LI MR, = diag(m, , m., my), (J.1.12)
LdTMde = diag(mgq, ms, mp), (J.1.13)
L; MRy = diag(me, m,,, m.,), (J.1.14)

where the diagonalized masses are real and non-negative (cf. Appendix D.1). Since the neutrinos
are massless, we are free to define the physical neutrino fields, v;, as the weak SU(2) partners of

the corresponding charged lepton mass eigenstate fields. That is,
172' = (Lg)ijl/j . (J115)

We can now write out the couplings of the mass eigenstate quarks and leptons to the gauge

bosons and Higgs bosons. Consider first the charged current interactions of the quarks and
leptons. Using eq. (J.1.10]), it follows that ﬁ“ﬁ“czi =K/ u“ﬁ“dj, where

K =1L, (J.1.16)

is the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix || Due to eq. (J.1.15)), the

corresponding leptonic CKM matrix is the unit matrix. Hence, the charged current interactions

take the form

__ 9 ) i + i e - - + i— -
L = = | KT WS+ (K dl oW+ oV )+ FvWe| L @)

164 he CKM matrix elements Vi; as defined in ref. \ are related by, for example, V;;, = K3® and Vs = K12,
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Q Q
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Figure J.1.2: Feynman rules for the two-component fermion interactions with electroweak
gauge bosons in the Standard Model. The couplings of the fermions to v and Z are flavor-
diagonal. In all couplings, ¢ and j label the fermion generations; an upper [lowered] flavor index
in the corresponding Feynman rule is associated with a fermion line that points into [out from)]
the vertex. For the W™ bosons, the charge indicated is flowing into the vertex. The electric
charge is denoted by Q (in units of e > 0), with . = —1 for the electron. T:,fc =1/2 for f = u,
v, and Tg = —1/2 for f =d, ¢{. The CKM mixing matrix is denoted by K, and sy = sin 6y,
cw = cosfy and e = gsinfy . For each rule, a corresponding one with lowered spinor indices
is obtained by Eﬁﬁ — —0u84-

where [K '],/ = [K;'|*. Note that in the Standard Model, @, d and £ do not couple to the W*.
To obtain the neutral current interactions, we insert eqs. (J.1.10)—(J.1.15) into eq. (J.1.2)).
All factors of the unitary matrices Ly and Ry (f = u,d,?) cancel out, and the resulting inter-

actions are flavor-diagonal. That is, we may simply remove the hats from the quark and lepton
fields that couple to the Z and photon fields in eq. (J.1.2). This is the well-known Glashow-
Tliopoulos-Maiani (GIM) mechanism for the flavor-conserving neutral currents [338] PESI

165This also provides the justification for employing mass eigenstate quark fields in the QCD interaction La-

grangian in eq. (J.1.1)).
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The Feynman rules for the interactions of the quarks and leptons with the charged and
neutral gauge bosons are exhibited in Fig. [J.1.2] For each of the rules of Fig. we have
chosen to employ Eﬁﬂ . If the indices are lowered one should take Eﬁﬁ — —0u86-

Finally, we exhibit the interactions of the quark and lepton mass eigenstates with the Higgs
fields. The diagonalization of the fermion mass matrices is equivalent to the diagonalization of
the Yukawa couplings [cf. egs. and (J.1.12)—(J.1.14)]. Thus, we deﬁneFiEl

Yy =mp/v,  f=ud/, (J.1.18)

where i labels the fermion generation. It is convenient to rewrite egs. (J.1.12)—(J.1.14]) as follows:

(L) (Y ) (Rp)™ = Y67 f=ud?, (J.1.19)

10
with no sum over the repeated index i. Using the unitarity of Ly (f = u, d), eq. (J.1.19) is

equivalent to the following convenient form:
(Y Rp)F; = Yyi(L})i". (J.1.20)

Inserting eqs. (J.1.10), (J.1.15) and (J.1.19)) into eq. (J.1.6)), the resulting Higgs-fermion La-

grangian is flavor-diagonal:

1 . _ _
Lt = ——=hsm [Ym-uﬂ_ﬂ + Yyd;d' + Y&&ﬂ] + h.c. (J.1.21)

V2
The corresponding Feynman rules for the Higgs-fermion interaction are shown in Fig. [J.1.3

!

—i o
Lyl 6%
\/i fi9 B

Figure J.1.3: Feynman rules for the Standard Model Higgs boson interactions with fermions,
where Yy; = my; /v, and i, j label the generations.

In the case of more general covariant gauge-fixing (e.g., the 't Hooft-Feynman gauge or
Landau gauge), the Goldstone bosons appear explicitly in internal lines of Feynman diagrams.
The Feynman rules for G°-fermion interactions are flavor-diagonal, whereas the corresponding
rules for G exhibit flavor-changing interactions that depend on the CKM matrix elements, as

shown in Fig. In the derivation of the couplings of the Nambu-Goldstone bosons to the
fermion mass eigenstates [cf. eqs. (J.1.6)—(J.1.8)], the following quantities appear:
(La)i? (Y u)*m(Bu)™s = Yui(La)’ (L})i* = Yui(LE La)? = [K]i Yas (J.1.22)
(L)1 (Y @)Fim(Ra)™s = Yai (Lu)i? (L1)i* = Yau(LELW) = (K1Y, (1.1.23)

166Boldfaced symbols are used for the non-diagonal Yukawa matrices, while non-boldfaced symbols are used for
the diagonalized Yukawa couplings.
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I I} Iz B
Figure J.1.4: Feynman rules for the Standard Model Nambu-Goldstone boson interactions
with quarks and leptons, where Yy; = my; /v, and i, j label the generations.
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with no sum over the repeated index i. The CKM matrix, K, appears by virtue of eqgs. (J.1.16))
and (J.1.20]). Hence, the interaction Lagrangian for the coupling of the Nambu-Goldstone bosons

to the fermion mass eigenstates is given by:

7

Lt = Ym'[K]Z‘jdjﬂiGJr—Ydi[KT]Z‘ju‘jcﬁGi—YgiVi(ﬁGi—i—\/i

[Ydldzcﬁ — YmuﬂlZ + Y'M&Zl] G0+h.C.,
(J.1.24)
which yields the diagrammatic Feynman rules shown in Fig. [J.1.4]

J.2 Incorporating massive neutrinos into the Standard Model

To accommodate massive neutrinos, we must slightly extend the Standard Model [339]. The
simplest approach is to introduce an SU(2)xU(1) gauge invariant dimension-five operator [340],

~ 7]
F

,,%5 = —ﬁ(éab@aﬁbi)(Gqu)cidj) + h.c.
jakd A »
= —ﬁ(cp%i — ®10)(®%; — ®1Y;) + hee, (J.2.1)

where P are generalized Yukawa couplings, the hatted fields indicate two-component fermion
interaction eigenstates (with spinor indices suppressed), and 4, j label the three generations.
After electroweak symmetry breaking, the neutral component of the doublet Higgs field acquires
a vacuum expectation value, and a Majorana mass matrix for the neutrinos is generated.

