Evaluating the one-loop function arising in h — ~~

Howard E. Haber
Santa Cruz Institute for Particle Physics
University of California, Santa Cruz, CA 95064, USA
May 11, 2020

Abstract

In these notes, we provide an explicit calculation of an integral that arises in the
computation of the one-loop amplitude for the Higgs boson decay to two photons. Two
additional derivations are provided in the appendices to these notes.

In the computation of the one-loop amplitude for the Higgs boson decay to two photons,
the following integral arises [1-8],

1
dz
F(z)= lim F €) = i — In|l —zx(1l —x) —1 1
(2) Jim (z + ie) Jim T n[l—zz(l —z) —ie (1)
where z is a real parameter and ¢ is a real positive infinitesimal. The goal of this note is to
provide an explicit computation of F(z).
First, let us examine the range of the parameter z for which Im F'(z) # 0. Let us denote
the argument of the logarithm in eq. (1) by the function,

flx)=22"—22+1>0. (2)

Observe that Im F'(z) = 0if f(z) > 0 for 0 <z < 1. In particular, Im F'(z) = 0 if z < 4 since
the maximal value of z(1 —x) is i over the integration range. Note that z = % is a minimum
of f(z) if z > 0 and f(3) =1 — 1z, which implies that the minimum value of f(z) at = 1
is negative when z > 4. Since f(0) = f(1) = 1, it follows that f(x) < 0 for values of = such

that 0 < x_ < x < x4 < 1, where x4 are the roots of f(z),

re=11% 1-%]. (3)
Thus, vy
ImF(z):@(z—4)/ ?x ImIn[1 — zz(1 — z) — i€ , (4)

where we have explicitly included the step function to enforce the condition that Im F'(z) =0
if 2 < 4. To evaluate the imaginary part of the logarithm, we employ the principal value
of the complex-valued logarithm, with the branch cut taken along the negative real axis. In
particular, for any nonzero real number y and real positive infinitesimal e,

In(y —ie) = In[y[ —imO(-y) . (5)
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It then follows that ImIn(y — i€) = —mO(—y) . Employing this result in eq. (4),

Im F(z) = —70(z — 4) /:+d?x = —7O0(z—4)In <i—f) = —710(z—4)In %
:_2w@(2—4)1n(§+ 2_1), -

after using the explicit forms for xy given in eq. (3).

We now turn to the computation of Re F'(z). We shall examine separately the cases of
z < 4 and z > 4. In the case of z < 4, the argument of the logarithm in eq. (1) is positive,
in which case we can drop the —ie term and write

F(z) = /0 d?x In[1 - zz(1—x)], for z < 4. (7)

We proceed to examine two subcases.
First, consider the case of z < 0. In this case, it is convenient to define,

z = —4sinh® w, for 0 < w < 0. (8)
Taking the derivative of F' with respect to w,

dF  d ['d '
Y i %1n[1—|—4x(1—x)sinh2w} :4sinh2w/0

(1 —2x)dx
1+ 4z(1 — 2)sinh*w

(9)

To evaluate the above integral, we first factor the denominator of the integrand and then
apply a partial fractioning. That is,

Tw
1+ 42(1 — 2) sinh? w = —4 sinh? w(x — —z h —dt——— (10
+ 4z(1 — z) sinh” w sinh” w(x — x4 )(z —2_), where x4 5o (10)
Hence, it follows that
dF sinh 2w /1 (1 —2x)dx 2 coshw /1 l—zy 1—2_
= = — dx .
dw sinh®w Jo (v —a4)(z —x_) sinhw(zy —z_) Jo \z—xy x—2_

(11)
Note that 2, € (1,00) and z_ € (—00,0). Hence, the integrands above are not singular for
0 <z <1, and the corresponding integrals are well defined.
Using eq. (10), it follows that
_ coshw

Ty =T = o Ty +a_=1. (12)

It follows that

1 — J—
aF = —2/ ( - ) dr = —2x_1In <x+ 1) + 2z In (xl 1)
dw 0o \z—2y T—2_ Ty x_
=—2z_In (—:C—_) + 2z, In (—:C—Jr) =2In (_x_+) = 4w, (13)
€Ty xT_ xTr_




after employing egs. (10) and (12). Using the boundary condition, F'(0) = 0, one can solve
the differential equation above to obtain F(w) = 2w?. In light of eq. (8), w = arcsinh $1/—z,
and we end up with

F(z)= 2[arcsinh(%\/——z)}2 : for z < 0. (14)

