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Abstract

In response to a question posed by Joao P. Silva, I demonstrate that an arbitrary 2n x 2n
real orthogonal antisymmetric matrix can be parameterized by n(n — 1) continuous angular
parameters. An algorithm is provided for constructing the general form for such a matrix.
This algorithm is based on observation that Sp(n,R) N O(2n) = U(n) and employs the
parameterization of the coset space SO(2n)/U(n). An explicit parameterization for a 4 x 4
real orthogonal antisymmetric matrix is exhibited.

1 Decomposition of a real orthogonal antisymmetric ma-
trix

In these notes, I shall discuss the parameterization of an arbitrary real orthogonal antisymmetric
matrix M, which satisfies
M"=—-M, MMT =1, (1)

where I is the identity matrix.

First, we note that M is a 2n x 2n nonsingular matrix such that det M = 1, where n can be
any positive integer. Since MTM = 1, it follows that det M = £1, which implies that that M is
nonsingular. Hence, M is an even-dimensional matrix, since any odd-dimensional antisymmetric
matrix M satisfies det M = 0.! Moreover, for any even-dimensional 2n x 2n antisymmetric
matrix M, the pfaffian of M, denoted by pf M, is defined by
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where ¢ is the rank-2n Levi-Civita tensor, and the sum over repeated indices is implied. A
well-known result states that for any antisymmetric matrix M2

det M = [pf M]*. (3)

In particular, if M is also orthogonal then det M = 1, in which case pf M = +1.

Let M be a d x d antisymmetric matrix. Since det M = det (=M ") = det (—M) = (—1)%det M, it follows
that det M = 0 if d is odd.
2For a discussion of the properties of the pfaffian, see, e.g., Ref. [1].



Next, we note that the eigenvalues of any real antisymmetric matrix M are purely imaginary.
Moreover if A is an eigenvalue of M then \* is also an eigenvalue (see, e.g., Ref. [2]). Thus, the
eigenvalues of a 2n X 2n antisymmetric matrix M can be denoted by +im;, (i = 1,2,...,n) where
the m; are real and positive. We now exploit the real normal form of a nonsingular 2n x 2n real
antisymmetric matrix M (see, e.g., Appendix D.4 of Ref. [3]). In particular, there exists a real
orthogonal matrix () such that

QTMQINEdiag{<_WSI n(;l)’(_ﬂ(; néz)<_ng ﬂé)} (4)

where N is written in block diagonal form with 2 x 2 matrices appearing along the diagonal and
the m; are real and positive. N is called the real normal form of M. Note that the m; are the
positive square roots of the eigenvalues of M T M.

If in addition, M is a real orthogonal matrix, then we may use the fact that the eigenvalues
of a real orthogonal matrix are complex numbers of unit modulus. In light of the above results,
it follows that m; =1 for all « = 1,2,...,n. Hence,

awo-ranf(4). (30 - (3)) o
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Hence, we conclude that any real orthogonal antisymmetric 2n X 2n matrix M can be parame-
terized by

M=QJQT, (6)
where J is defined in eq. (5) and @ is a real orthogonal matrix. we now employ the well-known
property of the pfaffian that pf(QJQT) = pf J det Q. In light of pf J = 1, it follows that

det Q = pf M, (7)

which determines the sign of det ().

2 Counting parameters

As discussed in Appendix D.4 of Ref. [3], the orthogonal matrix @ in eq. (6) is unique up to
multiplication on the right by a 2n x 2n real orthogonal matrix S that satisfies SJST = J. Such
a matrix S is an element of Sp(n,R) N O(2n) = U(n), where a proof of this isomorphism is
given in Ref. [4].3 Since O(2n) is parameterized by n(2n — 1) continuous parameters and U(n)
is parameterized by n? parameters, we can use the freedom to multiply @ on the right by S to
remove n? parameters from Q. This leaves n(2n — 1) — n? = n(n — 1) parameters in Q that
cannot be removed.

That is, a real orthogonal antisymmetric 2n x 2n matrix M can be parameterized by n(n—1)
continuous parameters.