The diagonalization of the charged lepton mass matrix is unmodified from the treatment
given in Appendix J.1, where the unhatted mass eigenstate charged lepton fields are given by
eq. , and Ly and Ry satisfy eq. (J.1.14). However, the unhatted neutrino field introduced
in eq. (J.1.15) is mot a neutrino mass eigenstate field when the effect of the dimension-five
Lagrangian, eq. , is taken into account. To avoid confusion, we replace the unhatted
neutrino fields of eq. with new neutrino fields ;. That is, we define

D = (Lo)iv; . (J.2.2)

We then rewrite eq. (J.2.1) in terms of the charged lepton mass eigenstate field and the new
neutrino field defined by eq. (J.2.2):

F'
S 2A

Ly = (®%; — ®14;) (@0 — ®T;) + hec., (J.2.3)

where F' = LZFLg. Setting ®° = v and @+ = &~ = 0, we identify the 3 x 3 complex symmetric

effective light neutrino mass matrix, M,,, by

— L, = 2(M,,)7 075 + h.c., (J.2.4)
where
U2
M,, = F. (J.2.5)



Current bounds on light neutrino masses suggest that v2/A < 1eV, or A 2 102 GeV
341).

The physical neutrino mass eigenstate fields can be identified by introducing the unitary
Maki-Nakagawa-Sakata (MNS) matrix, Uypns, such that m

()i = (Unins)i* (v0)j (1.2.6)

where the unhatted (1y); fields [j = 1,2,3] denote the physical (mass eigenstate) Majorana
neutrino fields. Uying is determined by the Takagi diagonalization of M, [cf. Appendix D.2]:

UR—/[NSMVeUMNS = diag(mugl s My,2 mug3) ) (J27)

where the m,,; are the (real non-negative) masses of the physical neutrinos.
The interaction Lagrangian of the neutrino mass eigenstates can now be determined. The
charged current neutrino interactions are given by [cf. eq. (J.1.17)]:

Lo = —\/% [T W 4 W |

—_9 [(U&Ns)jiy;jaﬂfiwj + (UMNS)M“E#%-W;] , (J.2.8)

V2
where we have used eq. to express the interaction Lagrangian in terms of the neutrino
mass eigenstate fields. The neutral current neutrino interactions are flavor-diagonal (which
follows from the unitarity of Uyns), and are thus equivalent to those of the Standard Model.
Finally, the couplings of the neutrinos to the Higgs and Nambu-Goldstone fields arise from
eq. (J.2.3) and from the term in eq. proportional to Y,. Neglecting terms of O(m2 /v?),

one obtains:

1 ) . _
ﬁnt = E Z [(mye)j(U;[/[NS)jz(Vg)j fl G+ — (mé)i(UMNS)i] (I/g)j /"G~ + h.c.

Z’?j

—\/1% Ej:(m,,e) 5 [(v0); (v (hsna + iGP) + hcl] . (3.2.9)
The Feynman rules for the interactions of the neutrino with the electroweak gauge bosons, the
Higgs boson and the Nambu-Goldstone bosons are exhibited in Fig.

The dimension-five Lagrangian, eq. , is generated by new physics beyond the Standard
Model at the scale A. A possible realization of eq. is the seesaw mechanism, which was
independently discovered on a number of occasions . In the seesaw extension of the Standard
Model [5], one introduces the SU(3)xSU(2)xU(1) gauge singlet two-component neutrino fields
v! (I =1,2,...,n) and writes down the most general renormalizable couplings of the 7/ to the

Standard Model fields:

Lrcesaw = € (V) @ Ly’ — LM ;0757 + hec., (J.2.10)

1671 the literature, the MNS matrix is often defined such that Ujxs (and not Unns) appears in eq. li
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Figure J.2.1: Feynman rules for the interactions of the two-component light neutrino () with
electroweak gauge bosons, the Standard Model Higgs boson and the Nambu-Goldstone bosons,
where i, j label the generation. For the W* bosons and G* scalars, the charge indicated is
flowing into the vertex. The MNS mixing matrix is denoted by Upns. For the rules involving
W= and Z bosons, a corresponding one with lowered spinor indices is obtained by Ez‘ﬂ — —0uB4-
In the th and G interactions, a factor of 2 is included to account for the identical neutrinos.
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where the Yukawa coupling proportional to Y, is the leptonic analogue of the Higgs-quark
Yukawa coupling proportional to Y, [cf. eq. ] In eq. , we have distinguished the
flavor labels of three generations of Standard Model neutrino and charged lepton fields (denoted
by lower case Roman letters 4, j,...) and the flavor labels of singlet neutrino fields (denoted by
upper case Roman letters I, J,...). Note that Y, is a 3 x n matrix and M is an n x n matrix,
where n is the number of singlet neutrino flavors. In general, we shall not specify the value of
n, which may differ from the number of Standard Model lepton generations.

If A =|M| > U then a dimension-five operator of the form given by eq. is
generated in the effective theory at energy scales below A. In this limit, we may neglect the
kinetic energy term of the gauge singlet neutrino fields. Using the Lagrange field equations, we
may solve for #/. Inserting the solution back into eq. then yields eq. , with F /A
given by

FPIN= (V)i (V) n(MHEN (J.2.11)

Using the definition of the SU(2);, doublet lepton field given in Table one can rewrite
eq. (J.2.10) more explicitly as:

Lrocs = —(V)s [@%ﬁf —ot007 | - INI,5' 5 4 he. (1.2.12)

To analyze the physical consequences of the seesaw Lagrangian, we first express eq.
in terms of the unhatted mass eigenstate charged lepton fields [cf. eq. ], and the light
neutrino fields 7; introduced in eq. . It is also convenient to introduce new gauge singlet
neutrino fields 7/ by defining

ol = N7, (J.2.13)

where N is the unitary matrix that Takagi-diagonalizes the complex symmetric matrix M.
That is,
M = NTMN = diag(M;, My, ... ,M,), (1.2.14)

where the M are the singular values of M (i.e., the non-negative square roots of the eigenvalues

of M T]\Zf ). In terms of the mass eigenstate charged lepton fields ¢; and the neutrino fields ;
and !, the seesaw Lagrangian [eq. (J.2.12)] is then given by:

Lroosaw = —(Y,))" y [@°007 — T 407 — SM;0'07 + hee. (J.2.15)

where
Y, =LY, ,N. (J.2.16)
168The Euclidean matrix norm is defined by ||A| = [Tr(AJfA)]l/2 = [Z” \aij|2] 1/2, for a matrix A whose

matrix elements are given by a;;.