Using the identity,
arcsinhz = In(z + V1 + 2?2) (15)

one can obtain another form of eq. (14), which we can write in two different ways,

V=2 1 1-2+1

Fiz)=2? (Y2 p 1-2)=-m? [ Y|, forz<0.  (16)
2 4 2 4
1-4-1
Next, consider the case of 0 < z < 4. In this case, it is convenient to define,
z=4sin*0, for 0 < 0 < 3. (17)
Taking the derivative of F' with respect to 6,

1 1
%gzégo %?mﬂ—4ﬂ1—xmm%ﬂ:—4mmel

(1 —x)dx
1 —4x(1 —2)sin?0

(18)

To evaluate the above integral, we first factor the denominator of the integrand and then
apply a partial fractioning. That is,
et

1 — ds(] — .20:4-29 _ — T h =+ .
(1 - z)sin sin*0(z —wy)(w -2, where zy =+ o

(19)

Hence, it follows that

0l_F__si1r129/1 (1 —x)dz L 2cosf /1 -2y 1-w dz. (20)
9 sin®6 ), (x—a)(xr—2_) (v —ax)sinf J, \x -1, T—2_ '

Using eq. (19), it follows that

1cosf
—_ = — — = ]_ 21
Ty — X sng Ty +x ( )

/1(1—x_)dz:/1 xydr :/1 xy dr :_/1 xydz (22)
0 T —x_ 0 T—x_ 0o T—14x, 0 T—xy

after changing the integration variable x — 1 — x in the final step above. In light of these
last two results, eq. (20) yields,

1 _ .
ar_ 22'/ @i (1) Zoim (52 — 2in (e*) , (23)
db 0 T — Ty —T4 —T4

after using eq. (19) for x4 to obtain the final result.

Moreover,
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To complete our analysis, recall that the principal value of the complex logarithm is given
by,
Inz=In|z| +iargz, (24)

where the principal value of the argument function is defined such that —7 < argz < m.
Since 0 < 6 < 7 [cf. eq. (17)], it follows that In(e*?) = 2i0. Hence, eq. (23) yields,

dF
o
Setting z = 0 in eq. (7) and noting that z = 0 implies that § = 0, it follows that F'(6 = 0) = 0,

which serves as an initial condition for eq. (25). Integrating eq. (25) subject to this initial
condition yields,

—46, for 0 < 0 < 3. (25)

F(0) = —20%, for 0 < 0 < 2. (26)
From eq. (17), sinf = %\/E Hence,

0 = arcsin (31/2) . (27)
Plugging this result back into eq. (26) yields our final result,’

F(z) = —Q[arcsin(%\/z)}z, for0<z<4, (28)

where 0 < arcsin(34/z) < im. Note that egs. (14) and (28) are analytic continuations of
each other, in light of the relation, arcsin(ixz) = ¢ arcsinh z. In order to analytically continue
eq. (28) into the region of z > 4, the following equivalent form for eq. (28) is useful,

F(z)=-2 [g - aurccos(%\/z)}2 : for0<z<4. (29)

The case of z = 4 can be treated separately. In this case, 1 — 4z(1 —z) = (1 — 22)?, in
which case we can again drop the —ie term in eq. (1). It then follows that

F(z:4):/01d—x1n[(1—2x)2} :2/01/2d—x1n(1—2x)+2/11 d—xln(Qx—l). (30)

T X /QI

In the first integral on the right hand side of eq. (30), we substitute y = 2z, and in the second
integral on the right hand side of eq. (30), we substitute y = 2z — 1. Hence,

1 1
dy dy
Fz:4:2/—1n1—y —|—2/ Iny. 31
=2 Lma-y+2 [ L 1)
The two integrals above are well known [9],
1 2 1 2
/ @m(l_y):_w_’ / ﬂlny:_w_‘ (32)
Hence, it follows that
F(z=4)=-1r". (33)
In light of eq. (26), limg_o F'(0) = lim, 4 F'(2) = —%71’2. Hence, it follows that we can extend

the results of egs. (28) and (29) to include the endpoint z = 4.

