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Abstract

In response to a question posed by João P. Silva, I demonstrate that an arbitrary 2n×2n
real orthogonal antisymmetric matrix can be parameterized by n(n−1) continuous angular
parameters. An algorithm is provided for constructing the general form for such a matrix.
This algorithm is based on observation that Sp(n,R) ∩ O(2n) ∼= U(n) and employs the
parameterization of the coset space SO(2n)/U(n). An explicit parameterization for a 4× 4
real orthogonal antisymmetric matrix is exhibited.

1 Decomposition of a real orthogonal antisymmetric ma-

trix

In these notes, I shall discuss the parameterization of an arbitrary real orthogonal antisymmetric
matrix M , which satisfies

MT = −M , MMT = I , (1)

where I is the identity matrix.
First, we note that M is a 2n× 2n nonsingular matrix such that detM = 1, where n can be

any positive integer. Since MTM = I, it follows that detM = ±1, which implies that that M is
nonsingular. Hence, M is an even-dimensional matrix, since any odd-dimensional antisymmetric
matrix M satisfies detM = 0.1 Moreover, for any even-dimensional 2n × 2n antisymmetric
matrix M , the pfaffian of M , denoted by pfM , is defined by

pfM =
1

2nn!
ǫi1j1i2j2···injnMi1j1Mi2j2 · · ·Minjn , (2)

where ǫ is the rank-2n Levi-Civita tensor, and the sum over repeated indices is implied. A
well-known result states that for any antisymmetric matrix M ,2

detM = [pf M ]2. (3)

In particular, if M is also orthogonal then detM = 1, in which case pf M = ±1.

1Let M be a d× d antisymmetric matrix. Since det M = det (−MT) = det (−M) = (−1)d det M , it follows
that det M = 0 if d is odd.

2For a discussion of the properties of the pfaffian, see, e.g., Ref. [1].
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Next, we note that the eigenvalues of any real antisymmetric matrix M are purely imaginary.
Moreover if λ is an eigenvalue of M then λ∗ is also an eigenvalue (see, e.g., Ref. [2]). Thus, the
eigenvalues of a 2n×2n antisymmetric matrix M can be denoted by ±imi, (i = 1, 2, . . . , n) where
the mi are real and positive. We now exploit the real normal form of a nonsingular 2n× 2n real
antisymmetric matrix M (see, e.g., Appendix D.4 of Ref. [3]). In particular, there exists a real
orthogonal matrix Q such that

QTMQ = N ≡ diag

{(
0 m1

−m1 0

)
,

(
0 m2

−m2 0

)
, · · · ,

(
0 mn

−mn 0

)}
, (4)

where N is written in block diagonal form with 2× 2 matrices appearing along the diagonal and
the mi are real and positive. N is called the real normal form of M . Note that the mi are the
positive square roots of the eigenvalues of MTM .

If in addition, M is a real orthogonal matrix, then we may use the fact that the eigenvalues
of a real orthogonal matrix are complex numbers of unit modulus. In light of the above results,
it follows that mi = 1 for all i = 1, 2, . . . , n. Hence,

QTMQ = J ≡ diag

{(
0 1

−1 0

)
,

(
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

)}

︸ ︷︷ ︸
n

. (5)

Hence, we conclude that any real orthogonal antisymmetric 2n × 2n matrix M can be parame-
terized by

M = QJQT , (6)

where J is defined in eq. (5) and Q is a real orthogonal matrix. we now employ the well-known
property of the pfaffian that pf(QJQT) = pf J detQ. In light of pf J = 1, it follows that

detQ = pf M , (7)

which determines the sign of detQ.

2 Counting parameters

As discussed in Appendix D.4 of Ref. [3], the orthogonal matrix Q in eq. (6) is unique up to
multiplication on the right by a 2n× 2n real orthogonal matrix S that satisfies SJST = J . Such
a matrix S is an element of Sp(n,R) ∩ O(2n) ∼= U(n), where a proof of this isomorphism is
given in Ref. [4].3 Since O(2n) is parameterized by n(2n − 1) continuous parameters and U(n)
is parameterized by n2 parameters, we can use the freedom to multiply Q on the right by S to
remove n2 parameters from Q. This leaves n(2n − 1) − n2 = n(n − 1) parameters in Q that
cannot be removed.

