

Parameterization of real orthogonal antisymmetric matrices

Howard E. Haber

Santa Cruz Institute for Particle Physics

University of California, Santa Cruz, CA 95064, USA

August 4, 2017

Abstract

In response to a question posed by João P. Silva, I demonstrate that an arbitrary $2n \times 2n$ real orthogonal antisymmetric matrix can be parameterized by $n(n - 1)$ continuous angular parameters. An algorithm is provided for constructing the general form for such a matrix. This algorithm is based on observation that $\mathrm{Sp}(n, \mathbb{R}) \cap \mathrm{O}(2n) \cong \mathrm{U}(n)$ and employs the parameterization of the coset space $\mathrm{SO}(2n)/\mathrm{U}(n)$. An explicit parameterization for a 4×4 real orthogonal antisymmetric matrix is exhibited.

1 Decomposition of a real orthogonal antisymmetric matrix

In these notes, I shall discuss the parameterization of an arbitrary real orthogonal antisymmetric matrix M , which satisfies

$$M^T = -M, \quad MM^T = \mathbf{I}, \quad (1)$$

where \mathbf{I} is the identity matrix.

First, we note that M is a $2n \times 2n$ nonsingular matrix such that $\det M = 1$, where n can be any positive integer. Since $M^T M = \mathbf{I}$, it follows that $\det M = \pm 1$, which implies that M is nonsingular. Hence, M is an even-dimensional matrix, since any odd-dimensional antisymmetric matrix M satisfies $\det M = 0$.¹ Moreover, for any even-dimensional $2n \times 2n$ antisymmetric matrix M , the *pfaffian* of M , denoted by $\mathrm{pf} M$, is defined by

$$\mathrm{pf} M = \frac{1}{2^n n!} \epsilon_{i_1 j_1 i_2 j_2 \dots i_n j_n} M_{i_1 j_1} M_{i_2 j_2} \dots M_{i_n j_n}, \quad (2)$$

where ϵ is the rank- $2n$ Levi-Civita tensor, and the sum over repeated indices is implied. A well-known result states that for any antisymmetric matrix M ,²

$$\det M = [\mathrm{pf} M]^2. \quad (3)$$

In particular, if M is also orthogonal then $\det M = 1$, in which case $\mathrm{pf} M = \pm 1$.

¹Let M be a $d \times d$ antisymmetric matrix. Since $\det M = \det(-M^T) = \det(-M) = (-1)^d \det M$, it follows that $\det M = 0$ if d is odd.

²For a discussion of the properties of the pfaffian, see, e.g., Ref. [1].

Next, we note that the eigenvalues of any real antisymmetric matrix M are purely imaginary. Moreover if λ is an eigenvalue of M then λ^* is also an eigenvalue (see, e.g., Ref. [2]). Thus, the eigenvalues of a $2n \times 2n$ antisymmetric matrix M can be denoted by $\pm im_i$, ($i = 1, 2, \dots, n$) where the m_i are real and positive. We now exploit the real normal form of a nonsingular $2n \times 2n$ real antisymmetric matrix M (see, e.g., Appendix D.4 of Ref. [3]). In particular, there exists a real orthogonal matrix Q such that

$$Q^T M Q = N \equiv \text{diag} \left\{ \begin{pmatrix} 0 & m_1 \\ -m_1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & m_2 \\ -m_2 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & m_n \\ -m_n & 0 \end{pmatrix} \right\}, \quad (4)$$

where N is written in block diagonal form with 2×2 matrices appearing along the diagonal and the m_i are real and positive. N is called the *real normal form* of M . Note that the m_i are the positive square roots of the eigenvalues of $M^T M$.

If in addition, M is a real orthogonal matrix, then we may use the fact that the eigenvalues of a real orthogonal matrix are complex numbers of unit modulus. In light of the above results, it follows that $m_i = 1$ for all $i = 1, 2, \dots, n$. Hence,

$$Q^T M Q = J \equiv \underbrace{\text{diag} \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}}_n. \quad (5)$$

Hence, we conclude that any real orthogonal antisymmetric $2n \times 2n$ matrix M can be parameterized by

$$M = Q J Q^T, \quad (6)$$

where J is defined in eq. (5) and Q is a real orthogonal matrix. we now employ the well-known property of the pfaffian that $\text{pf}(Q J Q^T) = \text{pf } J \det Q$. In light of $\text{pf } J = 1$, it follows that

$$\det Q = \text{pf } M, \quad (7)$$

which determines the sign of $\det Q$.

2 Counting parameters

As discussed in Appendix D.4 of Ref. [3], the orthogonal matrix Q in eq. (6) is unique up to multiplication on the right by a $2n \times 2n$ real orthogonal matrix S that satisfies $S J S^T = J$. Such a matrix S is an element of $\text{Sp}(n, \mathbb{R}) \cap \text{O}(2n) \cong \text{U}(n)$, where a proof of this isomorphism is given in Ref. [4].³ Since $\text{O}(2n)$ is parameterized by $n(2n - 1)$ continuous parameters and $\text{U}(n)$ is parameterized by n^2 parameters, we can use the freedom to multiply Q on the right by S to remove n^2 parameters from Q . This leaves $n(2n - 1) - n^2 = n(n - 1)$ parameters in Q that cannot be removed.

That is, a real orthogonal antisymmetric $2n \times 2n$ matrix M can be parameterized by $n(n - 1)$ continuous parameters.

³See problem 1.12 on p. 41 and its solution on p. 306 of Ref. [4]. The proof of this result consists of representing an arbitrary complex unitary $n \times n$ matrix as a real $2n \times 2n$ matrix. Following Section 1.6 of Ref. [4], the corresponding real $2n \times 2n$ matrix can be identified by U_R given in eq. (13). Indeed, one can check that U_R is a $2n \times 2n$ orthogonal symplectic matrix [cf. eq. (15) and Appendix B], which exhibits the quoted isomorphism.