L An alternative derivation of eq. (28) and its analytic continuation are given in Appendix A.
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Finally, we consider the case of z > 4. In this case, Im F'(z) # 0 and is given explicitly in
eq. (6). In order to compute Re F(z) when z > 4, it is convenient to define,

2z =4cosh®w, for 0 < w < o0. (34)

In light of eq. (5),
U dx
Re F(2) :/ — In|1 — zz(1 — z)|. (35)
0
After employing eq. (34), we take the derivative of Re F' with respect to w,
1 1
1—

iReF:i d—xln‘1—4x(1—x)cosh2w‘:—4sinh2wP/ U~ z)dw 7 >
dw dw Jo =z o 1—4x(1 —z)cosh®w

(36)
where P indicates the principal value prescription. In obtaining this result, we have made
use of the relation obtained on p. 26 of Ref. [10],

d 1
— Injy|=P-. (37)
dy y

To evaluate the above integral, we first factor the denominator of the integrand and then
apply a partial fractioning. That is,

Fw
1 — 42(1 — x) cosh?w = 4 cosh® w(x — — h =_° (3
z(1 — x) cosh” w cosh®w(x —zy)(z —x_), where 23 = o——— (38)
Hence, it follows that
inh 2 ! 1-— 2 tanh Y1— 1—a_
iReF:—Sm 2wP/ (1 —x)dz _ 2tan wP/ T T\
dw cosh®w Jy (z—axy)(z—x_) xy—r_  Jo \x—1y x—I_
(39)
Using eq. (38), it follows that
ry —x_ =tanhw, Ty +ax_=1. (40)
Moreover,
1 1 1
P/ dx :P/ dx :—P/ dx ’ (41)
0 T—X_ 0 T—1+x4 0 T — T

after changing the integration variable x — 1 —x in the final step above. Using the definition
of the principal value prescription,

Vode . =0y ! dx
P = lim +

0 L — T4 6—0t 0 r— Ty x++5l'_flf+
1
Z‘++(5}

= lim {Ind — Inz; +In(l — z;) — Iné}

6—0t

—In (1 ;f*) = In (i—;) = 2w, (42)

after making use of egs. (38) and (40).

ZB+—5

= lim {ln(:c+ — ) +In(z — z4)

6—0t

0




Finally, after employing eqs. (40)—(42), one can simplify eq. (39) to obtain,

%ReF:—2(2—x+—x_)P/Olzfxx+:4w. (43)
Integrating both sides of eq. (43) and using eq. (33) to determine the constant of integration,
Re F(w) = 2w* — i7°. (44)

From eq. (34), coshw = %\/E Hence, it follows that
Re F(z) =2 [arccosh(%\/z)]2 — ix?, for real z > 4, (45)

where the principal value of the arccosh function for real positive values of z > 4 is
arccosh (3+/z) = In (% + Z — 1) : (46)
Note that egs. (6) and (46) imply that
Im F(z) = —2m arccosh(3v/z) , for real z > 4. (47)
Combining eqgs. (45) and (47) yields,

F(z) = -2 [g %—z'zaul"(zcosh(%\/z)}2 : for z > 4. (48)

In summary,

—2[arcsin(%\/2)}2, for0 < z<4,
F(z) = , (49)
—2[% +iarccosh(3/Z)]", for z > 4,

where 0 < arcsin(2y/z) < 17. In the literature, one often rewrites the expression for F(z)
when z > 4 in one of the two following equivalent forms,?

2 1+4/1-42
T NE z 1 , 2
F(Z)——2{§+zln<7+ Z—l)] =3 m+iln ﬁ ; for z > 4,
(50)
after employing the identity,

arccoshz = In(z + Va2 — 1), for x > 1. (51)

It is straightforward to show that the two expressions on the right hand side of eq. (49) are
analytic continuations of one another. This statement is proven at the end of Appendix A.
A similar method to the one presented in these notes for evaluating F'(z) has been given in
Refs.[11,12]. In these two references, dF'/dz is evaluated first and then the result is integrated
to obtain F'(z). However, the final integration of dF'/dz is more difficult as compared to the
derivation given above.
Yet another technique for deriving F'(z) is given in Appendix C.

2This result corrects a sign error that appears in eq. (3.3) of Ref. [5], which gave the opposite sign for the
imaginary part of F'(z). The sign was corrected in Ref. [6] (and also appears correctly on p. 434 of Ref. [7]).
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Appendix A: Alternative derivation of F'(z)
For 0 < z <4, Im F(z) = 0. One can therefore drop the factor of —ie in eq. (1) and write,

d

F(z)= / & In[1 — zz(1 —z)], for 0 < z < 4. (52)
0 T

Noting that 0 < zz(1 —x) < 1 forall 0 <z <1 and 0 < z < 4, we can employ a series
expansion for the logarithm,

In(l —w) =— % : for -1 <w < 1. (53)

Setting w = zx(1 — x) in eq. (52) and interchanging the order of integration and summation,

F(z)= —/ "1 —z)"dx, for 0 < z < 4. (54)

We recognize the integral above as a beta function,

! F'm)I'n+1) (n—1)!nl
B 1 - n-t 1 - " d == = .
(nn+ 1) /0 1 =) dr = oot (55)
Plugging this result back into eq. (54) yields,
o0 2
[(n — 1)!] .