That is, a real orthogonal antisymmetric 2n×2n matrix M can be parameterized by n(n−1)
continuous parameters.

3See problem 1.12 on p. 41 and its solution on p. 306 of Ref. [4]. The proof of this result consists of representing
an arbitrary complex unitary n × n matrix as a real 2n × 2n matrix. Following Section 1.6 of Ref. [4], the
corresponding real 2n× 2n matrix can be identified by UR given in eq. (13). Indeed, one can check that UR is a
2n× 2n orthogonal symplectic matrix [cf. eq. (15) and Appendix B], which exhibits the quoted isomorphism.
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3 An explicit parameterization of a real orthogonal anti-

symmetric matrix

To find an explicit parameterization of M , one must obtain an explicit representation for Q in
which the n2 parameters represented by the matrix S have been successfully removed. We can
accomplish this task as follows. First, we introduce the permuted version of J , which is the
2n× 2n real orthogonal antisymmetric matrix,

Ĵ =

(
0 I

−I 0

)
, (8)

which is related to J by
J = P ĴPT , (9)

where P̂ is a real orthogonal permutation matrix. That is, P ĴPT performs elementary row
operations that interchange pairs of rows in order to produce J . We can now define a new real
orthogonal matrix Q̂ = QP in eq. (6) to obtain

M = Q̂ĴQ̂T . (10)

Two cases must be considered separately depending on whether det Q̂ = +1 or −1. Indeed, if
we compute the pfaffian of M using pf(Q̂ĴQ̂T) = pf Ĵ det Q̂ and pf Ĵ = (−1)n(n−1)/2 (see, e.g.,
Ref. [1]), it follows that

det Q̂ = (−1)n(n−1)/2 pf M , (11)

which determines the sign of det Q̂.
Consider first the case of det Q̂ = +1, which means that Q̂ ∈ SO(2n). Using the results of

the Appendices, we see that one can always express an SO(2n) matrix in the following form

Q̂ = QcUR , (12)

where eqs. (68) and (79) yield

Qc = exp

(
C D
D −C

)
, UR =

(
ReU − ImU
ImU ReU

)
, (13)

in block matrix form. Here, C and D are arbitrary n × n real antisymmetric matrices, and U
is an arbitrary n× n unitary matrix. In particular Qc and UR are both real orthogonal 2n× 2n
matrices. Moreover, UR is symplectic since

URĴ = ĴUR , (14)

as is easily checked. It then follows that

UT

R ĴU(R) = Ĵ , (15)

which is the defining property of a symplectic matrix.4 As discussed in Appendix B, the ma-
trices UR provide a 2n-dimensional orthogonal representation of the group U(n). Moreover, the

4The defining property of a symplectic matrix can employ either J or Ĵ or indeed any antisymmetric matrix
related to J by conjugation [cf. eq. (9)]. See, e.g. Chapter 4, Section 29 of Ref. [5].
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observation above that UR is a real orthogonal symplectic matrix provides the demonstration
that Sp(n,R) ∩ O(2n) ∼= U(n), as previously claimed.

Finally, inserting eq. (12) into eq. (10) and making use of eq. (14), we end up with

M = QcĴQ
T

c , (16)

where

Qc = exp

(
C D
D −C

)
, (17)

and C and D are arbitrary n × n real antisymmetric matrices. We can now count parameters.
Since a real antisymmetric matrix is described by 1

2
n(n − 1) continuous parameters, and Qc is

defined in terms of two real antisymmetric matrices, it follows that Qc and thus M is determined
by n(n − 1) continuous parameters, which confirms our previous claim. Finally, to obtain an
explicit parameterization of M , one must evaluate the matrix exponential Qc.