3 An explicit parameterization of a real orthogonal anti-symmetric matrix

To find an explicit parameterization of M , one must obtain an explicit representation for Q in which the n^2 parameters represented by the matrix S have been successfully removed. We can accomplish this task as follows. First, we introduce the permuted version of J , which is the $2n \times 2n$ real orthogonal antisymmetric matrix,

$$\hat{J} = \begin{pmatrix} 0 & \mathbf{I} \\ -\mathbf{I} & 0 \end{pmatrix}, \quad (8)$$

which is related to J by

$$J = P \hat{J} P^\top, \quad (9)$$

where \hat{P} is a real orthogonal permutation matrix. That is, $P \hat{J} P^\top$ performs elementary row operations that interchange pairs of rows in order to produce J . We can now define a new real orthogonal matrix $\hat{Q} = QP$ in eq. (6) to obtain

$$M = \hat{Q} \hat{J} \hat{Q}^\top. \quad (10)$$

Two cases must be considered separately depending on whether $\det \hat{Q} = +1$ or -1 . Indeed, if we compute the pfaffian of M using $\text{pf}(\hat{Q} \hat{J} \hat{Q}^\top) = \text{pf } \hat{J} \det \hat{Q}$ and $\text{pf } \hat{J} = (-1)^{n(n-1)/2}$ (see, e.g., Ref. [1]), it follows that

$$\det \hat{Q} = (-1)^{n(n-1)/2} \text{pf } M, \quad (11)$$

which determines the sign of $\det \hat{Q}$.

Consider first the case of $\det \hat{Q} = +1$, which means that $\hat{Q} \in \text{SO}(2n)$. Using the results of the Appendices, we see that one can always express an $\text{SO}(2n)$ matrix in the following form

$$\hat{Q} = Q_c U_R, \quad (12)$$

where eqs. (68) and (79) yield

$$Q_c = \exp \begin{pmatrix} C & D \\ D & -C \end{pmatrix}, \quad U_R = \begin{pmatrix} \text{Re } U & -\text{Im } U \\ \text{Im } U & \text{Re } U \end{pmatrix}, \quad (13)$$

in block matrix form. Here, C and D are arbitrary $n \times n$ real antisymmetric matrices, and U is an arbitrary $n \times n$ unitary matrix. In particular Q_c and U_R are both real orthogonal $2n \times 2n$ matrices. Moreover, U_R is symplectic since

$$U_R \hat{J} = \hat{J} U_R, \quad (14)$$

as is easily checked. It then follows that

$$U_R^\top \hat{J} U(R) = \hat{J}, \quad (15)$$

which is the defining property of a symplectic matrix.⁴ As discussed in Appendix B, the matrices U_R provide a $2n$ -dimensional orthogonal representation of the group $\text{U}(n)$. Moreover, the

⁴The defining property of a symplectic matrix can employ either J or \hat{J} or indeed any antisymmetric matrix related to J by conjugation [cf. eq. (9)]. See, e.g. Chapter 4, Section 29 of Ref. [5].

observation above that U_R is a real orthogonal symplectic matrix provides the demonstration that $\mathrm{Sp}(n, \mathbb{R}) \cap \mathrm{O}(2n) \cong \mathrm{U}(n)$, as previously claimed.

Finally, inserting eq. (12) into eq. (10) and making use of eq. (14), we end up with

$$M = Q_c \hat{J} Q_c^\top, \quad (16)$$

where

$$Q_c = \exp \begin{pmatrix} C & D \\ D & -C \end{pmatrix}, \quad (17)$$

and C and D are arbitrary $n \times n$ real antisymmetric matrices. We can now count parameters. Since a real antisymmetric matrix is described by $\frac{1}{2}n(n-1)$ continuous parameters, and Q_c is defined in terms of two real antisymmetric matrices, it follows that Q_c and thus M is determined by $n(n-1)$ continuous parameters, which confirms our previous claim. Finally, to obtain an explicit parameterization of M , one must evaluate the matrix exponential Q_c .

If $\det \hat{Q} = -1$, consider first the case of odd n . Then, we can introduce the $2n \times 2n$ matrix

$$\Sigma_n \equiv \begin{pmatrix} \mathbf{I} & 0 \\ 0 & -\mathbf{I} \end{pmatrix}, \quad (18)$$

with the property that $\det \Sigma_n = (-1)^n = -1$ for odd n . In this case, we observe that

$$\Sigma_n \hat{J} \Sigma_n^\top = -\hat{J}, \quad (19)$$

which implies that there exists an $\mathrm{SO}(2n)$ matrix $\hat{Q}' = \hat{Q} \Sigma_n$ such that⁵

$$-M = \hat{Q}' \hat{J} \hat{Q}'^\top. \quad (20)$$

At this point, we can use our previous analysis to parameterize the real orthogonal antisymmetric matrix, $-M$.

If n is even, eq. (20) is not useful since $\det \hat{Q} = \det \hat{Q}' = -1$. However, a slightly modified procedure can be employed that will succeed for both cases of even and odd n . In this procedure, we introduce a $2n \times 2n$ matrix, which in block diagonal form is defined by

$$\Sigma = \mathrm{diag}(\Sigma_2, \underbrace{\mathbf{I}_2, \mathbf{I}_2, \dots, \mathbf{I}_2}_{2n-2}), \quad (21)$$

where \mathbf{I}_2 is the 2×2 identity matrix and $\Sigma_2 \equiv \mathrm{diag}(1, -1)$. Clearly, $\det \Sigma = -1$, so we can again introduce an $\mathrm{SO}(2n)$ matrix $\hat{Q}'' = \Sigma \hat{Q}$. It then follows that

$$\Sigma M \Sigma^\top = \hat{Q}'' \hat{J} \hat{Q}''^\top. \quad (22)$$

At this point, we can use our previous analysis to parameterize the real orthogonal antisymmetric matrix, $\Sigma M \Sigma^\top$.

