
Maple Cheat Sheet

Based on Maple 12/13 Windows Version

Syntax

; Ends a command with a semicolon. e.g. 5+6; plot(x);

: Suppresses the display of output by ending a command with a
colon. Useful for lengthy outputs or loading packages. e.g.
with(plots): 5000!:

:= Assigns an expression to a variable. e.g. x:=3; x:=’x’;

unassigns the variable x.

= Defines mathematical equations. e.g. y = xˆ2 + 3*x + 4;

% Refers to the last result. n of the % symbols refers to the ntℎ

previous result. e.g. %%% gives the third previous presult.

f :=(x,y,...)->... Defines a function. e.g. f := (x,y) ->

xˆ2+yˆ2; defines the function f(x, y) = x2 + y2. f(0,1)

evaluates f(0, 1).

L :=[x1, x2, ..., xn] Defines a list (ordered sequence) L of
expressions x1, x2, . . . , xn. Refer to the ntℎ list item by L[n].
To extract the contents of a list, use the empty selection
operator []. e.g. A:=[1,2,3]; A[3]; returns 3. A[] returns
1,2,3.

S :={x1, x2, ..., xn } Defines a set S of expressions x1, x2,
. . . , xn. Use the empty selection operator[] to extract the
contents of a set. e.g. S:={5,3,3,2,1}; S[]; returns
1,2,3,5.

name [expression] Indexed name. e.g. b[1]; A[x,y,z];

?topic Displays help on topic.

#expression Comment (not interpreted as commands).

All identifiers (variables and functions) are case sensitive. e.g.
X is different from x. Pi and pi are different!

In general, a function whose name begins with a capital let-
ter is an inert form of the function who has the same name
but begins with lower case. Inert functions are unevaluated
and may be manipulated and printed in a prettyprinted for-
mat. e.g. Int(x,x); returns

∫
xdx and is the inert form of

int(x,x);, which evaluates to x2/2.

Usages and Icons

Right-click Perform context operation on math expression

! Execute the current line

!!! Execute the entire worksheet

[> Insert prompt

T Insert text paragraph

Keyboard Shortcuts

Enter Evaluate and display result on new line
Shift + Enter Continue on next line without executing
Ctrl + = Evaluate and display inline (Document Mode)

Ctrl + Space Complete symbol/command
F5 Toggle Math/Text entry (Document Mode)

Toggle 2-D/1-D Math entry (Worksheet Mode)

Ctrl + F1 Maple help

Defined Constants

Pi � ≈ 3.14159265...
I complex number I =

√
−1

infinity ∞
gamma Euler’s constant
 ≈ 0.5772156649...
Catalan Catalan’s constant ≈ 0.915965594...
exp(1) e ≈ 2.718281828

Commands

General

with(package): Loads the specified Maple package.

unassign(var); Deletes a value stored in the given variable.
e.g. unassign(’a’);

restart; Clears internal memory. The settings of all identifiers
are resetted.

unapply(expression, x, y, ...); Returns a functional op-
erator from an expression and variables. e.g. f := xˆ2 +

yˆ2; g:=unapply(f, x, y); returns the functional opera-
tor g := (x,y) -> xˆ2 + yˆ2; such that g(1, 2) returns
5.

Common Mathematical Operations

x + y - z; addition and subtraction
x * y; multiplication
x / y; division
xˆy; power xy

sqrt(x); square root
√
x

exp(x); exponential ex

ln(x); natural log ln(x)
log[b](x); logarithm logb(x)
surd(x,n); real ntℎ root n

√
x

sin(x); cos(x); tan(x); trigonometric functions
arcsin(x); arccos(x); inverse trig functions
arctan(x);

1

Numerical Manipulation

eval(expression); Evaluates the given expression. e.g.
a:=bˆ2; b:=c+1; c:=2; eval(a); returns 9.

eval(expression, x=value); Evaluates expression at the
given point x = value. e.g. eval(xˆ2+5*x, x=1); eval-
uates the polynomial x2 + 5x at x = 1 and returns 6.

eval(expression, {x=value1, y=value2,...}); Evaluates
expression at the given points x = value1, y = value2,...

subs(x=value,expression); Substitutes the given value into
expression. e.g. subs(x=2,xˆ2+2*x+1); gives 9.
subs(x=0, sin(x)/cos(x)); returns sin(0)/cos(0).

evalf(expression); Numerically evaluates expression and re-
turns its decimal approximation. e.g. evalf(Pi); returns
3.141592654.

value(expression); Evaluates the given inert expression. e.g.
F:=Sum(i,i=1..5); value(F); evaluates the inert sum∑5

i=1 i and returns 15.

