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Abstract

Given two positive definite matrices X and Y , we prove that

Tr [(XY )r] ≤
[

Tr (X2r)
]1/2 [

Tr (Y 2r)
]1/2

for any real number r. For
Y = X∗ (where X∗ is the complex conjugate of X) and r = −1/2, this
inequality reduces to Tr (XX∗)−1/2 ≤ Tr (X−1). The implications of
the latter inequality are exhibited.

Consider an n × n matrix X. By definition, X is positive definite if

∑

ij

Xija
∗
i bj > 0 , (1)

for all complex vectors ai and bj . One can easily prove that if X is positive
definite then X is hermitian (see, e.g., Ref. [1], p. 65). Since the eigenvalues
of hermitian matrices are real, it is easy to prove that the eigenvalues of
positive definite matrices are real and positive. Moreover, a positive definite
matrix is invertible, since it does not possess a zero eigenvalue. Note that a
non-hermitian matrix whose eigenvalues are all strictly real and positive is
not positive definite. Finally, we note that for any matrix S, if X is positive
definite, then S†XS is also positive definite. This follows from eq. (1) by
replacing a and b with Sa and Sb, respectively.

Refs. [2] and [3] define a weakly positive definite matrix A to be a matrix
that can be written as A = SXS−1 for some non-singular matrix S, where
X is positive definite.1 Since two matrices related by a similarity trans-
formation possess an identical eigenvalue spectrum, it follows that all the
eigenvalues of A are real and positive. Moreover, since X is hermitian, it is
also diagonalizable, and it then follows that A is diagonalizable as well.2

1Note that a weakly positive definite hermitian matrix is a positive definite matrix.
2In particular, a non-diagonalizable matrix with only real positive eigenvalues is not

weakly positive definite.

1



Consider two positive definite matrices X and Y . Then XY is positive
definite if and only if X and Y commute (in which case XY is hermitian and
X and Y are simultaneously diagonalizable). The case where X and Y do
not commute is covered by the following lemma [2, 3, 4]:

Lemma 1: A matrix is weakly positive definite if and only if it can be
written as the product of two positive definite matrices.

Thus, if X and Y are positive definite, then XY and Y X are both weakly
positive definite. Moreover, if X and Y are positive definite, then all the
eigenvalues of XY and Y X, respectively, are real and positive. The proof of
the lemma is straightforward. First, note that A = SXS−1 = P1P2, where
P1 = SS† and P2 = [S−1]†XS−1, where P1 and P2 are clearly positive definite
if X is positive definite.

To prove the converse, we first define X1/2 to be the unique positive
definite square root3 of X. Then, X1/2Y X1/2 = [X1/2]†Y X1/2 is positive
definite. If we now write:

XY = X1/2[X1/2Y X1/2][X1/2]−1 , (2)

it follows that XY and the positive definite matrix X1/2Y X1/2 are related
by a similarity transformation. Consequently, all the eigenvalues of XY are
real and positive. A similar proof yields the same conclusion for Y X.

We next consider a number of important inequalities involving eigenvalues
and singular values of a complex matrix. For any matrix A, its singular
values are defined as the positive square roots of the eigenvalues of AA† (or
equivalently of A†A). We shall denote the eigenvalues of A by λi and the
singular values by σi.

Lemma 2: For any non-singular4 n × n matrix A,

n
∑

i=1

|λi|
r ≤

n
∑

i=1

σr
i , (3)

for any real number r.

This result was first stated and proved by Weyl [5]. We shall apply
Lemma 2 to a weakly positive definite matrix A. Since the eigenvalues of A

3For a proof that a positive definite matrix has a unique positive definite square root,
see, e.g., Ref. [1], p. 162 or Ref. [4], p.405.

4If A is singular, then Lemma 2 holds for non-negative real r.
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are real and non-negative, it follows that:

n
∑

i=1

|λi|
r =

n
∑

i=1

λr
i = Tr (Ar) . (4)

To obtain the last equality above, recall that A is diagonalizable, so that
Ar = SDrS−1, where D = S−1AS = diag(λ1, λ2 . . . , λn). In defining Ar,
we use Dr = diag(λr

1, λ
r
2 . . . , λr

n), where λr
i = exp(r ln λi) > 0 by taking the

principal value of the logarithm. Thus, Ar is uniquely defined and is weakly
positive definite. Hence, for any weakly positive definite n × n matrix A,

Tr (Ar) ≤

n
∑

i=1

σr
i . (5)

Lemma 3: For any two non-singular n × n matrices A and B,

n
∑

i=1

σr
i (AB) ≤

n
∑

i=1

σr
i (A)σr

i (B) , (6)

for any real number r where the σi(A) are the singular values of A and
σr

i (A) ≡ [σi(A)]r, etc.