268



As above, in the limit of A = || M|| = ||[M|| > v, it is also possible to directly generate
the effective dimension-five operator [eq. (J.2.3)] in terms of the mass eigenstate charged lepton
fields and the new neutrino fields ;. We then identify the corresponding coefficient, F'/A, as

FI/N=—(Y,) k(Y n(M TN, (J.2.17)

Recalling that F = L;IE‘LK, one can check that eq. 1) indeed follows from eqs. (J.2.11]),

(J.2.14]) and (J.2.16]).
To identify the neutrino mass matrix, we set ®° = v and &+ = &~ =0 in eq. (J.2.15):

19 2] iz
L, =5 W V)M, +h.c. (J.2.18)
M
The neutrino mass matrix M, is a (3 +n) x (3 +n) complex symmetric matrix given in block
form by:
O Mp
ML, M
where O is the 3 x 3 zero matrix, M is the diagonal matrix defined in eq. (J.2.14)) and Mp is

a 3 x n complex matrix (called the Dirac neutrino mass matrix),

My

: (J.2.19)

(Mp)'y=v(Y,)";. (J.2.20)

Note that if n = 3 and M = O, then Mp is a 3 x 3 matrix that is simply the leptonic
analogue of the up-type quark mass matrix M. In this case, we would perform a singular value
decomposition of Mp and identify the unhatted neutrino mass eigenstate fields, which can be
assembled into three generations of four-component Dirac neutrinos,
vj
N; = . i=1,2,3. (J.2.21)
it
In the seesaw model (with n not specified), we assume that || M|| > || Mp]|. In this case, the
neutrino mass matrix can be perturbatively Takagi-block-diagonalized as follows [283 343].
Introduce the (3 4+ n) x (3 +n) (approximate) unitary matrix:
113 g — 1 * M72MT * M*l
U= o2 f . b 1 Dl . e (J.2.22)
-M"Mp Losxn —5M "MpMpM~
where 1 is the identity matrix (whose dimension is explicitly specified above). We define trans-

formed [light (¢) and heavy (h)] neutrino states (i7); and ()7 by:

—U : (J.2.23)



By straightforward matrix multiplication, one can verify that to second order accuracy in per-

turbation theory,

~MpM M} 0)

UT M, U ~
o7 M+ 3(M ML Mp + Mp,MpyM™)

: (J.2.24)

where O is the 3 x n zero matrix.
We now can identify an effective 3 x 3 complex symmetric mass matrix M,, for the three
light neutrinos as the upper left-hand block of eq. (J.2.24)),

M,, ~-Mp,M M, (1.2.25)

where corrections of O(v*/A3) have been neglected. Using eqs. (J.2.17) and (J.2.20), we see that
the light neutrino mass matrix obtained in eq. has been correctly reproduced to leading
order in v?/A2.

The physical light neutrino mass eigenstate fields and their masses are identified by egs. (J.2.6|)
and (J.2.7). At energy scales below the heavy neutrino mass scale, A = || M|, and we can set
v, = 0. Neglecting corrections of O(v?/A?), eqs. (J.2.20)—(J.2.25)) imply thatr'igl

Ui ~ (Umns)i’ (Vo) (J.2.26)

(V) 57 = (M Uy M)k = - S Ul mu s, (3:2.2)
k

where in the last step above we have used eq. 1) and (Ult/INS)ji = [(Uwmns)i]*. Using
eqs. (J.2.26) and (J.2.27)) to express the seesaw Lagrangian in terms of the light neutrino mass

eigenstate fields, one can verify that the resulting interactions of the light neutrinos (and charged

leptons) to gauge bosons, the Higgs boson and the Nambu-Goldstone bosons reproduce the

results of eqs. (J.2.8) and (J.2.9) at leading order in v?/A2.

For completeness, we examine the effective n x n complex symmetric mass matrix of the

heavy neutrino states, My, , which is identified as the lower right-hand block in eq. (J.2.24]),
M, ~M + {(M*M,Mp + MpMpM™"). (J.2.28)

Although M is diagonal by definition [cf. eq. (J.2.14])], the right-hand side of eq. (J.2.28)) is no
longer diagonal due to the second order perturbative correction. However, we do not have to

perform another Takagi diagonalization, since the off-diagonal elements of the lower right-hand

169Gtrictly speaking, eq. (J.2.27) should be written as:

i = 1 i cnk
(Y,) g0 ~ EZ(ULINS)" 8" (muy )i (Ve

k,n

to maintain covariance in the flavor indices.
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block only affect the physical (diagonal) masses at higher order in perturbation theory. Thus,

we identify the physical heavy neutrino mass eigenstates to leading order by the unhatted fields,

e

vl ~ v (J.2.29)

with masses
1 .
My, ~ My (1 + 3 2 ’(MD)ZJP) : (1.2.30)
J o

where the M ; are the diagonal elements of M (and no sum over the repeated index J is implied).
That is, the masses of the heavy neutrinos are simply given by m,, , ~ M, up to corrections
that are of the same order as the light neutrino masses.

The interactions of the heavy neutrinos can be likewise obtained. The only unsuppressed
interactions are heavy neutrino couplings to the Higgs boson and Nambu-Goldstone bosons that
are proportional to the Dirac neutrino mass matrix,

1

V2v

All other couplings of the heavy neutrinos to the W= and Z bosons (and additional contributions

: 1 i -
Lt = (UnsMp)* 15 (ve) (R +iG°) + ~(Mp) i GT + hee. (J.2.31)

to the couplings of the heavy neutrinos to the Higgs boson and Nambu-Goldstone bosons) are

suppressed by (at least) a factor of O(v/A).

Appendix K MSSM fermion interaction vertices

In this section, we provide the Feynman rules for the MSSM interaction vertices. To complete the
tabulation of all MSSM Feynman rules, one requires the rules for the purely bosonic interactions
of the MSSM. These can be found in refs. [344}[345].