If det Q̂ = −1, consider first the case of odd n. Then, we can introduce the 2n× 2n matrix

Σn ≡
(
I 0
0 −I

)
, (18)

with the property that det Σn = (−1)n = −1 for odd n. In this case, we observe that

ΣnĴΣ
T

n = −Ĵ , (19)

which implies that there exists an SO(2n) matrix Q̂′ = Q̂Σn such that5

−M = Q̂′ĴQ̂′T . (20)

At this point, we can use our previous analysis to parameterize the real orthogonal antisymmetric
matrix, −M .

If n is even, eq. (20) is not useful since det Q̂ = det Q̂′ = −1. However, a slightly modified
procedure can be employed that will succeed for both cases of even and odd n. In this procedure,
we introduce a 2n× 2n matrix, which in block diagonal form is defined by

Σ = diag(Σ2 , I2 , I2 , . . . , I2︸ ︷︷ ︸
2n−2

) , (21)

where I2 is the 2 × 2 identity matrix and Σ2 ≡ diag(1 , −1). Clearly, det Σ = −1, so we can
again introduce an SO(2n) matrix Q̂′′ = ΣQ̂. It then follows that

ΣMΣT = Q̂′′ĴQ̂′′T . (22)

At this point, we can use our previous analysis to parameterize the real orthogonal antisymmetric
matrix, ΣMΣT.

5One can reach the same conclusion by noting that pf(−M) = (−1)n pf M = −pf M when n is odd, in light
of eq. (11).
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4 Parameterizing a real orthogonal antisymmetric 4 × 4

matrix–Take 1

Two examples are easily checked. First, if n = 1, then M = ±
(

0 1
−1 0

)
which involves no contin-

uous parameters. Second, if n = 2, then the most general real orthogonal antisymmetric 4 × 4
matrix M is parameterized by two continuous parameters. Indeed, we can explicitly compute
the matrix exponential given in eq. (17). Writing

C =

(
0 c

−c 0

)
, D =

(
0 d

−d 0

)
, (23)

it follows that C2 = −c2I2 and D2 = −d2I2. Hence,

(
C D
D −C

)2

= −(c2 + d2)

(
I2 0
0 I2

)
. (24)

Thus, we can compute all powers,

(
C D
D −C

)2n

= (−1)n(c2+d2)n
(
I2 0
0 I2

)
,

(
C D
D −C

)2n+1

= (−1)n(c2+d2)n
(
C D
D −C

)
.

(25)
We can now evaluate the exponential via its Taylor series. The end result is

Qc = exp

(
C D
D −C

)
= I4 cosφ+

(
C D
D −C

)
sin φ

φ
, (26)

where φ ≡ (c2 + d2)1/2 and I4 is the 4× 4 identity matrix. It is convenient to introduce an angle
χ,

sinχ ≡ c√
c2 + d2

, cosχ =
d√

c2 + d2
. (27)

Then, we can rewrite eq. (26) in the following form,

Qc =




cosφ sinφ sinχ 0 sinφ cosχ
− sinφ sinχ cos φ − sin φ cosχ 0

0 sin φ cosχ cos φ − sin φ sinχ
− sin φ cosχ 0 sinφ sinχ cosφ


 . (28)

Finally, inserting eq. (28) into eq. (16) and introducing θ ≡ 2φ yields,

M = QcĴQ
T

c =




0 − sin θ cosχ cos θ sin θ sinχ
sin θ cosχ 0 − sin θ sinχ cos θ
− cos θ sin θ sinχ 0 sin θ cosχ

− sin θ sinχ − cos θ − sin θ cosχ 0


 . (29)

It is straightforward to check that M is a real orthogonal antisymmetric matrix. Moreover
pf M = −1, which yields det Q̂ = 1 in light of eq. (11), as expected. Thus, eq. (29) provides the
most general expression for a real orthogonal antisymmetric 4× 4 matrix M with pf M = −1.
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In the case of pf M = 1, eq. (11) yields det Q̂ = −1. Hence, to obtain the parameterization
of M in this case, we employ eq. (22). The end result is,

M = ΣTQcĴQ
T

c Σ =




0 sin θ cosχ cos θ sin θ sinχ
− sin θ cosχ 0 sin θ sinχ − cos θ

− cos θ − sin θ sinχ 0 sin θ cosχ
− sin θ sinχ cos θ − sin θ cosχ 0


 . (30)

Again, it is straightforward to check that M is a real orthogonal antisymmetric matrix with
pf M = 1.