3See problem 1.12 on p. 41 and its solution on p. 306 of Ref. [4]. The proof of this result consists of representing
an arbitrary complex unitary n X n matrix as a real 2n x 2n matrix. Following Section 1.6 of Ref. [4], the
corresponding real 2n x 2n matrix can be identified by Ugr given in eq. (13). Indeed, one can check that Ug is a
2n x 2n orthogonal symplectic matrix [cf. eq. (15) and Appendix B], which exhibits the quoted isomorphism.



3 An explicit parameterization of a real orthogonal anti-
symmetric matrix

To find an explicit parameterization of M, one must obtain an explicit representation for @) in
which the n? parameters represented by the matrix S have been successfully removed. We can
accomplish this task as follows. First, we introduce the permuted version of .J, which is the
2n x 2n real orthogonal antisymmetric matrix,

e

J="PrJpPT, (9)

where P is a real orthogonal permutation matrix. That is, PJjpPT performs elementary row
operations that interchange pairs of rows in order to produce J. We can now define a new real
orthogonal matrix () = QP in eq. (6) to obtain

M=QJQ". (10)

which is related to J by

Two cases must be considered separately depending on whether det@ = +1 or —1. Indeed, if
we compute the pfaffian of M using pf(QJQT) = pf J det Q and pf J = (=1)""=D/2 (see, e.g.,
Ref. [1]), it follows that

det Q = (—1)""=Y/2 pf M | (11)

which determines the sign of det Q A
Consider first the case of det ) = +1, which means that ) € SO(2n). Using the results of
the Appendices, we see that one can always express an SO(2n) matrix in the following form

~

Q= Q:Ur, (12)
where egs. (68) and (79) yield

¢ D ReU —ImU
Qe = exp <D —0) ’ Un = < Im U ReU) ’ (13)

in block matrix form. Here, C' and D are arbitrary n x n real antisymmetric matrices, and U
is an arbitrary n x n unitary matrix. In particular ). and Ug are both real orthogonal 2n x 2n
matrices. Moreover, Ug is symplectic since

UrJ = JUg, (14)
as is easily checked. It then follows that
UFJU(R) = J, (15)

which is the defining property of a symplectic matrix.* As discussed in Appendix B, the ma-
trices Ug provide a 2n-dimensional orthogonal representation of the group U(n). Moreover, the

4The defining property of a symplectic matrix can employ either J or J or indeed any antisymmetric matrix
related to J by conjugation [cf. eq. (9)]. See, e.g. Chapter 4, Section 29 of Ref. [5].
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observation above that Ug is a real orthogonal symplectic matrix provides the demonstration
that Sp(n,R) N O(2n) = U(n), as previously claimed.
Finally, inserting eq. (12) into eq. (10) and making use of eq. (14), we end up with

M=Q.JQ/, (16)

where

o= (p ¢, (17)

and C and D are arbitrary n X n real antisymmetric matrices. We can now count parameters.
Since a real antisymmetric matrix is described by %n(n — 1) continuous parameters, and @, is
defined in terms of two real antisymmetric matrices, it follows that ). and thus M is determined
by n(n — 1) continuous parameters, which confirms our previous claim. Finally, to obtain an
explicit parameterization of M, one must evaluate the matrix exponential Q..

If det Q = —1, consider first the case of odd n. Then, we can introduce the 2n x 2n matrix

¥, = (é -(1)) , (18)

with the property that det >, = (—1)" = —1 for odd n. In this case, we observe that

S8t = —J, (19)
which implies that there exists an SO(2n) matrix Q' = Q%, such that?

~M=QJQT. (20)

At this point, we can use our previous analysis to parameterize the real orthogonal antisymmetric
matrix, —M.