K.1 Higgs-fermion interaction vertices in the MSSM

The MSSM Higgs sector is a two Higgs doublet model containing eight real scalar degrees of
freedom: one complex Y = —% doublet, Hg = (Hg, H; ) and one complex Y = —&—% doublet,
H, = (H}, HY). The notation reflects the form of the MSSM Higgs sector coupling to fermions:

Ly = e [(V)'5(Hu)oQut! — (Ya)'s(Ha)aQuid — (Y0)'s(Ha)oLil | +hc., (K1)

where the hatted fields are interaction eigenstate quark and lepton fields (with generation labels
i and j), a and b are SU(2); indices and the invariant SU(2); tensor € is defined below
eq. (J.1.5). That is, the neutral Higgs fields H) [HY] couple exclusively to down-type [up-
type] fermion pairs, respectively. In the supersymmetric model, both hypercharge Y = —% and
Y = —i—% complex Higgs doublets are required in order that the theory (which now contains the

corresponding higgsino superpartners) remain anomaly free. The supersymmetric structure of
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the theory forbids the coupling of H l to & and # or the coupling of H(; to @/, as such couplings
would not be holomorphic. Consequently, (at least) two Higgs doublets are required in the MSSM
to generate mass for both “up”-type and “down”-type quarks and charged leptons .
To find the couplings of the Higgs fields, we expand them around the neutral Higgs field
vacuum expectation values vg = <Hg> and v, = <H2> Depending on the application, these
may be chosen to be the minimum of the tree-level scalar potential, or of the full loop-corrected
effective potential, or just left arbitrary. It is always possible to choose the phases of the Higgs
fields such that v, and vy are real and positive. We then define
8 = tan™! (ZZ) , 0< 8 < g (K.1.2)
The one potentially complex squared-mass parameter that appears in the tree-level MSSM
Higgs scalar potential is necessarily real in the convention where the vacuum expectation values
of the neutral Higgs fields are real and positivem Consequently, the tree-level MSSM Higgs
sector conserves CP, which implies that the neutral Higgs mass eigenstates possess definite CP
quantum numbersllzrl Spontaneous electroweak symmetry breaking results in three Goldstone
bosons G*, GY (the neutral Goldstone boson is a CP-odd scalar field), which are absorbed
and become the longitudinal components of the W+ and Z. The remaining five physical Higgs
particles consist of a charged Higgs pair H*, one CP-odd scalar A°, and two CP-even scalars
h? and HY.
It is convenient to define H, = (H, )" and H; = (H; ). One can then parameterize the

mixing angles between Higgs gauge eigenstates and mass eigenstates by writing:

H? = v, + Z Fugo @, Hy = kyged™, (K.1.3)
¢:l:

HY =vg+ — Z kag 8, Hy =) kg o™ (K.1.4)
¢i

For ¢* = (H*, G*)[7]

kup+ = (cos By, sinfBi), (K.1.5)
kgg+ = (sin fx, —cosB+), (K.1.6)
and for ¢ = (h0, HY, A%, GY),
kugo = (cosa, sina, icos By, isinfp), (K.1.7)
kgp0 = (—sina, cosa, isinfBy, —icosfy), (K.1.8)

170The coefficients of the quartic terms of the tree-level MSSM Higgs potential are related to the electroweak
gauge couplings and are manifestly real, independently of the convention for the phases of the Higgs fields.

"IWhen one-loop corrections are taken into account, new MSSM phases can enter in the loops that cannot be
removed. In this case, the physical neutral Higgs states can be mixtures of CP-even and CP-odd scalar states .

172Note that ¢~ = (¢+)T. Since the kyy+ (for f = u,d) are real quantities, we adopt the notation in which
kigp+ =kpy— =kyx and By = - = Bz,
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where the mixing angle « parameterizes the orthogonal matrix that diagonalizes the 2 x 2 CP-
even Higgs squared-mass matrix M3 [defined in eq. (K.1.11)) below].
In eqgs. (K.1.3) and (K.1.4)), the normalization of the vacuum expectation values is

v2 4+ v =2m% /g? ~ (174 GeV)?, (K.1.9)

if one chooses vy, vy to be near the true minimum of the Higgs effective potential. Note that
in the special case that v, and vy are at the minimum of the tree-level potential, the mixing
angles B4 in the charged Higgs sector and Sy in the CP-odd neutral Higgs sectors coincide such
that B4+ = By = B, where B is defined in eq. . However, if one expands around a more
general choice of v, vy, including for example the minimum of the full effective potential, then
the tree-level mixing angles 5y and [i are distinct from each other and from f. (Depending
on the choice of renormalization scale for a particular calculation, the tree-level potential in the
MSSM may have a very different minimum from the true minimum of the full effective potential,
or may not have a proper minimum at all.) Therefore, we do not assume anything specific about
v, and vy except that they are real and positive by convention.

All MSSM Higgs boson masses and the mixing angle « are determined at tree level by
two Higgs sector parameters, usually taken to be the ratio of the tree-level vacuum expectation
values, tan 8 = v, /vy, and the mass of the CP-odd Higgs scalar, m . The tree-level

value of the squared mass of the charged Higgs boson is given by
mie =m% +miy . (K.1.10)
The CP-even Higgs bosons h¥ and H? are eigenstates of the tree-level squared-mass matrix,

2 o2 2 2 2 2\ o
m4 sin® 8 + m7, cos” —(m?% +m7)sin B cos B
M=| 4 Z (g +m3) . (K.1.11)
—(m? +m%)sin B cos B m? cos® B+ m?2 sin? B

The eigenvalues of M(Q) are the tree-level squared masses of the two CP-even Higgs scalars,

m%Lh =1 (mi +m% £ \/(mi +m%)? — 4m?m? cos? 23 > , (K.1.12)

with my, < mpg. The angle « of the orthogonal matrix that diagonalizes /\/l% is given by ||

2 2 2 2
in2a — —sin 28 (mm) . cos2a = —cos28 <M) S (KL13)
TTLH —mh mH —mh

Since sin 2a < 0, the tree-level value of « is restricted to lie in the range —7/2 < a < 0.
Radiative corrections can have a significant impact on the tree-level Higgs masses and

mixing angle « [348}[350]. For example, the tree-level bound my < myz|cos28| < myz |[which

follows from eq. ] is significantly modified by an incomplete cancellation of top quark
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and top squark loop corrections. Including the latter implies that m; < 135 GeV , which
(in contrast to the tree-level prediction) is not experimentally excluded.

The Higgs-fermion Yukawa couplings in the gauge-interaction basis are given by eq. .
Explicitly,

Sy = (V) [ B — i + (¥ a) [

[ E—

R
5
|
§>
%I)
=

+(Yo)' [&@HQ — 0/ Hy | +hec. (K.1.14)

We use eqs. (K.1.3]) and (K.1.4)) to express the interaction-eigenstate Higgs fields in terms of the
physical Higgs fields and Goldstone fields. We can identify the quark and lepton mass matrices

simply by setting H) = v,, H} = vy and H,) = H; =0 in eq. (K.1.14),

(M) =va(YW)'y,  (Ma)j=v(Ya);,  (My)=vaYe). (K.1.15)

We then use egs. (J.1.10)) and (J.1.11)) to express the interaction-eigenstate quark and lepton
fields in terms of the corresponding mass eigenstate fields. Eqgs. (J.1.12)) and (J.1.14]) ensure that

the fermion mass matrices are diagonal (with real non-negative elements) in the fermion mass
eigenstate basis. In this basis, the resulting neutral Higgs-fermion interactions are diagonal.