Indeed, eqs. (29) and (30) provide the most general expressions for a real orthogonal anti-
symmetric 4× 4 matrix.

5 Parameterizing a real orthogonal antisymmetric 4 × 4

matrix–Take 2

The parameterization of Qc is not unique. In this section, we explore an alternative form,

Q′
c = exp

(
C 0
0 −C

)
exp

(
0 D
D 0

)
, (31)

where C and D are arbitrary n × n real antisymmetric matrices given in eq. (23). We can use
eq. (28) to obtain

exp

(
C 0
0 −C

)
=




cos
(
1
2
θ1
)
sin
(
1
2
θ1
)

0 0

− sin
(
1
2
θ1
)
cos
(
1
2
θ1
)

0 0

0 0 cos
(
1
2
θ1
)
− sin

(
1
2
θ1
)

0 0 sin
(
1
2
θ1
)

cos
(
1
2
θ1
)




, (32)

exp

(
0 D
D 0

)
=




cos
(
1
2
θ2
)

0 0 sin
(
1
2
θ2
)

0 cos
(
1
2
θ2
)
− sin

(
1
2
θ2
)

0

0 sin
(
1
2
θ2
)

cos
(
1
2
θ2
)

0

− sin
(
1
2
θ2
)

0 0 cos
(
1
2
θ2
)




, (33)

where θ1 ≡ 2c and θ2 ≡ 2d. The factors of 2 have been inserted for later convenience.
It is noteworthy that the form of Q′

c defined in eq. (31) can be expressed as a product of
simple rotation matrices. First we define the 2× 2 special orthogonal matrix,

r(θ) ≡
(
cos θ − sin θ
sin θ cos θ

)
. (34)

We then define the 4× 4 matrix Rij(θ) as a matrix whose matrix elements are given by

[Rij(θ)]kℓ =

{
δkℓ for k, ℓ 6= i, j ,

r(θ) , for k, ℓ = i, j .

6



It then follows that
Q′

c = RT

12

(
1
2
θ1
)
R34

(
1
2
θ1
)
RT

14

(
1
2
θ2
)
R23

(
1
2
θ2
)
. (35)

Hence, the most general 4 × 4 real orthogonal antisymmetric matrix M with pf M = −1 is
given by

M = Q′
cĴQ

′T
c =




0 − cos θ1 sin θ2 cos θ1 cos θ2 sin θ1
cos θ1 sin θ2 0 − sin θ1 cos θ1 cos θ2

− cos θ1 cos θ2 sin θ1 0 cos θ1 sin θ2
− sin θ1 − cos θ1 cos θ2 − cos θ1 sin θ2 0


 . (36)

Likewise, the most general 4× 4 real orthogonal antisymmetric matrix M with pf M = 1 is then
given by

M = ΣTQ′
cĴQ

′T
c Σ =




0 cos θ1 sin θ2 cos θ1 cos θ2 sin θ1
− cos θ1 sin θ2 0 sin θ1 − cos θ1 cos θ2
− cos θ1 cos θ2 − sin θ1 0 cos θ1 sin θ2

− sin θ1 cos θ1 cos θ2 − cos θ1 sin θ2 0


 . (37)

Although the explicit forms for M given by eqs. (36) and (37) differ in appearance from those of
eqs. (29) and (30), it is straightforward to check that they are equivalent forms if one identifies

cos θ = cos θ1 cos θ2 , tanχ =
tan θ1
sin θ2

. (38)

One can also consider a second alternative form,

Q′′
c = exp

(
0 D
D 0

)
exp

(
C 0
0 −C

)
. (39)