If n is even, eq. (20) is not useful since det Q = det Q' = —1. However, a slightly modified
procedure can be employed that will succeed for both cases of even and odd n. In this procedure,
we introduce a 2n x 2n matrix, which in block diagonal form is defined by

Z:diag(22a12a12>"'712)a (21)
~—_——
2n—2

where I is the 2 X 2 identity matrix and X = diag(1, —1). Clearly, detX = —1, so we can
again introduce an SO(2n) matrix Q" = XQ. It then follows that

SMET =Q"JQ"T. (22)

At this point, we can use our previous analysis to parameterize the real orthogonal antisymmetric
matrix, SMXT.

®One can reach the same conclusion by noting that pf(—M) = (=1)" pf M = —pf M when n is odd, in light
of eq. (11).



4 Parameterizing a real orthogonal antisymmetric 4 X 4
matrix—Take 1

Two examples are easily checked. First, if n = 1, then M = + (_(1) é) which involves no contin-

uous parameters. Second, if n = 2, then the most general real orthogonal antisymmetric 4 x 4
matrix M is parameterized by two continuous parameters. Indeed, we can explicitly compute
the matrix exponential given in eq. (17). Writing

(L) e (h)

it follows that C? = —c?I, and D? = —d?I,. Hence,

(g _DC)2 — (P4 D) <102 102) | (24)

Thus, we can compute all powers,

C D 2”_ n(.2 2\n I2 0 C D 2n+1_ n(.2 2\n C D
(D —C’) = (=1)"(c"+d°) (O L) D _C = (=1)"(c"+d) D —c-
(25)
We can now evaluate the exponential via its Taylor series. The end result is
B ¢ DY\ C D\ sing
Q. = exp (D _C)—I4cos¢+<D _0)7, (26)

where ¢ = (c® + d?)'/? and 14 is the 4 x 4 identity matrix. It is convenient to introduce an angle
he

sin xy = ¢ cos d (27)
ny=-—, = —.
X=Uar e X V2 + d?
Then, we can rewrite eq. (26) in the following form,
cos ¢ sin ¢ sin 0 sin ¢ cos x
0, = —sin ¢ sin y cos ¢ — sin ¢ cos 0 (28)
°c 0 sin ¢ cos x cos ¢ —sin ¢ sin
— sin ¢ cos 0 sin ¢ sin x coS @
Finally, inserting eq. (28) into eq. (16) and introducing 6 = 2¢ yields,
0 —sin € cos x cosf sin @ sin
AT | sinfcosx 0 —sin fsin y cosf
M=Q.JQ,; = —cosf sin @ sin 0 sin 6 cos (29)
—sin @ sin y —cosf —sin# cos y 0

It is straightforward to check that M is a real orthogonal antisymmetric matrix. Moreover
pf M = —1, which yields det = 1 in light of eq. (11), as expected. Thus, eq. (29) provides the
most general expression for a real orthogonal antisymmetric 4 x 4 matrix M with pf M = —1.

>



In the case of pf M =1, eq. (11) yields det Q = —1. Hence, to obtain the parameterization
of M in this case, we employ eq. (22). The end result is,

0 sin 6 cos x cos sin 6 sin y
 wTA $ATw | —sinfcosx 0 sin @ sin x —cos
M=%1Q.JQ: 2 = —cosf —sinfsin x 0 sin 0 cos (30)
—sinfsin y cosf —sinf cos x 0

Again, it is straightforward to check that M is a real orthogonal antisymmetric matrix with
pf M =1.

Indeed, egs. (29) and (30) provide the most general expressions for a real orthogonal anti-
symmetric 4 X 4 matrix.

5 Parameterizing a real orthogonal antisymmetric 4 X 4
matrix—Take 2

The parameterization of (). is not unique. In this section, we explore an alternative form,

Q. = exp <§ _g) exp <10) 10)) , (31)

where C' and D are arbitrary n x n real antisymmetric matrices given in eq. (23). We can use
eq. (28) to obtain

cos(%@l) sm(%@l) 0 0
exp< 0) B —sm(%@l) cos(%@l) 0 0 (32)
0-C 0 0 cos(%@l) —sin(%@l) 7
0 0 sin(%@l) cos(%@l
008(592) 0 0 sm(%eg)
exp <0 D) B 0 cos(%ﬁg) —sin(%eg) 0 (33)
D 0 0 sin(%eg) cos(%ﬁg) 0 7
—sin(%eg) 0 0 cos(%%)

where 6; = 2¢ and 05 = 2d. The factors of 2 have been inserted for later convenience.
It is noteworthy that the form of @, defined in eq. (31) can be expressed as a product of
simple rotation matrices. First we define the 2 x 2 special orthogonal matrix,

r(0) = (cose —sine) . (34)

sin 6 cos 6
We then define the 4 x 4 matrix R;;(¢) as a matrix whose matrix elements are given by