⁵One can reach the same conclusion by noting that $\mathrm{pf}(-M) = (-1)^n \mathrm{pf} M = -\mathrm{pf} M$ when n is odd, in light of eq. (11).

4 Parameterizing a real orthogonal antisymmetric 4×4 matrix—Take 1

Two examples are easily checked. First, if $n = 1$, then $M = \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ which involves no continuous parameters. Second, if $n = 2$, then the most general real orthogonal antisymmetric 4×4 matrix M is parameterized by two continuous parameters. Indeed, we can explicitly compute the matrix exponential given in eq. (17). Writing

$$C = \begin{pmatrix} 0 & c \\ -c & 0 \end{pmatrix}, \quad D = \begin{pmatrix} 0 & d \\ -d & 0 \end{pmatrix}, \quad (23)$$

it follows that $C^2 = -c^2 \mathbf{I}_2$ and $D^2 = -d^2 \mathbf{I}_2$. Hence,

$$\begin{pmatrix} C & D \\ D & -C \end{pmatrix}^2 = -(c^2 + d^2) \begin{pmatrix} \mathbf{I}_2 & 0 \\ 0 & \mathbf{I}_2 \end{pmatrix}. \quad (24)$$

Thus, we can compute all powers,

$$\begin{pmatrix} C & D \\ D & -C \end{pmatrix}^{2n} = (-1)^n (c^2 + d^2)^n \begin{pmatrix} \mathbf{I}_2 & 0 \\ 0 & \mathbf{I}_2 \end{pmatrix}, \quad \begin{pmatrix} C & D \\ D & -C \end{pmatrix}^{2n+1} = (-1)^n (c^2 + d^2)^n \begin{pmatrix} C & D \\ D & -C \end{pmatrix}. \quad (25)$$

We can now evaluate the exponential via its Taylor series. The end result is

$$Q_c = \exp \begin{pmatrix} C & D \\ D & -C \end{pmatrix} = \mathbf{I}_4 \cos \phi + \begin{pmatrix} C & D \\ D & -C \end{pmatrix} \frac{\sin \phi}{\phi}, \quad (26)$$

where $\phi \equiv (c^2 + d^2)^{1/2}$ and \mathbf{I}_4 is the 4×4 identity matrix. It is convenient to introduce an angle χ ,

$$\sin \chi \equiv \frac{c}{\sqrt{c^2 + d^2}}, \quad \cos \chi \equiv \frac{d}{\sqrt{c^2 + d^2}}. \quad (27)$$

Then, we can rewrite eq. (26) in the following form,

$$Q_c = \begin{pmatrix} \cos \phi & \sin \phi \sin \chi & 0 & \sin \phi \cos \chi \\ -\sin \phi \sin \chi & \cos \phi & -\sin \phi \cos \chi & 0 \\ 0 & \sin \phi \cos \chi & \cos \phi & -\sin \phi \sin \chi \\ -\sin \phi \cos \chi & 0 & \sin \phi \sin \chi & \cos \phi \end{pmatrix}. \quad (28)$$

Finally, inserting eq. (28) into eq. (16) and introducing $\theta \equiv 2\phi$ yields,

$$M = Q_c \hat{J} Q_c^\top = \begin{pmatrix} 0 & -\sin \theta \cos \chi & \cos \theta & \sin \theta \sin \chi \\ \sin \theta \cos \chi & 0 & -\sin \theta \sin \chi & \cos \theta \\ -\cos \theta & \sin \theta \sin \chi & 0 & \sin \theta \cos \chi \\ -\sin \theta \sin \chi & -\cos \theta & -\sin \theta \cos \chi & 0 \end{pmatrix}. \quad (29)$$

It is straightforward to check that M is a real orthogonal antisymmetric matrix. Moreover $\text{pf } M = -1$, which yields $\det \hat{Q} = 1$ in light of eq. (11), as expected. Thus, eq. (29) provides the most general expression for a real orthogonal antisymmetric 4×4 matrix M with $\text{pf } M = -1$.

In the case of $\text{pf } M = 1$, eq. (11) yields $\det \hat{Q} = -1$. Hence, to obtain the parameterization of M in this case, we employ eq. (22). The end result is,

$$M = \Sigma^\top Q_c \hat{J} Q_c^\top \Sigma = \begin{pmatrix} 0 & \sin \theta \cos \chi & \cos \theta & \sin \theta \sin \chi \\ -\sin \theta \cos \chi & 0 & \sin \theta \sin \chi & -\cos \theta \\ -\cos \theta & -\sin \theta \sin \chi & 0 & \sin \theta \cos \chi \\ -\sin \theta \sin \chi & \cos \theta & -\sin \theta \cos \chi & 0 \end{pmatrix}. \quad (30)$$

Again, it is straightforward to check that M is a real orthogonal antisymmetric matrix with $\text{pf } M = 1$.

Indeed, eqs. (29) and (30) provide the most general expressions for a real orthogonal antisymmetric 4×4 matrix.