With this parameterization, the most general 4×4 real orthogonal antisymmetric matrix M with
pf M = −1 is given by

M = Q′′
c ĴQ

′′ T
c =




0 − sin θ2 cos θ1 cos θ2 sin θ1 cos θ2
sin θ2 0 − sin θ1 cos θ2 cos θ1 cos θ2

− cos θ1 cos θ2 sin θ1 cos θ2 0 sin θ2
− sin θ1 cos θ2 − cos θ1 cos θ2 − sin θ2 0


 . (40)

Likewise, the most general 4× 4 real orthogonal antisymmetric matrix M with pf M = 1 is then
given by

M = ΣTQ′′
c ĴQ

′′ T
c Σ =




0 sin θ2 cos θ1 cos θ2 sin θ1 cos θ2
− sin θ2 0 sin θ1 cos θ2 − cos θ1 cos θ2

− cos θ1 cos θ2 − sin θ1 cos θ2 0 sin θ2
− sin θ1 cos θ2 cos θ1 cos θ2 − sin θ2 0


 . (41)

Once again, it is straightforward to relate these results to the previous parameterizations of a
4× 4 real orthogonal antisymmetric matrix.
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6 An alternative approach that only partially succeeds

Explicit calculations when n > 2 become quite cumbersome, since one must explicitly evaluate
the matrix exponential given by eq. (17). Thus, I examined another possible line of attack
starting from eq. (6). Consider the initial parameterization of M = QJQT, which depends on a
real orthogonal 2n× 2n matrix Q. First we define the 2× 2 special orthogonal matrix,

rij =

(
cos θij − sin θij
sin θij cos θij

)
. (42)

We then define the N ×N matrix Rij as a matrix whose matrix elements are given by

[Rij ]kℓ =

{
δkℓ for k, ℓ 6= i, j ,

rij , for k, ℓ = i, j .

Then, one possible parameterization of the n× n matrix RN ∈ SO(N), inspired by Ref. [6], is

RN = R12R13 · · ·R1NRN−1 , (43)

where RN−1 is the N ×N matrix written in block diagonal form,

RN−1 =

(
1 0
0 RN−1

)
, (44)

and RN−1 is the (N − 1) × (N − 1) matrix, RN−1 ∈ SO(N − 1). This is a recursive definition
that stops once N = 2 is reached. This means that when expanded out, the SO(N) matrix has
been expressed as a product of 1

2
N(N − 1) rotation matrices, each one of the form Rkℓ. In fact,

any choice of the ordering of the Rij matrices that appear in eq. (43) corresponds to a valid
parameterization of an SO(N) matrix.

Consider the case where pf M = detQ = 1 [cf. eq. (7)].6 Applying the above results to the
matrix Q for the case of N = 2n with a suitable choice for the ordering of the proper rotation
matrices Rij , we shall write

Q = RpR12R34 · · ·R2n−1,2n , (45)

where Rp consists of a product of the rotation matrices Rij where i < j and j 6= i+ 1. Since Q
consists of a product of n(2n − 1) rotation matrices, it follows that Rp consists of a product of
n(2n− 1)− n = 2n(n− 1) rotation matrices.

The key observation is that
(
cos θij − sin θij
sin θij cos θij

)(
0 1

−1 0

)(
cos θij sin θij

− sin θij cos θij

)
=

(
0 1

−1 0

)
. (46)

It therefore follows that

R12R34 · · ·R2n−1,2nJR
T

2n−1,2n · · ·RT

34R
T
12 = J , (47)

6In the case of pf M = detQ = −1, we can consider the corresponding decomposition of the real orthogonal
antisymmetric matrix ΣMΣT, where Σ is defined in eq. (21). Since pf(ΣMΣT) = pf M detΣ = −pf M , it follows
that in this second case, pf(ΣMΣT) = 1, and the analysis that follows is applicable.
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where J is defined in eq. (5). Hence, starting from eq. (6) in the case of detQ = 1, we can
conclude that a real orthogonal antisymmetric 2n× 2n matrix M can be parameterized by