Here, the diagonalized Higgs-fermion Yukawa coupling matrices appear:

diag(Yo1, Y2, Yuz) = diag(V,,, Y, Y;) = LY R, (K.1.16)
dia’g(Ydla Yd27 Yd3) = dia’g(ydv 1/87 1/E)) = L-drYde ) (K117)
diag(Ye1, Yo, Yes) = diag(Ve, Y, Y7) = L] Y (Ry . (K.1.18)

The diagonalized Yukawa couplings are related to the corresponding fermion masses by
Ym‘ = mui/vu, Ydi = mdi/vd, Y’gl = mgi/vd. (K.l.lg)

We have used the same symbol for the Yukawa couplings in the MSSM as we did for the
Standard Model Yukawa couplings in Appendix J.1. However, it is important to note that the
MSSM Yukawa couplings are normalized differently because of the presence of two neutral Higgs
field vacuum expectation values. Using a superscript SM to denote the Standard Model Yukawa

couplings of Appendix J.1, the MSSM Yukawa couplings defined here are related by:
Vi =Y M/sin g, Yy = YM/ cos B, Y = YiM/cos 3. (K.1.20)

The interactions of the neutral Higgs and Goldstone scalars ¢° = (hY, H?, A°, GO) with
Standard Model fermions are given in Fig. Note that the rules involving undotted spinor
indices are proportional to either couplings kg4 and k,40, whereas the rules involving dotted
spinor indices are proportional to the corresponding complex conjugated couplings. For the

CP-even scalars, kY and H?, the corresponding couplings are real. Hence, starting with the rule
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Figure K.1.1: Feynman rules for the interactions of neutral Higgs bosons ¢° = (h", HY, A°, GY)
with fermion-antifermion pairs in the MSSM. The repeated index i is not summed.

for the coupling of the CP-even neutral scalars to fermions with undotted indices, one obtains
the corresponding rule for the coupling to fermions with dotted indices (with the direction of
the arrows reversed) by taking 6,° — 6% 2 In contrast, for the CP-odd scalars, A° and G°, the
corresponding couplings kggo and k4o are purely imaginary. Therefore, starting with the rule
for the coupling of the CP-odd neutral scalars to fermions with undotted indices, one obtains
the corresponding rule for the coupling to fermions with dotted indices (with the direction of
the arrows reversed) by taking 6,° — —6¢ i The latter minus sign is a signal that A% and G°
are CP-odd scalars. In particular, due to the fact that the Feynman rules for A% and G° arise
from a term in %y proportional to i Im H?, the latter i flips sign when the rule is conjugated
resulting in the extra minus sign noted above. As an additional consequence, since the Feynman
rules are obtained from i.%n, the overall A? and G rules are real.

The couplings of the charged Higgs and Goldstone bosons to quark-antiquark pairs are not
flavor-diagonal and involve the CKM matrix K. Starting with eq. , and changing to

the mass eigenstate basis as before, we make use of egs. (J.1.22) and (J.1.23)) to obtain

Lot = Yo K] dja’ H cos By + Yy [ KT]i7ujd H sin B + Yyl H™ sin fa
+Yu [I{]ijdjﬂiGJr sin B+ — Yy [KT]ijujaﬁG* cos By — Yyil'G™ cos B+ + h.c. (K.1.21)
The resulting charged scalar Feynman rules of the MSSM are given in Fig. Note that when

eq. (K.1.20) is taken into account, the fermion couplings to the neutral and charged Goldstone
bosons are equivalent to those of the Standard Model [cf. eq. (J.1.24))] if we choose 5y = S+ = S.
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Figure K.1.2: Feynman rules for the interactions of charged Higgs bosons ¢* = (HT, G¥)
with fermion-antifermion pairs in the MSSM. The repeated index j is not summed.

K.2 Gauge interaction vertices for neutralinos and charginos

Following egs. (C83) and (C88) of ref. [7], we define:

of = —\%NZA 5+ NigViy, (K.2.1)
05 = % i3Uj2 + NipUjn (K.2.2)
Off = —VaVji = YV + dijsty (K23)
Off = —UjUji — 3URLUjs + 6ijsiy (K.2.4)
Off = =0} = L(NuNj, — NisNy) (K.2.5)

where sy = sinfyy. Here U and V are the unitary matrices that diagonalize the chargino mass

matrix via the singular value decomposition:

UMyV' = diag(mg . mg,) , (K.2.6)
with
My gvy
My = . (K.2.7)
gva

Similarly, N is a unitary matrix that Takagi-diagonalizes the neutralino mass matrix,
-1 .
N*MyN—" = diag(mg, ,mg,, mz,, my,) , (K.2.8)
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with

M, 0 —g'va/V2 v /V2
0 My gua/V2  —guu/V?2

—gva/V2  gua/V2 0 —p

gvu/V2  —gui/V2  —p 0
As noted above eq. (K.1.2)), we work in a convention in which v, and v4 are real and positive. The

gaugino mass parameters M;, My and the higgsino mass parameter p are potentially complex.

We now list the gauge boson interactions with the neutralinos and charginos in the form of
Feynman rules. Here, we make use of the results presented in Figs. The Feynman
rules for Z and ~ interactions with charginos and neutralinos are given in Fig. and the
corresponding rules for W¥ interactions are given in Fig. For each of these rules, one has
a version with lowered spinor indices by replacing Eﬁﬁ — —0u84- We label fermion lines with
the symbols of the two-component fermion fields as given in Table . The Z NZN] interaction
vertex also subsumes the O;;R interaction found in four-component Majorana Feynman rules as

in ref. , due to the result of eq. (G.1.99) and the relation Og'jR = —O;-’iL of eq. 1}

The chargino sector is CP-conserving if Im (Map*) = 0. In this case, the chargino fields