assume(x, domain); Restricts variable x to domain. Exam-
ples of domain are positive, negative, posint, integer,
real, and complex. e.g. assume(x, ’integer’); forces x
to be an integer.

assume(relation); Enforces the given relational property. e.g.
assume(x > 0); restricts x to be positive.

additionally(x, domain); additionally(relation);

Places further restrictions on the given variable. Usages
are similar to that for assume. e.g. assume(x, real);

additionally(x > 0); forces x to be real as well as
positive.

map(f, expression, arg1, ..., argN); Applies f to each
of the operands or elements in expression along with the
given arguments arg1, . . . , argN . e.g. map((x,y)->x+y,

[0,1,2], 1); adds one to each element in the given list to
produce the result [1, 2, 3].

Algebra

simplify(expression); Applies simplifica-
tion rules to the given expression. e.g.
simplify(cos(Pi*cos(x)ˆ2+Pi*sin(x)ˆ2)); returns
-1.

collect(expression, variable); Combines like terms in
expression with respect to the given variable. e.g.
collect(aˆ2*x+b*x+5, x); returns 5 + (a2 + b)x.

normal(expression); Simplifies and normalizes the given ra-
tional expression so that the result is of factored nor-
mal form, where the numerator and denomator are rel-
atively prime polynomials with integer coefficients. e.g.

normal(1/x+x/(x+1)); returns x+1+x2

x(x+1) .

factor(expression); Factors the given expression of a mul-
tivariate polynomial. Does NOT factor integers or integer
coefficients in a polynomial. e.g. factor(4*xˆ2+12*x+8);

returns 4(x+ 1)(x+ 2).

ifactor(expression); Factors an integer or rational number
into a product of primes. e.g. ifactor(24/19); returns
(2)3(3)
(19) . ifactor(2ˆ10-1); returns (3)(11)(31).

expand(expression); Distributes the given expression. e.g.
expand((x+3)*(x+5)); returns x2 + 8x+ 15.

solve(equations, variables); Solves for the unknown vari-
ables in the given equations or inequalities.

e.g. solve(xˆ2-25=0, x); solves the equation x2−25 = 0 and
returns 5,-5.

e.g. solve({x+y+z = 6, x-y+2*z = 5, 2*x+2*y+z = 9},
[x, y, z]); solves the system of three equations and re-
turns the solution [[x = 1, y = 2, z = 3]].

e.g. solve(abs(x+5) > 3, x); solves the inequality ∣x +
5∣ > 3 and returns RealRange(Open(−2), infinity),
RealRange(−infinity,Open(−8)).

fsolve(equations, variable, [complex]); Numerically
solves for the unknown variable in equations.
Use the complex option to find a complex so-
lution. e.g. fsolve(xˆ2+5*x-4,x); returns
−5.701562119, .7015621187.

sum(f, k=m..n); Returns the summation
∑n

k=m f(k). e.g.
sum(xˆ2, x=1..n); computes

∑n
x=1 x

2.

Calculus

limit(f, x=a, dir); Computes the limit of f as x approaches
a. a can be any algebraic expression or infinity. Direction
dir is optional and is real bidirectional by default (except for
∞ and −∞). Possible values of direction are left, right,
real, and complex. e.g. limit(1/exp(x), x=infinity);

computes lim
x→∞

1
ex and returns 0.

diff(f, x1, ..., xj); Differentiates f with respect to vari-

ables x1, . . . , xj :
dj

dxj ...dxi
f . e.g. diff(sin(x), x); takes

the first derivative of sin(x). diff(f(x,y),x,y); computes
∂2

∂y∂xf(x, y).

diff(f, x$n); Computes the ntℎ derivative of f : dn

dxn f . e.g.
diff(xˆ4, x$2); computes the second derivative of x4 and
returns 12x2.

implicitdiff(eq, x1, ..., xj); Implicitly differentiates eq
with respect to variables x1, . . . , xj . The equation eq defines
y as a function of x1, . . . , xj implicitly. e.g. f:= y=xˆ2/zˆ2;

implicitdiff(f, y, x); computes dy/dx and returns
2x/z2.

2

int(f, x); Computes an indefinite integral of f with respect to
the variable x. e.g. int(cos(x), x); computes

∫
cos(x)dx

and returns sin(x).

int(f, x=a..b); Computes the definite integral of f with re-
spect to the variable x on the interval from a to b. e.g.

int(xˆ2, x=0..2); computes
∫ 2

0
x2dx and returns 8/3.