5 Parameterizing a real orthogonal antisymmetric 4×4 matrix—Take 2

The parameterization of Q_c is not unique. In this section, we explore an alternative form,

$$Q'_c = \exp \begin{pmatrix} C & 0 \\ 0 & -C \end{pmatrix} \exp \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix}, \quad (31)$$

where C and D are arbitrary $n \times n$ real antisymmetric matrices given in eq. (23). We can use eq. (28) to obtain

$$\exp \begin{pmatrix} C & 0 \\ 0 & -C \end{pmatrix} = \begin{pmatrix} \cos(\frac{1}{2}\theta_1) \sin(\frac{1}{2}\theta_1) & 0 & 0 \\ -\sin(\frac{1}{2}\theta_1) \cos(\frac{1}{2}\theta_1) & 0 & 0 \\ 0 & 0 & \cos(\frac{1}{2}\theta_1) - \sin(\frac{1}{2}\theta_1) \\ 0 & 0 & \sin(\frac{1}{2}\theta_1) \cos(\frac{1}{2}\theta_1) \end{pmatrix}, \quad (32)$$

$$\exp \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} = \begin{pmatrix} \cos(\frac{1}{2}\theta_2) & 0 & 0 & \sin(\frac{1}{2}\theta_2) \\ 0 & \cos(\frac{1}{2}\theta_2) - \sin(\frac{1}{2}\theta_2) & 0 \\ 0 & \sin(\frac{1}{2}\theta_2) & \cos(\frac{1}{2}\theta_2) & 0 \\ -\sin(\frac{1}{2}\theta_2) & 0 & 0 & \cos(\frac{1}{2}\theta_2) \end{pmatrix}, \quad (33)$$

where $\theta_1 \equiv 2c$ and $\theta_2 \equiv 2d$. The factors of 2 have been inserted for later convenience.

It is noteworthy that the form of Q'_c defined in eq. (31) can be expressed as a product of simple rotation matrices. First we define the 2×2 special orthogonal matrix,

$$r(\theta) \equiv \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}. \quad (34)$$

We then define the 4×4 matrix $R_{ij}(\theta)$ as a matrix whose matrix elements are given by

$$[R_{ij}(\theta)]_{k\ell} = \begin{cases} \delta_{k\ell} & \text{for } k, \ell \neq i, j, \\ r(\theta), & \text{for } k, \ell = i, j. \end{cases}$$

It then follows that

$$Q'_c = R_{12}^T\left(\frac{1}{2}\theta_1\right)R_{34}\left(\frac{1}{2}\theta_1\right)R_{14}^T\left(\frac{1}{2}\theta_2\right)R_{23}\left(\frac{1}{2}\theta_2\right). \quad (35)$$

Hence, the most general 4×4 real orthogonal antisymmetric matrix M with $\text{pf } M = -1$ is given by

$$M = Q'_c \hat{J} Q'^T_c = \begin{pmatrix} 0 & -\cos \theta_1 \sin \theta_2 & \cos \theta_1 \cos \theta_2 & \sin \theta_1 \\ \cos \theta_1 \sin \theta_2 & 0 & -\sin \theta_1 & \cos \theta_1 \cos \theta_2 \\ -\cos \theta_1 \cos \theta_2 & \sin \theta_1 & 0 & \cos \theta_1 \sin \theta_2 \\ -\sin \theta_1 & -\cos \theta_1 \cos \theta_2 & -\cos \theta_1 \sin \theta_2 & 0 \end{pmatrix}. \quad (36)$$

Likewise, the most general 4×4 real orthogonal antisymmetric matrix M with $\text{pf } M = 1$ is then given by

$$M = \Sigma^T Q'_c \hat{J} Q'^T_c \Sigma = \begin{pmatrix} 0 & \cos \theta_1 \sin \theta_2 & \cos \theta_1 \cos \theta_2 & \sin \theta_1 \\ -\cos \theta_1 \sin \theta_2 & 0 & \sin \theta_1 & -\cos \theta_1 \cos \theta_2 \\ -\cos \theta_1 \cos \theta_2 & -\sin \theta_1 & 0 & \cos \theta_1 \sin \theta_2 \\ -\sin \theta_1 & \cos \theta_1 \cos \theta_2 & -\cos \theta_1 \sin \theta_2 & 0 \end{pmatrix}. \quad (37)$$

Although the explicit forms for M given by eqs. (36) and (37) differ in appearance from those of eqs. (29) and (30), it is straightforward to check that they are equivalent forms if one identifies

$$\cos \theta = \cos \theta_1 \cos \theta_2, \quad \tan \chi = \frac{\tan \theta_1}{\sin \theta_2}. \quad (38)$$

One can also consider a second alternative form,

$$Q''_c = \exp \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \exp \begin{pmatrix} C & 0 \\ 0 & -C \end{pmatrix}. \quad (39)$$

With this parameterization, the most general 4×4 real orthogonal antisymmetric matrix M with $\text{pf } M = -1$ is given by

$$M = Q''_c \hat{J} Q''^T_c = \begin{pmatrix} 0 & -\sin \theta_2 & \cos \theta_1 \cos \theta_2 & \sin \theta_1 \cos \theta_2 \\ \sin \theta_2 & 0 & -\sin \theta_1 \cos \theta_2 & \cos \theta_1 \cos \theta_2 \\ -\cos \theta_1 \cos \theta_2 & \sin \theta_1 \cos \theta_2 & 0 & \sin \theta_2 \\ -\sin \theta_1 \cos \theta_2 & -\cos \theta_1 \cos \theta_2 & -\sin \theta_2 & 0 \end{pmatrix}. \quad (40)$$

Likewise, the most general 4×4 real orthogonal antisymmetric matrix M with $\text{pf } M = 1$ is then given by

$$M = \Sigma^T Q''_c \hat{J} Q''^T_c \Sigma = \begin{pmatrix} 0 & \sin \theta_2 & \cos \theta_1 \cos \theta_2 & \sin \theta_1 \cos \theta_2 \\ -\sin \theta_2 & 0 & \sin \theta_1 \cos \theta_2 & -\cos \theta_1 \cos \theta_2 \\ -\cos \theta_1 \cos \theta_2 & -\sin \theta_1 \cos \theta_2 & 0 & \sin \theta_2 \\ -\sin \theta_1 \cos \theta_2 & \cos \theta_1 \cos \theta_2 & -\sin \theta_2 & 0 \end{pmatrix}. \quad (41)$$

Once again, it is straightforward to relate these results to the previous parameterizations of a 4×4 real orthogonal antisymmetric matrix.