M = RpJR
T

p , (48)

where Rp is the product of 2n(n − 1) proper rotation matrices Rij where i < j and j 6= i + 1.
That is, M can be parameterized by 2n(n − 1) angles θij where i < j and j 6= i + 1. However,
this is twice the number of parameters needed to parameterize M . Thus it must be possible to
write

Rp = RqS , (49)

where S is a real orthogonal symplectic matrix (i.e., SJST = J) that depends on n(n − 1)
parameters, and Rp is a real orthogonal matrix that depends on the remaining n(n− 1) param-
eters. Assuming that the decomposition give by eq. (49) is always possible (which remains to be
demonstrated), then the end result is

M = RqJR
T

q , (50)

which would constitute a parameterization of a general 2n × 2n real orthogonal antisymmetric
matrix in terms of n(n− 1) parameters.

Appendices: The U(n) subgroup of SO(2n)

A. Complex representations of scalar fields

Let Φi(x) be a set of n complex scalar fields. The scalar Lagrangian

L = 1
2
(∂µΦi)

†(∂µΦi)− V (Φi,Φ
†
i ) (51)

is assumed to be invariant under a compact symmetry group G, under which the scalar fields
transform as:

Φi → Ui
jΦj , Φ† i → Φ† j(U †)j

i , (52)

where U is a complex representation of G. Using a well-known theorem, all complex repre-
sentations of a compact group are equivalent (via a similarity transformation) to a unitary
representation. Thus, without loss of generality, we may take U to be a unitary n × n matrix.
Explicitly,

U = exp[−igaΛ
aT a] , (53)

where the generators T a are n × n hermitian matrices. The corresponding infinitesimal trans-
formation law is

δΦi(x) = −igaΛ
a(T a)i

jΦj(x) , (54)

δΦ† i(x) = +igaΦ
† j(x)Λa(T a)j

i , (55)
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where the ga and Λa are real. One can check that the scalar kinetic energy term is invariant
under U(n) transformations. The scalar potential, which is not invariant in general under the
full U(n) group, is invariant under G [which is a subgroup of U(n)] if

(T a)i
jΦj

∂V

∂Φi

− (T a)j
iΦ† j ∂V

∂Φ† i
= 0 (56)

is satisfied.
There are 2n independent scalar degrees of freedom, corresponding to the fields Φi and Φ† i.

We can also express these degrees of freedom in terms of 2n hermitian scalar fields consisting of
φAj and φBj (j = 1, 2, . . . , n) defined by:

Φj =
1√
2
(φAj + iφBj) , Φ† j =

1√
2
(φAj − iφBj) . (57)

It is straightforward to compute the group transformation laws for the hermitian fields φAj and
φBj . These are conveniently expressed by introducing a 2n-dimensional scalar multiplet:

φ(x) =

(
φA(x)
φB(x)

)
. (58)

That is, φAj(x) = φj(x) and φBj(x) = φj+n(x). Then the infinitesimal form of the group
transformation law for φ(x) is given by φk(x) → φk(x) + δφk(x) for k = 1, 2, . . . , 2n, where

δφk(x) = −igΛa(T a)k
ℓφℓ(x) , (59)

and

iT a =

(
− Im T a −Re T a

Re T a − Im T a

)
. (60)

Note that Re T a is symmetric and Im T a is antisymmetric (which follow from the hermiticity of
T a). Thus, iT a is a real antisymmetric 2n× 2n matrix, which when exponentiated yields a real
orthogonal 2n-dimensional representation of G.

B. The embedding of U(n) in SO(2n)

Consider a scalar field theory consisting of n identical complex fields Φi, with a Lagrangian

L = 1
2
(∂µΦi)

†(∂µΦi)− V (Φ†Φ) , (61)

where the potential function V is a function of Φ† iΦi. Such a theory is invariant under the U(n)
transformation Φ → UΦ, where U is an n× n unitary matrix.