6]@( for kag%imja

[Rij(e)]ké = {7‘(9), for k, 0 =1i,75.
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It then follows that

QL = BT, (361) Raa (100) BT, (362) Raa (362 (39
Hence, the most general 4 x 4 real orthogonal antisymmetric matrix M with pf M = —1 is
given by
0 — cos B sin 0, cos 6, cos 0y sin 64
v AT cos 0 sin 6, 0 —sin 6, cos 6, cos 0y
M=0Q.JQ = | _ cos 0, cos 0y sin 6, 0 cos 0 sin 0, (36)
—sin 64 —cosf cosfy —cosb;sinb, 0

Likewise, the most general 4 x 4 real orthogonal antisymmetric matrix M with pf M =1 is then
given by

0 cos 6 sin 6, cos 0 cos 0 sin 6,
 wTy $vTw | —cosbsinb, 0 sin 6 — cos 01 cos 0
M=2%"QJ X = | _ cos 01 cos 05 —sin 6, 0 cos 0, sin 0, (37)
—sin 6, cos B cosfy — cos 6y sin Oy 0

Although the explicit forms for M given by eqs. (36) and (37) differ in appearance from those of
egs. (29) and (30), it is straightforward to check that they are equivalent forms if one identifies

cos ) = cos by cos by, tan y = — : (38)

One can also consider a second alternative form,

Q! = exp (lO) g) exp (g _g) . (39)

With this parameterization, the most general 4 x 4 real orthogonal antisymmetric matrix M with
pf M = —1 is given by

0 —sin 6y cos 01 cosfy  sin B, cos 0
ST sin 6, 0 —sin @y cosfy cos by cos by
M=Q.JQ:" =| _ cos By cosfy  sin @, cos Oy 0 sin 0y (40)
—sin @y cosfy — cos by cosb, —sin 6, 0

Likewise, the most general 4 x 4 real orthogonal antisymmetric matrix M with pf M = 1 is then
given by

0 sin 6y cos B cosfy  sin 6y cos b,
T T —sin 0, 0 sinf; cosfy — cos B cos b,
M=% JQ: %= | cos B cosfy —sin by cos Oy 0 sin 0, (41)
— sin 6; cos 0y cos 0 cos 0 —sin 6y 0

Once again, it is straightforward to relate these results to the previous parameterizations of a
4 x 4 real orthogonal antisymmetric matrix.



6 An alternative approach that only partially succeeds

Explicit calculations when n > 2 become quite cumbersome, since one must explicitly evaluate
the matrix exponential given by eq. (17). Thus, I examined another possible line of attack
starting from eq. (6). Consider the initial parameterization of M = QJQT, which depends on a
real orthogonal 2n x 2n matrix (). First we define the 2 x 2 special orthogonal matrix,

~ (cosB;; —sinb;;
Tij = <sin 0, cosHiJ) ’ (42)

We then define the N x N matrix R;; as a matrix whose matrix elements are given by

[R] _ 6k€ for kve#iujv
ke Tij for ]{Z,ezl,j

Then, one possible parameterization of the n x n matrix Ry € SO(NV), inspired by Ref. [6], is
Ry = RipRy3--- RinRy-1, (43)

where Ry_1 is the N x N matrix written in block diagonal form,

1 0
me= (0 ). w

and Ry_; is the (N — 1) x (N — 1) matrix, Ry_; € SO(N — 1). This is a recursive definition
that stops once N = 2 is reached. This means that when expanded out, the SO(N) matrix has
been expressed as a product of %N (N — 1) rotation matrices, each one of the form Ry,. In fact,
any choice of the ordering of the R;; matrices that appear in eq. (43) corresponds to a valid
parameterization of an SO(NN) matrix.