6 An alternative approach that only partially succeeds

Explicit calculations when $n > 2$ become quite cumbersome, since one must explicitly evaluate the matrix exponential given by eq. (17). Thus, I examined another possible line of attack starting from eq. (6). Consider the initial parameterization of $M = QJQ^T$, which depends on a real orthogonal $2n \times 2n$ matrix Q . First we define the 2×2 special orthogonal matrix,

$$r_{ij} = \begin{pmatrix} \cos \theta_{ij} & -\sin \theta_{ij} \\ \sin \theta_{ij} & \cos \theta_{ij} \end{pmatrix}. \quad (42)$$

We then define the $N \times N$ matrix R_{ij} as a matrix whose matrix elements are given by

$$[R_{ij}]_{k\ell} = \begin{cases} \delta_{k\ell} & \text{for } k, \ell \neq i, j, \\ r_{ij}, & \text{for } k, \ell = i, j. \end{cases}$$

Then, one possible parameterization of the $n \times n$ matrix $\mathcal{R}_N \in \text{SO}(N)$, inspired by Ref. [6], is

$$\mathcal{R}_N = R_{12}R_{13} \cdots R_{1N}R_{N-1}, \quad (43)$$

where R_{N-1} is the $N \times N$ matrix written in block diagonal form,

$$R_{N-1} = \begin{pmatrix} 1 & 0 \\ 0 & \mathcal{R}_{N-1} \end{pmatrix}, \quad (44)$$

and \mathcal{R}_{N-1} is the $(N-1) \times (N-1)$ matrix, $\mathcal{R}_{N-1} \in \text{SO}(N-1)$. This is a recursive definition that stops once $N = 2$ is reached. This means that when expanded out, the $\text{SO}(N)$ matrix has been expressed as a product of $\frac{1}{2}N(N-1)$ rotation matrices, each one of the form $R_{k\ell}$. In fact, any choice of the ordering of the R_{ij} matrices that appear in eq. (43) corresponds to a valid parameterization of an $\text{SO}(N)$ matrix.

Consider the case where $\text{pf } M = \det Q = 1$ [cf. eq. (7)].⁶ Applying the above results to the matrix Q for the case of $N = 2n$ with a suitable choice for the ordering of the proper rotation matrices R_{ij} , we shall write

$$Q = R_p R_{12} R_{34} \cdots R_{2n-1, 2n}, \quad (45)$$

where R_p consists of a product of the rotation matrices R_{ij} where $i < j$ and $j \neq i + 1$. Since Q consists of a product of $n(2n-1)$ rotation matrices, it follows that R_p consists of a product of $n(2n-1) - n = 2n(n-1)$ rotation matrices.

The key observation is that

$$\begin{pmatrix} \cos \theta_{ij} & -\sin \theta_{ij} \\ \sin \theta_{ij} & \cos \theta_{ij} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \cos \theta_{ij} & \sin \theta_{ij} \\ -\sin \theta_{ij} & \cos \theta_{ij} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \quad (46)$$

It therefore follows that

$$R_{12}R_{34} \cdots R_{2n-1, 2n}JR_{2n-1, 2n}^T \cdots R_{34}^T R_{12}^T = J, \quad (47)$$

⁶In the case of $\text{pf } M = \det Q = -1$, we can consider the corresponding decomposition of the real orthogonal antisymmetric matrix $\Sigma M \Sigma^T$, where Σ is defined in eq. (21). Since $\text{pf}(\Sigma M \Sigma^T) = \text{pf } M \det \Sigma = -\text{pf } M$, it follows that in this second case, $\text{pf}(\Sigma M \Sigma^T) = 1$, and the analysis that follows is applicable.

where J is defined in eq. (5). Hence, starting from eq. (6) in the case of $\det Q = 1$, we can conclude that a real orthogonal antisymmetric $2n \times 2n$ matrix M can be parameterized by

$$M = R_p J R_p^\top, \quad (48)$$

where R_p is the product of $2n(n-1)$ proper rotation matrices R_{ij} where $i < j$ and $j \neq i+1$. That is, M can be parameterized by $2n(n-1)$ angles θ_{ij} where $i < j$ and $j \neq i+1$. However, this is twice the number of parameters needed to parameterize M . Thus it must be possible to write

$$R_p = R_q S, \quad (49)$$

where S is a real orthogonal symplectic matrix (i.e., $SJS^\top = J$) that depends on $n(n-1)$ parameters, and R_q is a real orthogonal matrix that depends on the remaining $n(n-1)$ parameters. Assuming that the decomposition give by eq. (49) is always possible (which remains to be demonstrated), then the end result is

$$M = R_q J R_q^\top, \quad (50)$$

which would constitute a parameterization of a general $2n \times 2n$ real orthogonal antisymmetric matrix in terms of $n(n-1)$ parameters.