Rewrite the Lagrangian in terms of hermitian fields φAi and φBi defined by:

Φj =
1√
2
(φAj + iφBj) , Φ† j =

1√
2
(φAj − iφBj) , (62)

and introduce the 2n-dimensional hermitian scalar field:

φ(x) =

(
φA(x)
φB(x)

)
. (63)
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One can show that the Lagrangian is actually invariant under a larger symmetry group O(2n),
corresponding to the transformation φ → Oφ where O is a 2n× 2n orthogonal matrix.

Working in the complex basis, one can show that the Lagrangian [eq. (61)] is invariant under
the transformation:

Φi → Ui
jΦj + Φ† j(V †)j

i , (64)

where U and V are complex n × n matrices, provided that the following two conditions are
satisfied:

(i) (U †U + V †V )i
j = δi

j , (65)

(ii) V TU is an antisymmetric matrix . (66)

In particular, the 2n× 2n matrix

Q =

(
Re(U + V ) − Im(U + V )
Im(U − V ) Re(U − V )

)
(67)

is an orthogonal matrix if U and V satisfy eqs. (65) and (66). One can prove that any 2n× 2n
orthogonal matrix can be written in the form of eq. (67) by verifying that Q is determined by
n(2n− 1) independent parameters. This is most easily done with an infinitesimal analysis.

Using the above results, it follows that if U is a unitary n × n matrix, then the 2n × 2n
orthogonal matrix,7

QU =

(
ReU − ImU
ImU ReU

)
(68)

provides an embedding of the subgroup U(n) inside O(2n). By writing

QU = exp[−igΛaT a] , U = exp[−igΛaT a] ,

one can show that T a is given by eq. (60) in terms of the T a.
Moreover, using the well-known formula for the determinant of a block-partitioned matrix:

det

(
P Q

R S

)
= det P det (S −RP−1Q) , (69)

and writing UR ≡ ReU and UI ≡ ImU , it follows that

det QU = det UTdet [UR + UIU
−1
R UI ] , (70)

after using det U = det UT. Since U is unitary by assumption (since we have chosen V = 0 in
defining QU), U

†U = I implies that

UT

RUR + UT

I UI = I , UT

RUI = UT

I UR , (71)

after separating out the real and imaginary parts. Inserting these results into eq. (70) and using
eq. (71), we find:

det QU = det [UT

RUR + UT

RUIU
−1
R UI ] = det [I − UT

I UI + UT

I UI ] = det I = 1 .

(72)

That is, QU is an element of SO(2n).

7Note thatQU is also an element of Sp(n, R) in light of eq. (15). Hence, it follows that Sp(n,R)∩O(2n) ∼= U(n).
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C. The embedding of the u(n) Lie subalgebra inside so(2n)

We begin with the following theorem, which is useful in the analysis of spontaneous symmetry
break of an SO(2n) symmetric potential of a theory of a second-rank antisymmetric tensor
multiplet of scalars [7]. In this section, In (I2n) is the n× n (2n× 2n) identity matrix.

Theorem: Suppose that Σ0 is a 2n × 2n real antisymmetric matrix that satisfies ΣT

0Σ0 =
Σ0Σ

T

0 = c2I2n for some real number c. Then, if the generators of the Lie algebra of SO(2n), hence-
forth denoted by so(2n), in the defining (2n-dimensional) representation are given by {Ta, Xb},
where the iTa and iXb are real antisymmetric 2n× 2n matrices that satisfy:

TaΣ0 + Σ0T
T

a = 0 , (73)

XbΣ0 − Σ0X
T

b = 0 , (74)

then the Ta span a u(n) Lie subalgebra of so(2n), while the remaining generators, Xb, span
elements of so(2n) whose exponentials comprise the SO(2n)/U(n) homogeneous space. Moreover,
Tr(TaXb) = 0.