F(Z):—ZW,Z s f0r0§2<4. (56)

1
Comparing this result with eq. (71) of Appendix B, we conclude that
F(z) = —Q[arcsin(%\/E)F, for0<z<4, (57)

where arcsin is the principal value of the arcsine function, which satisfies | arcsin x| < %w for
real values of x. Thus, we have confirmed the result of eq. (28).

One can now employ the method of analytic continuation to obtain F'(z) in the region
where z > 4. Note that an equivalent form for eq. (57) is,

F(z)=-2 [E—arccos(l\/g)r , for 0 <z<4. (58)

To analytically continue into the region of real z > 4, we employ egs. (4.23.24) and (4.37.19)
of Ref. [13], which imply that for a positive infinitesimal ¢,
lim+ arccos(x + i€) = —iarccoshz = —iln(z + Va? — 1), for 1l <z < 0. (59)
e—0

Consequently, for z > 4,
2 2
F(z) = lir(l)q+ F(z+ie) = -2 [5 — arccos( Vz+ ze)} = -2 [g +iarccosh(%\/z)] , (60)
e~

in agreement with eq. (48). As expected both eqs. (58) and (60) yield the same result at
their common boundary, F(z = 4) = —ix?

Similarly, the analytic continuation of eq. (57) into the region of z < 0 yields eq. (14) in
light of the relation, arcsin(ixz) = ¢ arcsinh .

A careful treatment of the analytic continuation is also given in Ref. [12].
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Appendix B: Power series of (arcsin x)?

One method for deriving a power series of a function is to develop a differential equa-
tion (with appropriate initial conditions) whose solution is the function in question. This
differential equation can then be solved by the series expansion method. This technique was
used by Ref. [14] to derive the Taylor series for (arcsinz)? about the origin.? Inspired by the
computation of Ref. [14], we first consider the function,

arcsin x
Y= ——,
V1—1x2

where the principal value of the arcsine function is employed such that |arcsinz| < %71‘ for
real values of x. We can derive the Taylor series of eq. (61) about x = 0 by the following
technique. Taking the derivative of eq. (61) yields

(61)

dy 1 x arcsin x

7 — . 2
dv 1 — a2 + (1 — 22)3/2 (62)
It follows that eq. (61) is the solution to the following first order differential equation,
oy Ay
(1—x)%—xy:1, where y(z =0) =0. (63)

Note that setting = = 0 in eq. (61) yields y = 0 which fixes the initial condition for eq. (63).
One can solve eq. (63) using a series solution,

Yy = i cpa™ . (64)
n=0

Plugging eq. (64) back into eq. (63) yields,

o0 o0 o0
E ne,z" 1 — E ne,z"t — E "t =1, (65)
n=1 n=1 n=0

Equating coefficients of ™ on both sides of eq. (65) and imposing y(z = 0) = 0 yields ¢y = 0,

c; =1 and "

n+1

Cni1 = Cp—1, form=1,23,... (66)

It immediately follows that
2n  2n—2 2 2"n!

nbl = : e L=0, forn=0,1,2... (67
T T 1 213 @n+ Dl “ o (67)

Hence we conclude that

oo n '
arcsin x Z 2"n! St

Vi-? @2n+ 1)

In eq. (68), we have noted that the convergence of the sum requires that |z| < 1.

, for |z| < 1. (68)

n=

30ther methods for obtaining the Taylor series for (arcsinz)? about x = 0 can be found in Refs. [15-19].
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In light of

(arcsin z)? 2arcsinw

dx :\/1—:1727

it follows that )
T arcsin

arcsin z)? = 2 —=dt. 69
Cwesne) =2 | —n (69)

Inserting the series obtained in eq. (68) on the right hand side of eq. (69) yields,

= 2"n! v = 2"n!
— t2n+1 — 2n+-2
(arcsinz)” Z (2n+ )N / ; (n+1)(2n + 1! *
N (T ) LI

:;mx : for |z| < 1. (70)

One can check that the series on the right hand side of eq. (70) converges at all points on the
boundary of the circle of convergence.
Note that
(2n)! = (2n)!1 (2n — I =2"n! (2n — 1)!1.