This is Theorem 3.3.14(e) of Ref. [6]. We can derive another useful in-
equality as follows. First, we square both sides of eq. (6). The inequality is
preserved since all terms in the sums are positive. We then make use of one
further inequality:

n
∑

i=1

n
∑

j=1

σr
i (A)σr

i (B)σr
j (A)σr

j (B) ≤

n
∑

i=1

n
∑

j=1

σ2r
i (A)σ2r

j (B) . (7)

This inequality is a trivial consequence of the identity:

n
∑

i=1

n
∑

j=1

[

σ2r
i (A)σ2r

j (B) − σr
i (A)σr

i (B)σr
j (A)σr

j (B)
]

=
1

2

n
∑

i=1

n
∑

j=1

[

σr
i (A)σr

j (B) − σr
j (A)σr

i (B)
]2

≥ 0 . (8)

Hence, eqs. (6) and (7) imply that:
[

n
∑

i=1

σr
i (AB)

]2

≤

[

n
∑

i=1

σ2r
i (A)

][

n
∑

j=1

σ2r
j (B)

]

. (9)
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Note that σi(A
2r) = σ2r

i (A) for any non-singular5 matrix A. This follows
from:

σ(A2r) = {λ[(AA†)2r]}1/2 = [λ(AA†)]r = [σ(A)]2r . (10)

The next to last equality is obtained by diagonalizing the positive definite
matrix AA†. Hence, we can rewrite eq. (9) as:

[

n
∑

i=1

σr
i (AB)

]2

≤

[

n
∑

i=1

σi(A
2r)

] [

n
∑

j=1

σj(B
2r)

]

. (11)

The case of r = −1/2 is posed as problem 25 on p. 190 of Ref. [6].
We now apply eq. (11) to the case of positive definite matrices X and

Y . In this case, we can combine eq. (11) with eq. (5) [since XY is weakly
positive definite] to obtain:

Tr [(XY )r] ≤

[

n
∑

i=1

σi(X
2r)

]1/2 [

n
∑

j=1

σj(Y
2r)

]1/2

. (12)

Recall that if X is positive definite, then σi(X) = λi(X). Thus, eq. (12) is
equivalent to the following result:

Theorem 1: If X and Y are positive definite n × n matrices, then

Tr [(XY )r] ≤
[

Tr (X2r)
]1/2 [

Tr (Y 2r)
]1/2

, (13)

for any real number r, where (XY )r is defined to be the weakly positive
definite rth power of XY .

Theorem 1 is proved for the case of integer r in Ref. [7]. However, the
proof given in this paper appears to hold for any real number r.

We now consider the case of Y = X∗, where X∗ is the complex conjugate
of X. Note that if A is positive definite, then X∗ is also positive definite. It
then follows that XX∗ is diagonalizable, and all of its eigenvalues are real
and positive. If we diagonalize XX∗ = QDQ−1, where D is a diagonal matrix
with real positive diagonal elements, then we can define a unique6 square root

5As in footnote 4, for singular matrices, one must restrict the real number r to non-
negative values.

6According to a theorem proved in Ref. [8], for any non-singular matrix with the prop-
erty that none of its eigenvalues lie on the negative real axis, there exists a unique square
root whose eigenvalues lie completely in the open right complex half plane (i.e., the eigen-
values λi satisfy Re λi > 0 for all i). It follows that (XX∗)1/2, whose eigenvalues are all
real and positive, is uniquely defined.
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(XX∗)1/2 = QD1/2Q−1, where D1/2 is the diagonal matrix consisting of the
positive square roots of the diagonal elements of D. Note that since XX∗

is a complex symmetric matrix, it follows that Q is in general a complex
orthogonal matrix. Hence, (XX∗)1/2 is also a complex symmetric matrix.
We are now ready to state the second theorem of interest to this paper.