Consider the case where pf M = detQ = 1 [cf. eq. (7)].° Applying the above results to the
matrix @) for the case of N = 2n with a suitable choice for the ordering of the proper rotation
matrices I?;;, we shall write

Q = RyRiaR3s -+ Rop—120, (45)

where R, consists of a product of the rotation matrices R;; where ¢ < j and j # ¢ + 1. Since @
consists of a product of n(2n — 1) rotation matrices, it follows that R, consists of a product of
n(2n — 1) —n = 2n(n — 1) rotation matrices.

The key observation is that

cosb;; —sinb;; 0 1 cosb;; sinf;;\ 01 (46)
sinf;;  cosb;;) \—1 0) \ —sinb,; cosb;;) \—-1 0]

It therefore follows that

T T pT
RiaRsy - - 'R2n—1,2nJR2n—1,2n Ry Ry =, (47)
In the case of pf M = det Q = —1, we can consider the corresponding decomposition of the real orthogonal

antisymmetric matrix XM YT, where ¥ is defined in eq. (21). Since pf(SMXT) = pf M det ¥ = —pf M, it follows
that in this second case, pf(XMXT) = 1, and the analysis that follows is applicable.

8



where J is defined in eq. (5). Hence, starting from eq. (6) in the case of det@ = 1, we can
conclude that a real orthogonal antisymmetric 2n x 2n matrix M can be parameterized by

M = R,JR; , (48)

where R, is the product of 2n(n — 1) proper rotation matrices R;; where i < j and j # i + 1.
That is, M can be parameterized by 2n(n — 1) angles 6;; where i < j and j # ¢ + 1. However,
this is twice the number of parameters needed to parameterize M. Thus it must be possible to
write

R,=R,S, (49)

where S is a real orthogonal symplectic matrix (i.e., SJST = J) that depends on n(n — 1)
parameters, and R, is a real orthogonal matrix that depends on the remaining n(n — 1) param-
eters. Assuming that the decomposition give by eq. (49) is always possible (which remains to be
demonstrated), then the end result is

M = R,JR}, (50)

which would constitute a parameterization of a general 2n x 2n real orthogonal antisymmetric
matrix in terms of n(n — 1) parameters.

Appendices: The U(n) subgroup of SO(2n)

A. Complex representations of scalar fields

Let ®;(x) be a set of n complex scalar fields. The scalar Lagrangian
L = 5(0,2)1(0" ;) — V(®;, @) (51)

is assumed to be invariant under a compact symmetry group G, under which the scalar fields
transform as:

®; — U D, T — T (YT, (52)
where U is a complex representation of G. Using a well-known theorem, all complex repre-
sentations of a compact group are equivalent (via a similarity transformation) to a unitary
representation. Thus, without loss of generality, we may take U to be a unitary n x n matrix.
Explicitly,

U = exp[—ig, AT, (53)

where the generators 7% are n X n hermitian matrices. The corresponding infinitesimal trans-
formation law is

5@,([[’) = —igaAa(Ta)ijq)j(l’) s (54)
00V (2) = +iga® (x)A"(T");", (55)



where the g, and A* are real. One can check that the scalar kinetic energy term is invariant
under U(n) transformations. The scalar potential, which is not invariant in general under the
full U(n) group, is invariant under G [which is a subgroup of U(n)]| if

% ov
aNIP .
(77558, Bk

— (T*);' 1 —— =0 (56)
is satisfied.
There are 2n independent scalar degrees of freedom, corresponding to the fields ®; and ®.