—1ie (5ijﬁzﬂ ie (Sijﬁgﬁ
. I R—d
_Zioifgﬁﬁ
cw

B

Figure K.2.1: Feynman rules for the chargino and neutralino interactions with neutral gauge

bosons. The coupling matrices are defined in eqgs. (K.2.3)—(K.2.5) and ¢y = cosfyy. For each
rule, a corresponding one with lowered spinor indices is obtained by ,” — —0uB6-
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Figure K.2.2: Feynman rules for the chargino and neutralino interactions with W+ gauge
bosons. The charge indicated on the W boson is flowing into the vertex in each case. The
coupling matrices are defined in egs. (K.2.1) and (K.2.2). For each rule, a corresponding one

with lowered spinor indices is obtained by 7,,” — —0,34-

can be rephased such that Ms and p are real, and the chargino mixing matrices U and V' can
be chosen to be real orthogonal. In particular, the couplings O’ and O'f are manifestly real.
Likewise, the neutralino sector is CP-conserving if Im (M;p*) = Im (Map™) = Im (M M) :OITEl
In this case, the neutralino fields can be rephased such that M;, Ms and p are all real, and the
neutralino mixing matrix can be chosen [cf. egs. and ( m ] such that [173]:

N;j = 51/2Zij , no sum over 4, (K.2.10)

where Z is a real orthogonal matrix, and ¢; is the sign (either +1) of the ith eigenvalue of the real
symmetric neutralino mass matrix, Myo. That is, the ith row of N is purely real [imaginary] if
e; = +1 [~1]. In particular, the matrix element O} L'is purely real [imaginary] if g;e; = +1 [—1].
More generally, the neutralino and chargino interactions with the electroweak gauge bosons are
CP-conserving if the corresponding Feynman rules for the interaction vertices are either purely
real or purely imaginary.

In the CP-violating case, the matrices U and V cannot be chosen to be real orthogonal,
and N cannot be written in the form of eq. FLII Nevertheless, the diagonal couplings
OLF, O/F and O}}% are manifestly real. This indicates that the diagonal Z°C;*C~ and ZON;N;
couplings are CP-conserving at tree level, even in the presence of a CP-violating chargino and

neutralino sector. Similarly, the diagonal ’yéj @_ couplings are CP-conserving, whereas the

off-diagonal 75’?6’? couplings (i # j) vanish at tree level, as expected from gauge invariance.

1731f all three of the potentially complex parameters M;, Ms and g are non-zero, then only two of the three
conditions for a CP-conserving neutralino sector are independent, since the third condition follows automatically
from the first two conditions.

17Since M0 is in general a compler symmetric matrix, its eigenvalues are not necessarily all real. In particular,
if the ith eigenvalue is not real, then there is no longer any meaning to the sign ;.
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—iy PTG 5,8 —iy ¥ 5,8

Figure K.3.1: Feynman rules for the interactions of neutral Higgs bosons ¢° = (h°, HY, A°, GY)
with neutralino pairs and chargino pairs, respectively, and the interaction of charged Higgs
bosons ¢+ = (H*, G*) with chargino-neutralino pairs. For each rule, there is a corresponding
one with all arrows reversed, undotted indices changed to dotted indices with the opposite height,
and the Y coupling (without the explicit —i) replaced by its complex conjugate.

K.3 Higgs interactions with charginos and neutralinos

The couplings of chargino and neutralino mass eigenstates to the Higgs mass eigenstates can be
written, in terms of the Higgs mixing parameters of eqs. (K.1.7)) and (K.1.8)) and the neutralino
and chargino mixing matrices of Appendix K.2, as [173]:

0,00 1 N * « * * . .
YOXiX; — §(kd¢0 5= k:ud)o Z\/i4)(gNj2 — g'le) +(i+J), (K.3.1)
Oy~ T g * — * * T ¥
o X0 ® 7Tk 1 * 7Tk g/ ¥ Tk
YOXN = ke [g(N5US — NoRe 2) — N o) (K.3.3)

0

- 1 '
yo X — kugt [9(NHV + —=NpViy) + giNi*lng] , (K.3.4)

V2 V2

for 0 = KO, H?, A% GO and ¢t = H*,G*. We exhibit the Higgs boson and Goldstone boson
interactions with the neutralinos and charginos in Fig. For each of the Feynman rules
in Fig. one can reverse all arrows by taking 6,° — 6% F and complex conjugating the
corresponding coupling (but not the overall factor of —i).

Goldstone bosons may appear as internal lines in of Feynman graphs that are evaluated
in the 't Hooft-Feynman gauge. The propagation of a Goldstone boson yields a result that
is identical to the propagation of the corresponding longitudinal gauge boson in the unitary
gauge. It is thus convenient to express the Goldstone boson couplings to the neutralinos and
charginos in terms of the corresponding gauge boson couplings. To accomplish this, we first

record a number of identities among the neutralino and chargino mixing matrices. First, we use
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egs. (K.2.6) and (K.2.7) to derive:
MU} + guaUsy a Vit gu Uy + pUs & Va2, (K.3.5)
MoV + gu,Vis = me, Ui, guaVil + pVis = Uzg (K.3.6)

Next, we use egs. (K.2.8|) and (]K.2.9[) to derive:

m, Nig = Z §(Myo)ja = \/% (9'N;y = gN3) — w3, (K.3.7)
Vd * "
my, Nis = Z §(Myo)js = Y (9N = gNp) — uNjy (K.3.8)

g
myg, 22_2 §(Myo)j2 = NipMa + 5 (va

By a judicious combination of the above identities, © and Ms can be eliminated. One can
then rewrite the Goldstone boson couplings of egs. (K.3.1)—(K.3.4)) in terms of the gauge boson
couplings O %, O and O" % defined in egs. (K.2.1)-(K.2.5). It then follows that:

(valNjz — vulNj) - (K.3.9)

X0 _ V2 < N O//L Cme O//R> 7 (K.3.10)
v
iy e xS — \vf < O/L e Oij) , (K.3.11)
G+ - f L* Rx*

yEIXIx; T< 5 Of* —myg Off ) , (K.3.12)
_ 2

e xf( 5Ok —mg OR) . (K.3.13)
v

Note that by using O}; e O;’ZL , it follows from eq. (K.3.10)) that YOOI g symmetric under

the interchange of 7 and j, as expected.