Differential Equations

dsolve(ODE, y(x)); Solves ordinary differential equations for
the unknown y(x). ODE can be a single differential equa-
tion, or a set or a list of equations.

e.g. ode:=diff(y(x),x$2)=2*y(x)+1; dsolve(ode,

y(x)); solves the differential equation d2

dx2 y(x) = 2y(x) + 1.

dsolve({ODE, ICs}, y(x)); Solves ordinary differential equa-
tions ODE for y(x) given initial conditions. ICs are initial
conditions given in the form y(a)=b, D(y)(c)=d,

e.g. ics := y(0) = 1, (D(y))(0) = 0; dsolve({ode,
ics}, y(x);

DEplot(deqns, vars, trange, inits, xrange, yrange);

In the DEtools package. Plots solution curves to a system
of differential equations by numerical methods. deqns -
list of first order ordinary differential equations or a single
differential equation of any order. vars - list of dependent
variables. trange - range of the independent variable. inits
- list of initial conditions. xrange, yrange - range of the
two dependent variables.

e.g. with(DEtools):

de1:=diff(x(t),t)=-0.5*x(t)*y(t);

de2:=diff(y(t),t)=0.5*x(t)*y(t);

DEplot([de1,de2],[x(t),y(t)],t=0..50,

x=-2..2,y=-2..2,[[x(0)=0.9,y(0)=0]]);

Linear Algebra

Matrix(..); Creates a matrix.

∙ Matrix(a); square matrix a x a filled with 0’s

∙ Matrix(a, b, c); matrix a x b filled with c’s

∙ Matrix([[a, b, c],[d, e, f]]); →
[
a b c
d e f

]

< x1, x2, . . . , xj > Creates a column vector

⎡⎢⎢⎢⎣
x1
x2
...
xj

⎤⎥⎥⎥⎦
Vector[o](..); Creates a vector of orientation o (either row or

column). Default orientation is column.

∙ Vector(a, b); column vector of size a filled with bs

∙ Vector([a, b, c]); column vector

⎡⎣ a
b
c

⎤⎦

∙ Vector[row] ([a, b, c]); row vector
[
a b c

]
Matrix addition, subtraction, multiplication: A + B , A - B ,

A . B

The following commands are in the LinearAlgebra package.
Precede commands by with(LinearAlgebra):

CrossProduct(u, v); Computes the cross product of vectors
u and v.

DotProduct(u, v); Computes the dot product of vectors u and
v.

Determinant(A); Computes the determinant of matrix A.

Norm(A, p); Computes the p-norm of a matrix or vector A.

Basis(v); Computes the vector or set of vectors that forms a
basic for the vector space spanned by v.

Eigenvalues(A); Computes the eigenvalues of matrix A.

Eigenvectors(A); Computes the eigenvectors of matrix A.

MatrixInverse(A); Computes the inverse of square matrix A.

Transpose(A); Computes the transpose of A.

Plots

plot(f, x=xmin..xmax, options); Creates a two-
dimensional plot of the real function f(x) over the
horizontal range from xmin to xmax. Options are specified
in the form option=value (see box below).

∙ f is an expression or function with an independent vari-
able. e.g. plot(xˆ2, x=-5..5);.

∙ f is represented parametrically:
[x(t),y(t),t=t0..t1]. e.g.
plot([cos(t),sin(t),t=-2*Pi..2*Pi]);

∙ f is a list of functions to be graphed on the same
plot: [f1, f2, ..., fn]. e.g. plot([1,x,xˆ2],

x=-2..2); puts the functions y = 1, y = x, and y = x2

on the same plot.

implicitplot(eqn, x=xmin..xmax, y=ymin..ymax, options);

In the plots package. i.e. Must be preceded by
with(plots): Creates the two-dimensional plot of an
implicitly defined curve eqn on the specified intervals:
[xmin, xmax] and [ymin, ymax]. Options are speci-
fied in the form option=value (see box below). e.g.
implicitplot(xˆ2+yˆ2=1, x=-1..1, y=-1..1);.

inequal(ineqs, x=xmin..xmax, y=xmin..xmax, options);

In the plots package. Plots regions defined by inequalities
ineqs in the specified x and y intervals. Options are in the
form optionsfeasible / optionsopen / optionsclosed

/ optionsexcluded = (optionsList), where optionsList
is of the format (option=value, option2=value2, ...).
e.g. inequal({x+y>0, x-y<=1}, x=-3..3, y=-3..3,

optionsexcluded=(color=blue,thickness=2));

3

plot3d(f, x=a..b, y=c..d, options); Creates a three-
dimensional plot of the real function f(x, y) over the hor-
izontal range [a, b] and vertical range [c, d]. Options are
specified in the form option=value (see box below).