We can also express these degrees of freedom in terms of 2n hermitian scalar fields consisting of
¢aj and ¢p; (7 =1,2,...,n) defined by:

;= %(@U +i0B;), Pl = %

It is straightforward to compute the group transformation laws for the hermitian fields ¢4, and
¢Bj. These are conveniently expressed by introducing a 2n-dimensional scalar multiplet:

o) = (200 ) 59

That is, ¢a;(z) = ¢;(z) and ¢pj(r) = ¢jin(x). Then the infinitesimal form of the group
transformation law for ¢(x) is given by ¢p(x) — ¢p(x) + d¢p(x) for k =1,2,...,2n, where

(Paj — i¢n;)) - (57)

dop(x) = —iQAa(Ta)k%z(x) ) (59)
and ImTe —ReT

o —ImT® —ReT*

"= ( Re7® —ImT* ) ' (60)

Note that Re 7 is symmetric and Im 7 is antisymmetric (which follow from the hermiticity of
T®). Thus, iT* is a real antisymmetric 2n x 2n matrix, which when exponentiated yields a real
orthogonal 2n-dimensional representation of G.

B. The embedding of U(n) in SO(2n)

Consider a scalar field theory consisting of n identical complex fields ®;, with a Lagrangian
& = 5(0,9)'(0"®;) — V(2TP), (61)

where the potential function V is a function of ®7'®;. Such a theory is invariant under the U(n)
transformation ® — U®, where U is an n X n unitary matrix.
Rewrite the Lagrangian in terms of hermitian fields ¢ 4; and ¢p; defined by:

1 1
= V2

and introduce the 2n-dimensional hermitian scalar field:
pa(r) )

x) = . 63

o) = () (63)
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One can show that the Lagrangian is actually invariant under a larger symmetry group O(2n),
corresponding to the transformation ¢ — O¢ where O is a 2n x 2n orthogonal matrix.
Working in the complex basis, one can show that the Lagrangian [eq. (61)] is invariant under
the transformation:
®; — U D, + oM (VT (64)
where U and V are complex n X n matrices, provided that the following two conditions are
satisfied:

(i) (UU+VIV)/ =67, (65)

(1) VU is an antisymmetric matrix . (66)
In particular, the 2n x 2n matrix

0-— Re(U+V) —Im(U+V)

S\ Im(U -V) Re(U — V)

is an orthogonal matrix if U and V satisfy egs. (65) and (66). One can prove that any 2n x 2n
orthogonal matrix can be written in the form of eq. (67) by verifying that Q is determined by
n(2n — 1) independent parameters. This is most easily done with an infinitesimal analysis.

Using the above results, it follows that if U is a unitary n X n matrix, then the 2n x 2n
orthogonal matrix,”

(67)

ReU —ImU
Q= < InU  ReU ) (68)
provides an embedding of the subgroup U(n) inside O(2n). By writing
Qu = exp[—ig\*T"], U = exp[—igA*T],

one can show that 7 is given by eq. (60) in terms of the 7°.
Moreover, using the well-known formula for the determinant of a block-partitioned matrix:

det P = det P det (S — RP™'Q) (69)
R S| ’

and writing Ur = ReU and U; = Im U, it follows that
det Qu = det U'det [Up + U;Ux U], (70)

after using det U = det UT. Since U is unitary by assumption (since we have chosen V = 0 in
defining Qy), UTU = I implies that

U}—I%—UR—FU}I—U[:I, UEU]IU}I—UR, (71)

after separating out the real and imaginary parts. Inserting these results into eq. (70) and using
eq. (71), we find:

det Qy = det [URUg + URU Uz U] = det [[ — U U, + UJ U] =det T = 1.
(72)
That is, Qp is an element of SO(2n).

"Note that Qy is also an element of Sp(n, R) in light of eq. (15). Hence, it follows that Sp(n, R)NO(2n) = U(n).
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C. The embedding of the u(n) Lie subalgebra inside so(2n)

We begin with the following theorem, which is useful in the analysis of spontaneous symmetry
break of an SO(2n) symmetric potential of a theory of a second-rank antisymmetric tensor
multiplet of scalars [7]. In this section, I,, (I2,) is the n x n (2n x 2n) identity matrix.