In general, for a CP-violating chargino and neutralino sector, the couplings Y#xixX? and
YOG for #° = h0, HY, A° are neither purely real nor purely imaginary. That is, the diagonal
neutralino and chargino couplings to the physical neutral Higgs bosons are generically CP-
violating. However for ¢° = G, the diagonal neutralino and chargino couplings to the neutral
Goldstone boson (when multiplied by ) are manifestly real. In particular, egs. and

(K.3.11)) yield:
2ﬁm~_ \@m~

SVEUN oL TN [|Nia]® = | Nis|?] (K.3.14)

0,,0,0
z’YG XiXi — i

- fm me,
VGO xT = —— Yoo = \f;; [[Vizl* = U] (K.3.15)

where the unitarity of U and V has been used to obtain the final expression in eq. (K.3.15)). It

follows that the diagonal neutralino and chargino couplings to the neutral Goldstone boson are
CP-conserving. This result is not surprising, as the corresponding diagonal tree-level couplings

of the (longitudinal) Z° boson are always CP-conserving as noted at the end of Appendix K.2.
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K.4 Chargino and neutralino interactions with fermions and sfermions

In the MSSM, the scalar partners of the two-component fields ¢ and g are the squarks, denoted
by qr, and gg, respectively. In our notation, ¢; and gy denote both the complex conjugate fields
and the names of the corresponding anti-squarks. Thus u, uy, and ug all have electric charges
+2/3, whereas @, u; and uj, all have electric charges —2/3. Likewise, the scalar partners of the
two-component fields ¢ and ¢ are the charged sleptons, denoted by l, 1, and l, R, respectively, with
¢ = e, u, 7. The sneutrino, v is the superpartner of the neutrino. There is no vg, since there is
no 7 in the theory/l™|

The Feynman rules for the chargino-quark-squark interactions are given in Fig. and
the rules for the neutralino-quark-squark interactions are given in Fig. Here we have taken
the quark and lepton two-component fields to be in a mass eigenstate basis, and the squark and
slepton field basis consists of the superpartners of these fields, as described above. Therefore, in
practical applications, one must include unitary rotation matrix elements relating the squarks
and sleptons as given to the mass eigenstates, which can be different.

In principle, all sfermions with a given electric charge can mix with each other. However,
there is a popular, and perhaps phenomenologically and theoretically favored, approximation in
which only the sfermions of the third family have significant mixing. For f = ¢, b, 7, one can

then write the relationship between the gauge eigenstates fL, fR and the mass eigenstates fl,

f2 as 352)

f f R; R;:
In = X; s Xp= |0 TR, (K.4.1)
fr f2 Ly Ly,
where X is a 2 X 2 unitary matrix. Then one can choose Rfl = L}Z =Cj and Lf1 = —R;}Q =57
with
leql? + [s71* = 1. (K.4.2)

If there is no CP violation, then ¢ 7 and s 7 can be taken real, and they are the cosine and sine
of a sfermion mixing angle For the other charged sfermions (f: u, CZE, S,€, /1), one can use
the same notation, and approximate L = R = land L AT R 7= 0. The resulting Feynman
rules for squarks and sleptons that mix within each generation are shown in Figs. and

K44

For each Feynman rule in Figs. one can reverse all arrows by taking §,% — §¢ )
and complex conjugating the corresponding rule (but leaving the explicit factor of i intact).

17514 is possible to construct a seesaw-extended MSSM that would be the minimal supersymmetric extension of
the seesaw-extended Standard Model described in Appendix J.2. In the seesaw-extended MSSM, both v and its
supersymmetric partner vg exist. For further details on the sneutrino sector of the seesaw-extended MSSM, see
ref. [301].

1" Qur convention for ¢, s 7 has the property that for zero mixing angle, fl = fR and fg = fL. The conventions
most commonly found in the literature unfortunately do not have this nice property.

281



X; Xi
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Figure K.4.1: Feynman rules for the interactions of charginos with fermion/sfermion pairs
in the MSSM. The fermions are taken to be in a mass eigenstate basis, and the sfermions are
in a basis whose elements are the supersymmetric partners of them. For each rule, there is a
corresponding one with all arrows reversed, undotted indices changed to dotted indices with the
opposite height, and the coupling (without the explicit i) replaced by its complex conjugate.
Note that chargino interaction vertices involving @dp and dig do not occur in the MSSM. An
alternative version of these rules, for the case that mixing is allowed only among third-family

sfermions, is given in Fig.
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Figure K.4.2: Feynman rules for the interactions of neutralinos with fermion/sfermion pairs
in the MSSM. The fermions are taken to be in a mass eigenstate basis, and the sfermions are
in a basis whose elements are the supersymmetric partners of them. For each rule, there is a
corresponding one with all arrows reversed, undotted indices changed to dotted indices with the
opposite height, and the coupling (without the explicit ¢) replaced by its complex conjugate. An
alternative version of these rules, for the case that mixing is allowed only among third-family
sfermions, is given in Fig. [K.4.4]
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Figure K.4.3: Feynman rules for the interactions of charginos with third-family
fermion/sfermion pairs in the MSSM. The fermions are taken to be in a mass eigenstate ba-
sis. CKM mixing is neglected, and the sfermions are assumed to only mix within the third
family. The corresponding rules for the first and second families with the approximation of
no mixing and vanishing fermion masses can be obtained from these by setting Y; = 0 and

Lf2 = Rf1 =1 and Lfl = Rf2 = 0 (so that f~’1 = fR and fg = fr). For each rule, there is a
corresponding one with all arrows reversed, undotted indices changed to dotted indices with the

opposite height, and the coupling (without the explicit 7) replaced by its complex conjugate.
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Figure K.4.4: Feynman rules for the interactions of neutralinos with third-family
fermion/sfermion pairs in the MSSM. The comments of the caption of Fig. also apply
here.
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K.5 SUSY-QCD Feynman rules

In supersymmetric (SUSY) QCD, the Lagrangian governing the gluon interactions with col-
ored fermions (gluinos and quarks) in two-component spinor notation, which derives from the

covariant derivatives in the kinetic terms, is given by
c%nt = Z.gsfabd (g:g Eu gb)As - gsT]qk Z [quEuCIk - Q};Equ Ag . (K'5'1)
q

Here g5 is the strong coupling constant, a,b,d = 1,2,...,8 are SU(3). adjoint representation
indices, and f®? are the SU(3) structure constants. Raised (lowered) indices j,k = 1,2,3 are
color indices in the fundamental (anti-fundamental) representation. We have denoted the two-
component gluino field by g, as in Table and the gluon field by Af. The sum > 4 is over the
six flavors ¢ = u,d, s, ¢, b, t (in either the mass eigenstate or electroweak gauge-eigenstate basis).
The corresponding Feynman rules are shown in Fig. The gluino-squark-quark Lagrangian
is given by:
Lot = V20T 3 [Guan @ + 3baV? o — Gud e — 3hal a7 (K.5.2)
q
where the squark fields are taken to be in the same basis as the quarks. The Feynman rules
resulting from these Lagrangian terms are shown in Fig. [K.5.2]
For practical applications, one typically takes the quark fields as the familiar mass eigen-
states, and then performs a unitary rotation on the squarks in the corresponding basis to ob-

tain their mass eigenstate basis. In the approximation described at the end of Appendix K.4