Proof: First, I show that if ΣT

0Σ0 = Σ0Σ
T

0 = c2I2n and TaΣ0 + Σ0T
T

a = 0, then the Ta span
an U(n) Lie subalgebra. Note that these two conditions imply:

c2 TT

a = −ΣT

0 TaΣ0 . (75)

As noted in eq. (4), for any even-dimensional real antisymmetric matrix M , there exists a real
orthogonal matrix W such that WMWT = diag(J1 ,J2 , . . . ,Jn) is block diagonal, where each
block is a 2 × 2 matrix of the form Jn ≡

(
0 zn

−zn 0

)
where zn ∈ R and the z2n are the eigenvalues

of MMT (or MTM).8 Applying this result to Σ0, note that the eigenvalues of Σ0Σ
T

0 are all
degenerate and equal to c2. Moreover, since the matrix

Ĵ ≡
(

0 In
−In 0

)
, (76)

satisfies Ĵ ĴT = I2n, it follows that one can find real orthogonal matrices W1 and W2 such that
W1Σ0W

T

1 = cW2ĴW
T

2 = diag(cJ , cJ , . . . , cJ ), where J ≡
(

0 1
−1 0

)
. That is, the factorizations of

Σ0 and cĴ yield the same block diagonal matrix consisting of n identical 2× 2 blocks consisting
of cJ . Thus, there exists a real orthogonal matrix V = W−1

2 W1 such that V Σ0V
T = c Ĵ . The

inverse of this result is V ΣT

0 V
T = −c Ĵ (since ĴT = −Ĵ). I now define T̃a ≡ V TaV

T. Then
eq. (75) implies that

T̃T

a =
−1

c2
V ΣT

0 V
TT̃aV Σ0V

T = Ĵ T̃aĴ . (77)

Likewise, one can use the same matrix V to define X̃b ≡ V XbV
T. By an analogous computation,

c2XT = ΣT

0XΣ0, which implies that X̃T

b = −ĴX̃bĴ .

Recall that that Ta and Xb are both antisymmetric 2n × 2n matrices. Then, T̃a ≡ V TaV
T

and X̃a ≡ V XaV
T are also antisymmetric. Hence, it follows that

T̃a = −Ĵ T̃aĴ , X̃a = ĴX̃aĴ . (78)

8In particular, it is always possible to find a suitable choice for the unitary matrix W such that the zi are real
and non-negative. For further details, see Appendix D of Ref. [3].
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Using the explicit form for Ĵ , eq. (78) implies that T̃a and X̃b take the following block form:

i T̃a =

(
A B
−B A

)
, iX̃b =

(
C D
D −C

)
, (79)

where A, B, C and D are n × n real matrices such that A, C and D are antisymmetric and
B is symmetric. Thus, I have exhibited a similarity transformation (note that V T = V −1)
that transforms the basis of the Lie algebra spanned by the Ta to one that is spanned by the
T̃a. Moreover, consider the isomorphism that maps i T̃a given in eq. (79) to the n × n matrix
A + iB. Since (A + iB)† = (A− iB)T = −(A + iB), we see that the A + iB are anti-hermitian
generators (which are not generally traceless) that span a u(n) subalgebra of so(2n). We can
check the number of u(n) generators by counting the number of degrees of freedom of one real
antisymmetric and one real symmetric matrix: 1

2
n(n− 1) + 1

2
n(n + 1) = n2, as expected.

Finally, multiplying the two equations c2 TT

a = −ΣT

0 TaΣ0 and c2XT

b = ΣT

0XbΣ0, it follows
that c2 TT

a X
T

b = −ΣT

0 TaXbΣ0 (after employing ΣT

0Σ0 = c2I2n). Taking the trace, it follows that
Tr TaXb = −Tr TaXb, and we conclude that TrTaXb = 0.

To show that the {Ta, Xb} span the full so(2n) Lie algebra, we have already noted above that
there are n2 generators, {Ta}. In addition, there are n(n−1) generators, {Xa}, corresponding to
the number of parameters describing two real antisymmetric matrices [see eq. (79)]. Thus, the
total number of generators is n(2n− 1) which matches the total number of so(2n) generators.
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