Theorem: Suppose that Yy is a 2n x 2n real antisymmetric matrix that satisfies ¥] %y =
YoX¢ = %Iy, for some real number c. Then, if the generators of the Lie algebra of SO(2n), hence-
forth denoted by s0(2n), in the defining (2n-dimensional) representation are given by {7, X},
where the T, and 1.X, are real antisymmetric 2n x 2n matrices that satisfy:

T,%0 + T =0, (73)
XY — XX, =0, (74)

then the T, span a u(n) Lie subalgebra of so(2n), while the remaining generators, X,, span
elements of s0(2n) whose exponentials comprise the SO(2n)/U(n) homogeneous space. Moreover,
TH(T,X,) = 0.

Proof: First, I show that if ©] %y = S¢X0 = ?I5, and T, % + XoT,] = 0, then the T, span
an U(n) Lie subalgebra. Note that these two conditions imply:

AT = -2T,%. (75)

As noted in eq. (4), for any even-dimensional real antisymmetric matrix M, there exists a real
orthogonal matrix W such that WMWT = diag(J,, Tz, ..., Jn) is block diagonal, where each
block is a 2 X 2 matrix of the form 7, = (_2 %) where z, € R and the 22 are the eigenvalues

of MMT (or MTM).® Applying this result to Xy, note that the eigenvalues of XX are all
degenerate and equal to c2. Moreover, since the matrix

- (0 I,

o (08, -
satisfies JJT = ]gAn, it follows that one can find real orthogonal matrices W; and W5 such that
WiSoW, = cWo W) = diag(cT,cT,...,cJ), where J = (_(1] (1]) That is, the factorizations of
S and ¢J yield the same block diagonal matrix consisting of n identical 2 x 2 blocks consisting
of ¢J. Thus, there exists a real orthogonal matrix V = Wy 'W; such that V3,V = c¢J. The

inverse of this result is VEJVT = —¢J (since JT = —J). I now define T, = VT,VT. Then
eq. (75) implies that

a

~ -1 ~ A~ A
Th = CTvzgvTTavzovT = JT,J. (77)

Likewise, one can use the same matrix V' to define )Z'b = VX,VT. By an analogous computation,
AXT = BT X%, which implies that X = —JX,J.

Recall that that 7, and X, are both antisymmetric 2n x 2n matrices. Then, Ta =VT,VT
and X, = VX,VT are also antisymmetric. Hence, it follows that

To=—JT,J, X,=JX,J. (78)

8In particular, it is always possible to find a suitable choice for the unitary matrix W such that the z; are real
and non-negative. For further details, see Appendix D of Ref. [3].
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Using the explicit form for J, eq. (78) implies that T, and X, take the following block form:

= A B > C D
’lTa: (—B A) s ZXb: (D _C) ) (79)

where A, B, C' and D are n x n real matrices such that A, C' and D are antisymmetric and
B is symmetric. Thus, I have exhibited a similarity transformation (note that VT = V1)
that transforms the basis of the Lie algebra spanned by the T, to one that is spanned by the
T.. Moreover, consider the isomorphism that maps i T, given in eq. (79) to the n x n matrix
A+iB. Since (A+iB)! = (A —iB)T = —(A +iB), we see that the A+ iB are anti-hermitian
generators (which are not generally traceless) that span a u(n) subalgebra of so(2n). We can
check the number of u(n) generators by counting the number of degrees of freedom of one real
antisymmetric and one real symmetric matrix: in(n — 1) + 3n(n + 1) = n?, as expected.

Finally, multiplying the two equations 2 T,] = —X[T,% and *X] = 2] X%, it follows
that > T,V X, = -] T, XX (after employing 3] g = ¢*I5,). Taking the trace, it follows that
TrT,X, =—TrT,X,, and we conclude that Tr7T,X, = 0.

To show that the {7, X;} span the full s0(2n) Lie algebra, we have already noted above that
there are n? generators, {7, }. In addition, there are n(n — 1) generators, { X,}, corresponding to
the number of parameters describing two real antisymmetric matrices [see eq. (79)]. Thus, the
total number of generators is n(2n — 1) which matches the total number of so(2n) generators.
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