[cf egs. (K.4.1) and (K.4.2) and the accompanying text], one obtains the Feynman rules of
Fig. as an alternative to those of Fig.

qj @
1 a
_jgsj’;lk E;O:B
qk
B
Ja o
uyd
—af
*gsfabd O';Oj
b
B

Figure K.5.1: Fermionic Feynman rules for SUSY-QCD that involve the gluon, with ¢ =

u,d,c,s,t,b. Lowered (raised) indices j, k correspond to the fundamental (anti-fundamental)

representation of SU(3).. For each rule, a corresponding one with lowered spinor indices is
. a8

obtained by 7~ — —0,s4-
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dk q;j
R S —iv/2g, T 6,7 R —iv/2g, T8 6%
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o< iV2g:T7* 60° iv/2gT3* 6%
o
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B

Figure K.5.2: Fermionic Feynman rules for SUSY-QCD that involve the squarks, in a basis
corresponding to the quark mass eigenstates ¢ = u, d, ¢, s,t,b. Lowered (raised) indices j, k cor-
respond to the fundamental (anti-fundamental) representation of SU(3),, and the index a labels
the adjoint representation carried by the gluino. The spinor index heights can be exchanged in
each case, by replacing 6,° — dg” or 5 5= 884. For an alternative set of rules, incorporating

q1—qr mixing, see Fig.

ax @ 4 @
< - —iv/2g, L To* 6,7 e - —iv2g5Lg, T§* 5%
E]V;tj ~ axk =
Ga Ya
B B
¢ “ @
-t V295 R, Tj" 0" iv2g,R; Ti* 6%
~xk .
4y Ga _
B B

Figure K.5.3: Fermionic Feynman rules for SUSY-QCD that involve the squarks in the mass
eigenstate basis labeled by x = 1,2 and ¢ = u,d, ¢, s,t,b, in the approximation where mixing
is allowed only within a given flavor (typically, for the third family only), as in eq. (K.4.1)).
Lowered (raised) indices j, k correspond to the fundamental (anti-fundamental) representation
of SU(3),, and the index a labels the adjoint representation carried by the gluino. The spinor

index heights can be exchanged in each case, by replacing 6,° — §3% or 6% 5 P
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Appendix L Trilinear R-parity-violating Yukawa interactions

In the MSSM, a multiplicative R-parity invariance is imposed, where R = (—1)3(B_L)+25 for a
particle of baryon number B, lepton number L and spin S . Equivalently, R-parity can be
defined to be an additive quantum number modulo 2, where R = +1 corresponds to an even
R-parity and R = —1 corresponds to an odd R-parity. In particular, all the ordinary Standard
Model particles are R parity even, whereas the corresponding supersymmetric partners are
R parity odd. In the R-parity-violating extension of the MSSM (denoted below as RPV-MSSM),
new interactions are allowed that violate R-parity. Such interactions necessarily violate the B—L
global symmetry. R-parity-violating interactions can significantly alter the phenomenology at
colliders (see for example [208211]), especially as the lightest supersymmetric particle (LSP) is
no longer stable [212,[354]. Moreover, the LSP need not be restricted to the lightest neutralino
(or perhaps the sneutrino) as in the MSSM, but can be any supersymmetric particle [207].

In this appendix, we focus on new trilinear supersymmetric Yukawa interactions that can
appear in an RPV-MSSM [354}{357]:

L = _%Aijk (Z*Rkyigj + ﬁzéﬂk + Zngsz‘ — zﬁk&ﬂj — ;]Zkgl — ZLingk) + h.c., (L.l)

zLQJ = _)‘;jk ((j}}kyidj + Zidjc?k + CTLijui — J*kaiuj — ﬁLj(Zkfi — ZLiuij> + h.c., (L.2)

U

Lroga =~ $Nevar [Tl + Al + Al dl] + e, (L.3)

where repeated indices are summed overlzl In egs. 7, Aijks ;jk, pys K, are dimensionless
coupling constants, i,j, k are generation indices, and p,q,r = 1,2,3 are color SU(3) indices,
respectively. The couplings proportional to A and )\ violate L and conserve B, whereas the
couplings proportional to \” violate B and conserve L. Various phenomenological constraints
on these couplings are summarized in refs. |3 .

N/, the Lagrangian of the RPV-MSSM contains one additional su-

persymmetric L-violating mass parameter, x;, which leads to slepton—Higgs mixing and lepton—

In addition to \jx, ;jlw ik
higgsino mixing. Finally, supersymmetry-breaking R-parity-violating parameters would also
contribute to slepton—Higgs mixing and yields new trilinear scalar interactions. These effects
modify the Feynman rules of Appendix K through additional mixing matrices, which we do not
include here (for further details, see e.g. ref. [202]).

Recently, the two-component fermion Feynman rules for the neutral fermions have been
given in refs. -,- Using eq. and Fig. 4 we can now directly determine the
corresponding Feynman rules. These are given in Figs. @ [C2] and [L:3] The same Lagrangian

for the Yukawa interactions is given in terms of four-component fermions in refs. [209,/210]. Two

sample computations that make use of these rules are presented in Sections and

1""The extra factors of 5 in egs. and 1i have been chosen for convenience, due to the antisymmetry

properties of the correspondmg couphngs: Xijk = —Ajiks Ajp = —Nikj-
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—iAijk —iAijk

el J _'L')\ijk;
k

Figure L.1: Feynman rules for the Yukawa couplings of two-component fermions due to the
supersymmetric, R-parity-violating Yukawa Lagrangian %7z [cf. eq. (L.1))]. For each diagram,
there is another with all arrows reversed and A;jp — )\;jk.

-/ -y /
_Z)‘ijk T _Z/\ijk
Vi
7
-\ / -\ /
e —z/\ijk e Z)‘ijk
dL] _ de
dg
¢
-/ -y /
ST - Mijk S I» - Z)‘ijk
Ur; b lri
dg

Figure L.2: Feynman rules for the Yukawa couplings of two-component fermions for the super-
symmetric, R-parity-violating Yukawa Lagrangian .27 57 [cf. eq. (L.2)]. For each diagram, there

is another with all arrows reversed and \; ik )\%‘k
r
dk
. " . "
T _ZEP‘JT)‘ijk’ _“pm‘)‘ijk
Up, h
A dq

Figure L.3: Feynman rules for the Yukawa couplings of two-component fermions due to the
supersymmetric, R-parity-violating Yukawa Lagrangian .Z ;7 [cf. eq. (L.3)]. For each diagram,

there is another with all arrows reversed and )\;’] e )\;’;k.
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