Appendices: The $U(n)$ subgroup of $SO(2n)$

A. Complex representations of scalar fields

Let $\Phi_i(x)$ be a set of n complex scalar fields. The scalar Lagrangian

$$\mathcal{L} = \frac{1}{2}(\partial_\mu \Phi_i)^\dagger (\partial^\mu \Phi_i) - V(\Phi_i, \Phi_i^\dagger) \quad (51)$$

is assumed to be invariant under a compact symmetry group G , under which the scalar fields transform as:

$$\Phi_i \rightarrow \mathcal{U}_i^j \Phi_j, \quad \Phi^{\dagger i} \rightarrow \Phi^{\dagger j} (\mathcal{U}^\dagger)_j^i, \quad (52)$$

where \mathcal{U} is a complex representation of G . Using a well-known theorem, all complex representations of a compact group are equivalent (via a similarity transformation) to a unitary representation. Thus, without loss of generality, we may take \mathcal{U} to be a unitary $n \times n$ matrix. Explicitly,

$$\mathcal{U} = \exp[-ig_a \Lambda^a \mathcal{T}^a], \quad (53)$$

where the generators \mathcal{T}^a are $n \times n$ hermitian matrices. The corresponding infinitesimal transformation law is

$$\delta \Phi_i(x) = -ig_a \Lambda^a (\mathcal{T}^a)_{i}^j \Phi_j(x), \quad (54)$$

$$\delta \Phi^{\dagger i}(x) = +ig_a \Phi^{\dagger j}(x) \Lambda^a (\mathcal{T}^a)_j^i, \quad (55)$$

where the g_a and Λ^a are real. One can check that the scalar kinetic energy term is invariant under $U(n)$ transformations. The scalar potential, which is not invariant in general under the full $U(n)$ group, is invariant under G [which is a subgroup of $U(n)$] if

$$(\mathcal{T}^a)_i{}^j \Phi_j \frac{\partial V}{\partial \Phi_i} - (\mathcal{T}^a)_j{}^i \Phi^{\dagger j} \frac{\partial V}{\partial \Phi^{\dagger i}} = 0 \quad (56)$$

is satisfied.

There are $2n$ independent scalar degrees of freedom, corresponding to the fields Φ_i and $\Phi^{\dagger i}$. We can also express these degrees of freedom in terms of $2n$ hermitian scalar fields consisting of ϕ_{Aj} and ϕ_{Bj} ($j = 1, 2, \dots, n$) defined by:

$$\Phi_j = \frac{1}{\sqrt{2}}(\phi_{Aj} + i\phi_{Bj}), \quad \Phi^{\dagger j} = \frac{1}{\sqrt{2}}(\phi_{Aj} - i\phi_{Bj}). \quad (57)$$

It is straightforward to compute the group transformation laws for the hermitian fields ϕ_{Aj} and ϕ_{Bj} . These are conveniently expressed by introducing a $2n$ -dimensional scalar multiplet:

$$\phi(x) = \begin{pmatrix} \phi_A(x) \\ \phi_B(x) \end{pmatrix}. \quad (58)$$

That is, $\phi_{Aj}(x) = \phi_j(x)$ and $\phi_{Bj}(x) = \phi_{j+n}(x)$. Then the infinitesimal form of the group transformation law for $\phi(x)$ is given by $\phi_k(x) \rightarrow \phi_k(x) + \delta\phi_k(x)$ for $k = 1, 2, \dots, 2n$, where

$$\delta\phi_k(x) = -ig\Lambda^a(T^a)_k{}^\ell\phi_\ell(x), \quad (59)$$

and

$$iT^a = \begin{pmatrix} -\text{Im } \mathcal{T}^a & -\text{Re } \mathcal{T}^a \\ \text{Re } \mathcal{T}^a & -\text{Im } \mathcal{T}^a \end{pmatrix}. \quad (60)$$

Note that $\text{Re } \mathcal{T}^a$ is symmetric and $\text{Im } \mathcal{T}^a$ is antisymmetric (which follow from the hermiticity of \mathcal{T}^a). Thus, iT^a is a real antisymmetric $2n \times 2n$ matrix, which when exponentiated yields a real orthogonal $2n$ -dimensional representation of G .

B. The embedding of $U(n)$ in $SO(2n)$

Consider a scalar field theory consisting of n identical complex fields Φ_i , with a Lagrangian

$$\mathcal{L} = \frac{1}{2}(\partial_\mu \Phi_i)^\dagger (\partial^\mu \Phi_i) - V(\Phi^\dagger \Phi), \quad (61)$$

where the potential function V is a function of $\Phi^{\dagger i} \Phi_i$. Such a theory is invariant under the $U(n)$ transformation $\Phi \rightarrow U\Phi$, where U is an $n \times n$ unitary matrix.

Rewrite the Lagrangian in terms of hermitian fields ϕ_{Ai} and ϕ_{Bi} defined by:

$$\Phi_j = \frac{1}{\sqrt{2}}(\phi_{Aj} + i\phi_{Bj}), \quad \Phi^{\dagger j} = \frac{1}{\sqrt{2}}(\phi_{Aj} - i\phi_{Bj}), \quad (62)$$

and introduce the $2n$ -dimensional hermitian scalar field:

$$\phi(x) = \begin{pmatrix} \phi_A(x) \\ \phi_B(x) \end{pmatrix}. \quad (63)$$

One can show that the Lagrangian is actually invariant under a larger symmetry group $O(2n)$, corresponding to the transformation $\phi \rightarrow \mathcal{O}\phi$ where \mathcal{O} is a $2n \times 2n$ orthogonal matrix.