Theorem 2: Let X be a positive definite matrix. The following inequal-
ity holds:

Tr (XX∗)−1/2 ≤ Tr (X−1) , (14)

where (XX∗)1/2 is the unique complex symmetric matrix whose eigenvalues
are all real and positive.

Theorem 2 is a trivial consequence of putting r = −1/2 and Y = X∗ in
eq. (13), and noting that Tr (X−1) = Tr [(X∗)−1] if X is positive definite.

One can reformulate Theorem 2 in the two different ways. We begin with
the definition of the adjugate of a matrix Z, which is defined by

ZA ≡ (det Z)Z−1 . (15)

It is easy to prove the following result. Given a matrix Z whose characteristic
polynomial is given by:

χZ(s) = (s− λ1)(s− λ2) · · · (s− λn) = sn + β1s
n−1 + · · ·+ βn−1s + βn , (16)

then (−1)nβn = λ1λ2 · · ·λn = det Z and [9]

(−1)n−1βn−1 = λ1λ2 · · ·λn

(

1

λ1

+
1

λ2

+ · · ·+
1

λn

)

= Tr ZA . (17)

Consequently, eq. (14) is equivalent to the inequality:

Tr {(XX∗)1/2]A} ≤ Tr [XA] , (18)

where we have used eq. (15) and the fact that det (XX∗) = det (X2) =
(det X)2 if X is positive definite. Equivalently,

ρ1ρ2 · · · ρn

(

1

ρ1
+

1

ρ2
+ · · ·+

1

ρn

)

≤ λ1λ2 · · ·λn

(

1

λ1
+

1

λ2
+ · · · +

1

λn

)

,

(19)
where the ρi are the eigenvalues of (XX∗)1/2 and the λi are the eigenvalues
of X.
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We can express βn−1 (or equivalently Tr ZA) in terms of tk ≡ Tr (Zk),
where k = 1, 2, . . . , n − 1 by using the following recursion relation [10]:

tk + β1tk−1 + · · ·+ βk−1 t1 + kβk = 0 , k = 1, 2, . . . , n − 1 . (20)

An explicit formula can be found in [11]:

Tr ZA = (−1)n−1
∑

(p1,p2,...,pn−1)∈S

n−1
∏

m=1

1

pm!

[

−
tm
m

]pm

, (21)

where S is the set of all non-negative integer solutions {(p1, p2, . . . , pn−1)} of
the equation p1 + 2p2 + . . . (n − 1)pn−1 = n − 1. Explicit results can also be
found in [12].7 However, it is not likely that these results can be used for a
direct proof of the inequality given in eq. (18).

APPENDIX

Theorem 2 can be directly proven in the case of 3×3 matrices. Any 3×3
matrix Z satisfies its characteristic equation,

Z3 − (Tr Z)Z2 + 1
2
[(Tr Z)2 − Tr (Z2)]Z − det Z = 0 . (22)

Multiplying eq. (22) by Z−1 and taking the trace yields:

(det Z)Tr Z−1 = 1
2
[(Tr Z)2 − Tr (Z2)] . (23)

In this case, eq. (14) is equivalent to the statement that

[Tr (B1/2)]2 − Tr B ≥ [Tr (A1/2)]2 − Tr A , (24)

where A = XX∗ and B = XX† = X2 [and we have used det A = det B =
(det X)2]. We can rearrange eq. (24) into the following form:

[Tr (B1/2) − Tr (A1/2)][Tr (B1/2) + Tr (A1/2)] ≥ Tr (B) − Tr (A) , (25)

or equivalently,

[Tr (B1/2 − A1/2)][Tr (B1/2 + A1/2)] ≥ Tr (B − A) (26)

To prove eq. (24), we make use of the following lemma [14]:

Lemma 4: If V and W are non-negative definite matrices, then

[Tr (V )][Tr (W )] ≥ |Tr (V W )| . (27)

Choose V = B1/2−A1/2 and W = B1/2+A1/2. Then, it easily follows that
Tr (V W ) = Tr (B − A), where we have used the fact that Tr (A1/2B1/2) =
Tr (B1/2A1/2). Using eq. (27), we immediately verify eq. (26).

7These results are known as Newton’s identities [13].
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