∙ f is an expression or function with two indepen-
dent variables. e.g. plot3d(sin(x+y), x=-1..1,

y=-1..1);.

∙ f is represented parametrically: [f1(x,y), f2(x,y),

f3(x,y)]. e.g. plot3d([x*sin(x)*cos(y),

x*cos(x)*cos(y), x*sin(y)], x=0..2*Pi,

y=0..Pi);

∙ f is a list of functions to be graphed on
the same plot: [f1(x,y), f2(x,y), ...,

fn(x,y)]. If there are three functions, use the
plotlist option to avoid a parametric plot. e.g.
plot3d([sin(x*y),cos(x*y),x+y], x=-1..1,

y=-1..1, plotlist); puts the functions z = sin(xy),
z = cos(xy), and z = x+ y on the same plot.

implicitplot3d(eqn, x=a..b, y=c..d, z=i..j, options);

In the plots package. Creates the three-dimensional plot
of an implicitly defined surface eqn on the specified in-
tervals: x = [a, b], y = [c, d] and z = [i, j]. Options are
specified in the form option=value (see box below). e.g.
implicitplot3d(xˆ2+yˆ2+zˆ2=1, x=-1..1, y=-1..1,

z=-1..1);.

contourplot(f, x=a..b, y=c..d, options); In the plots

package. Creates a 2-D contour plot of the real function
f(x, y) over the horizontal range [a, b] and vertical range
[c, d]. Options are specified in the form option=value and
can be those used in the plot commands or the following:

Number of contours contours=c

Locations of contours contours=[a, b, c, ...]

Filled contours filledregions=true

Gradation coloring coloring=[color1,color2]

e.g. contourplot(cos(x*y), x=-3..3,

y=-3..3, contours=4, filledregions=true,

coloring=[red,blue]);

contourplot3d(f, x=a..b, y=c..d, options); In the
plots package. Creates a 3-D contour plot where contours
are raised to their appropriate levels. Usages are similar to
contourplot.

spacecurve(curves, t=a..b, options); In the plots pack-
age. Creates a curve or a set of curves in 3-D space.
curves can be a list of points, a list of the x, y, and z
components, or a set of such lists. Options are similar to
those in plot3d. e.g. spacecurve({[cos(t),sin(t),t],
[t,sin(t),cos(t)]},t=0..4*Pi);

polarplot(r(theta), theta=a..b, options); In the plots

package. Creates a plot for r(tℎeta) for tℎeta =
a...b in polar coordinates with polar axes. e.g.
polarplot(sin(theta),theta=0..2*Pi);

transform(f); In the plottools package. Creates a func-
tion that applies the given function f to all points in
a plot data structure. Useful for embedding 2-D plots
into 3-D ones and transforming coordinate systems. e.g.
g:=transform((x,y)->(x,y,-1)); creates a procedure
that transforms points with two coordinates (x, y) in a plot
to points with three coordinates (x, y,−1).

animate(plotcommand, plotargs, t=a..b, options); In
the plots package. Creates a 2-D or 3-D animation on
paramter t, ranging from a to b. plotcommand is a Maple
command that generates a 2-D or 3-D plot (e.g. plot,

plot3d, implicitplot). plotargs is a list of arguments
to the plot command. Possible options are those used in
the plot command or the following:

Number of frames frames=n

Display a trace of n frames trace=n

e.g. animate(plot, [A*sin(x), x=0..10], A=0..2,

frames=50, trace=5);

display(L, options); In the plots package. Combines the
list L of plot structures into a single plot or animation.
options are those used for plot or plot3d.

e.g. with(plots):

p1:=plot3d(sin(x*y), x=-Pi..Pi, y=-Pi..Pi):

p2:=plot3d([x+y, sin(x)], x=-Pi..Pi, y=-Pi..Pi):

display([p1,p2], axes=boxed, title="test plot");

Options for 2D Plots

Type of axes axes=boxed/frame/none/normal

Color of curves color=blue/black/green/red/etc.

Determine input discont=true/false

discontinuities
Draw gridlines gridlines=true/false

Label Axes labels=[x,y]

Scaling scaling=constrained/unconstrained

Line thickness thickness=number

Title title="plot title"

Min/max y values y=ymin..ymax

View window view=[xmin..xmax,ymin..ymax]

Additional Options for 3D Plots
Contours contours=number

Coordinate System coords=cartesian/cylindrical/

spherical/etc.

Grid Dimensions grid=[m,n]

Label Axes labels=[x,y,z]

View window view=[xmin..xmax,ymin..ymax,

zmin..zmax]

Maple Cheat Sheet. v. 2010.2 4 Margaret Yau.