Working in the complex basis, one can show that the Lagrangian [eq. (61)] is invariant under the transformation:

$$\Phi_i \rightarrow U_i^j \Phi_j + \Phi^{\dagger j} (V^{\dagger})_j^i, \quad (64)$$

where U and V are complex $n \times n$ matrices, provided that the following two conditions are satisfied:

$$(i) \quad (U^{\dagger}U + V^{\dagger}V)_i^j = \delta_i^j, \quad (65)$$

$$(ii) \quad V^{\mathsf{T}}U \text{ is an antisymmetric matrix.} \quad (66)$$

In particular, the $2n \times 2n$ matrix

$$\mathcal{Q} = \begin{pmatrix} \text{Re}(U + V) & -\text{Im}(U + V) \\ \text{Im}(U - V) & \text{Re}(U - V) \end{pmatrix} \quad (67)$$

is an orthogonal matrix if U and V satisfy eqs. (65) and (66). One can prove that any $2n \times 2n$ orthogonal matrix can be written in the form of eq. (67) by verifying that \mathcal{Q} is determined by $n(2n - 1)$ independent parameters. This is most easily done with an infinitesimal analysis.

Using the above results, it follows that if U is a unitary $n \times n$ matrix, then the $2n \times 2n$ orthogonal matrix,⁷

$$\mathcal{Q}_U = \begin{pmatrix} \text{Re } U & -\text{Im } U \\ \text{Im } U & \text{Re } U \end{pmatrix} \quad (68)$$

provides an embedding of the subgroup $U(n)$ inside $O(2n)$. By writing

$$\mathcal{Q}_U = \exp[-ig\Lambda^a T^a], \quad U = \exp[-ig\Lambda^a \mathcal{T}^a],$$

one can show that T^a is given by eq. (60) in terms of the \mathcal{T}^a .

Moreover, using the well-known formula for the determinant of a block-partitioned matrix:

$$\det \begin{pmatrix} P & Q \\ R & S \end{pmatrix} = \det P \det (S - RP^{-1}Q), \quad (69)$$

and writing $U_R \equiv \text{Re } U$ and $U_I \equiv \text{Im } U$, it follows that

$$\det \mathcal{Q}_U = \det U^{\mathsf{T}} \det [U_R + U_I U_R^{-1} U_I], \quad (70)$$

after using $\det U = \det U^{\mathsf{T}}$. Since U is unitary by assumption (since we have chosen $V = 0$ in defining \mathcal{Q}_U), $U^{\dagger}U = I$ implies that

$$U_R^{\mathsf{T}} U_R + U_I^{\mathsf{T}} U_I = I, \quad U_R^{\mathsf{T}} U_I = U_I^{\mathsf{T}} U_R, \quad (71)$$

after separating out the real and imaginary parts. Inserting these results into eq. (70) and using eq. (71), we find:

$$\det \mathcal{Q}_U = \det [U_R^{\mathsf{T}} U_R + U_I^{\mathsf{T}} U_I U_R^{-1} U_I] = \det [I - U_I^{\mathsf{T}} U_I + U_I^{\mathsf{T}} U_I] = \det I = 1. \quad (72)$$

That is, \mathcal{Q}_U is an element of $SO(2n)$.

⁷Note that \mathcal{Q}_U is also an element of $Sp(n, \mathbb{R})$ in light of eq. (15). Hence, it follows that $Sp(n, \mathbb{R}) \cap O(2n) \cong U(n)$.

C. The embedding of the $\mathfrak{u}(n)$ Lie subalgebra inside $\mathfrak{so}(2n)$

We begin with the following theorem, which is useful in the analysis of spontaneous symmetry break of an $\text{SO}(2n)$ symmetric potential of a theory of a second-rank antisymmetric tensor multiplet of scalars [7]. In this section, I_n (I_{2n}) is the $n \times n$ ($2n \times 2n$) identity matrix.

Theorem: Suppose that Σ_0 is a $2n \times 2n$ real antisymmetric matrix that satisfies $\Sigma_0^\top \Sigma_0 = \Sigma_0 \Sigma_0^\top = c^2 I_{2n}$ for some real number c . Then, if the generators of the Lie algebra of $\text{SO}(2n)$, henceforth denoted by $\mathfrak{so}(2n)$, in the defining (2n-dimensional) representation are given by $\{T_a, X_b\}$, where the iT_a and iX_b are real antisymmetric $2n \times 2n$ matrices that satisfy:

$$T_a \Sigma_0 + \Sigma_0 T_a^\top = 0, \quad (73)$$

$$X_b \Sigma_0 - \Sigma_0 X_b^\top = 0, \quad (74)$$

then the T_a span a $\mathfrak{u}(n)$ Lie subalgebra of $\mathfrak{so}(2n)$, while the remaining generators, X_b , span elements of $\mathfrak{so}(2n)$ whose exponentials comprise the $\text{SO}(2n)/\text{U}(n)$ homogeneous space. Moreover, $\text{Tr}(T_a X_b) = 0$.

Proof: First, I show that if $\Sigma_0^\top \Sigma_0 = \Sigma_0 \Sigma_0^\top = c^2 I_{2n}$ and $T_a \Sigma_0 + \Sigma_0 T_a^\top = 0$, then the T_a span an $\text{U}(n)$ Lie subalgebra. Note that these two conditions imply:

$$c^2 T_a^\top = -\Sigma_0^\top T_a \Sigma_0. \quad (75)$$

As noted in eq. (4), for any even-dimensional real antisymmetric matrix M , there exists a real orthogonal matrix W such that $W M W^\top = \text{diag}(\mathcal{J}_1, \mathcal{J}_2, \dots, \mathcal{J}_n)$ is block diagonal, where each block is a 2×2 matrix of the form $\mathcal{J}_n \equiv \begin{pmatrix} 0 & z_n \\ -z_n & 0 \end{pmatrix}$ where $z_n \in \mathbb{R}$ and the z_n^2 are the eigenvalues of $M M^\top$ (or $M^\top M$).⁸ Applying this result to Σ_0 , note that the eigenvalues of $\Sigma_0 \Sigma_0^\top$ are all degenerate and equal to c^2 . Moreover, since the matrix

$$\hat{J} \equiv \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}, \quad (76)$$

satisfies $\hat{J} \hat{J}^\top = I_{2n}$, it follows that one can find real orthogonal matrices W_1 and W_2 such that $W_1 \Sigma_0 W_1^\top = c W_2 \hat{J} W_2^\top = \text{diag}(c \mathcal{J}, c \mathcal{J}, \dots, c \mathcal{J})$, where $\mathcal{J} \equiv \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. That is, the factorizations of Σ_0 and $c \hat{J}$ yield the same block diagonal matrix consisting of n identical 2×2 blocks consisting of $c \mathcal{J}$. Thus, there exists a real orthogonal matrix $V = W_2^{-1} W_1$ such that $V \Sigma_0 V^\top = c \hat{J}$. The inverse of this result is $V \Sigma_0^\top V^\top = -c \hat{J}$ (since $\hat{J}^\top = -\hat{J}$). I now define $\tilde{T}_a \equiv V T_a V^\top$. Then eq. (75) implies that

$$\tilde{T}_a^\top = \frac{-1}{c^2} V \Sigma_0^\top V^\top \tilde{T}_a V \Sigma_0 V^\top = \hat{J} \tilde{T}_a \hat{J}. \quad (77)$$

Likewise, one can use the same matrix V to define $\tilde{X}_b \equiv V X_b V^\top$. By an analogous computation, $c^2 X_b^\top = \Sigma_0^\top X_b \Sigma_0$, which implies that $\tilde{X}_b^\top = -\hat{J} \tilde{X}_b \hat{J}$.

Recall that T_a and X_b are both antisymmetric $2n \times 2n$ matrices. Then, $\tilde{T}_a \equiv V T_a V^\top$ and $\tilde{X}_a \equiv V X_a V^\top$ are also antisymmetric. Hence, it follows that

$$\tilde{T}_a = -\hat{J} \tilde{T}_a \hat{J}, \quad \tilde{X}_a = \hat{J} \tilde{X}_a \hat{J}. \quad (78)$$

⁸In particular, it is always possible to find a suitable choice for the unitary matrix W such that the z_i are real and non-negative. For further details, see Appendix D of Ref. [3].

Using the explicit form for \hat{J} , eq. (78) implies that \tilde{T}_a and \tilde{X}_b take the following block form:

$$i\tilde{T}_a = \begin{pmatrix} A & B \\ -B & A \end{pmatrix}, \quad i\tilde{X}_b = \begin{pmatrix} C & D \\ D & -C \end{pmatrix}, \quad (79)$$

where A , B , C and D are $n \times n$ real matrices such that A , C and D are antisymmetric and B is symmetric. Thus, I have exhibited a similarity transformation (note that $V^\top = V^{-1}$) that transforms the basis of the Lie algebra spanned by the T_a to one that is spanned by the \tilde{T}_a . Moreover, consider the isomorphism that maps $i\tilde{T}_a$ given in eq. (79) to the $n \times n$ matrix $A + iB$. Since $(A + iB)^\dagger = (A - iB)^\top = -(A + iB)$, we see that the $A + iB$ are anti-hermitian generators (which are not generally traceless) that span a $\mathfrak{u}(n)$ subalgebra of $\mathfrak{so}(2n)$. We can check the number of $\mathfrak{u}(n)$ generators by counting the number of degrees of freedom of one real antisymmetric and one real symmetric matrix: $\frac{1}{2}n(n-1) + \frac{1}{2}n(n+1) = n^2$, as expected.

Finally, multiplying the two equations $c^2 T_a^\top = -\Sigma_0^\top T_a \Sigma_0$ and $c^2 X_b^\top = \Sigma_0^\top X_b \Sigma_0$, it follows that $c^2 T_a^\top X_b^\top = -\Sigma_0^\top T_a X_b \Sigma_0$ (after employing $\Sigma_0^\top \Sigma_0 = c^2 I_{2n}$). Taking the trace, it follows that $\text{Tr } T_a X_b = -\text{Tr } T_a X_b$, and we conclude that $\text{Tr } T_a X_b = 0$.

To show that the $\{T_a, X_b\}$ span the full $\mathfrak{so}(2n)$ Lie algebra, we have already noted above that there are n^2 generators, $\{T_a\}$. In addition, there are $n(n-1)$ generators, $\{X_a\}$, corresponding to the number of parameters describing two real antisymmetric matrices [see eq. (79)]. Thus, the total number of generators is $n(2n-1)$ which matches the total number of $\mathfrak{so}(2n)$ generators.

References

- [1] H.E. Haber, “Notes on antisymmetric matrices and the pfaffian,” available on the Web via <http://scipp.ucsc.edu/~haber/webpage/pfaffian2.pdf>.
- [2] J. Gallier and D. Xu, “Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices,” *Int. J. Robotics and Automation* **17**, no. 4, 1 (2002).
- [3] H.K. Dreiner, H.E. Haber and S.P. Martin, “Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry,” *Phys. Rept.* **494**, 1 (2010) [arXiv:0812.1594 [hep-ph]].
- [4] Andrew Baker, *Matrix Groups: An Introduction to Lie Group Theory* (Springer-Verlag, London, UK, 2002).
- [5] Hans Schwerdtfeger, *Introduction to Linear Algebra and the Theory of Matrices* (P. Noordhoff Ltd., Groningen, Holland, 1950).
- [6] Francis D. Murnaghan, *The Unitary and Rotation Groups* (Spartan Books, Washington, DC, 1962).
- [7] L.-F. Li, *Phys. Rev.* **D9**, 1723 (1974); V. Elias, S. Eliezer and A.R. Swift, *Phys. Rev.* **D12**, 3356 (1975); D. Wu, *Nucl. Phys.* **B199**, 523 (1982) [E: **B213**, 545 (1983)].