Hence,

Inserting this result into eq. (70) yields,

l\)

1 o
(arcsin z)? =3 Z (22)*" for |z| < 1. (71)

n=1

Using (n — 1)! = n!/n and introducing the central binomial coefficient,

0)-2

one can rewrite eq. (71) as

o

2n
(arcsin x)* = EZ @)™ for |z| <1. (72)

2 "ot 2 (271) ’
n

Appendix C: Yet another derivation of F(z)

In this Appendix, we shall evaluate F'(z) defined in eq. (1) by employing the dilogarithm
function discussed in detail in Ref. [20]. Eq. (1) is a special case of a more general integral
with an integrand that consists of a ratio of quadratic polynomials. Such an integral was
examined previously in Ref. [21]. In Appendix D, we present a detailed computation of this
more general integral and correct some typographical errors that appear in Ref. [21].
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Using egs. (2) and (3),

o) = Bz D)@ —2) (1 - i) (1 - i) = (1—zzxy)(1—azz_),  (73)

Ty _

after making use of x x_ =1/z.
In the region where 0 < z < 4,

_ 1
xi—§

1:ti\/?] . (74)

Moreover, f(x) is strictly positive for 0 < x < 1, in which case we can safely take the limit
of € » 0 in eq. (1). Hence,

F(z)z/old—xln[f(:c)} :/Old—I1n(1—xzx+)+/01d—x1n(1—xzx_). (75)

x x x
Using the following indefinite integral taken from Ref. [20],

/ ' ‘i_x In(1 — Az) = — Liy(Az), (76)

where Lis(x) is the dilogarithm function, it follows that

F(z) = —Lis(zx4) — Lig(z2_). (77)
Note that
. 4
204 = % [z +ivdz — 22} = /z e where tan ¢ = o 1. (78)

Following Ref. [20], we define

" — 2
Lis(r, ¢) = ReLi(re') = _l/ In(1 2x;os¢ +12)
0

5 dz . (79)

Since F'(z) is real in the region where 0 < z < 4, eq. (77) yields,

F(z) = Re F(z) = — Re[Lis(224) + Lis(z2_)] = —[Li2(v/2, ¢) + Li2(vz, —9)] - (80)

Eq. (79) implies that
Lis(r, ¢) = Liz(r, —¢) . (81)

Hence,
4
F(z) = =2 Lis(v/2,¢), where tan¢g = /- —land 0 < z < 4. (82)
z

Since 0 < z < 4, it follows from eq. (78) that Re(zxy) > 0. Hence, cos ¢ > 0, in which case
1

V' 1+ tan? ¢

10

=1z (83)

cos ¢ =



Egs. (82) and (83) then yield,
F(z) = —2 Liy(2cos ¢, ¢) , where cos ¢ = % zand 0 < z < 4. (84)
Finally, we can employ formula (15) of Ref. [20], which states that
Lis(2cos ¢, ¢) = (%71’ —¢)%, for 0 < ¢ <. (85)
In light of the fact that

Vz), (86)

N[

im— ¢ = im — arccos(3+/z) = arcsin(
it follows from eqs. (84)—(86) that
F(z) = —Q[arcsin(%\/g)r, for 0 <2< 4, (87)

in agreement with eq. (28).
In the region where z > 4, one cannot drop the factor of —ie in eq. (1). Noting that both
roots,

4
=1 1+ 1——], (88)
z
are real and lie between 0 and 1, we see that eq. (75) must be modified as follows,
1 1
d
F(z) = / du In (1 —zzz, — ie) —i—/ “ (1 —zza_ +ie) . (89)
o T o T

In particular, note that since 0 < z_ < x; <1 and z > 4, it follows that
(1—zzoy —ie)(1 —zza_+ie) =1 —zx(l —x)+iexz(a_ —zy) =1—zx(l —x) —ie, (90)

in a region where 0 < x < 1, as required. An alternative way to arrive at the same result is
to note that z — z + ie is equivalent to x4 — x4 £ ie. Since zxy = 1/x4, eq. (76) yields,

F(z) = — Lig(zx 4 +i€) — Lig(zx_ — i€) , for z > 4. (91)
Using zx,x_ =1 and . +x_ =1, it follows that
1 1 1
2r_ — i€ = — — i€ = — i€ = L (92)
Ty 1—a_ 1—(zzy)™ 1 zzy—1

Thus, we can rewrite eq. (91) as,

24

F(z) = — Lis(zx4 + i€) — Liy < 1~ ie) , for z > 4. (93)

2y —
The factors involving ie indicate how to evaluate the dilogarithms which are defined on the
complex plane with a branch cut from 1 to co. Specifically, for real values of x and positive

infinitesimal e,
Lig(z £ i€) = ReLiy(z) £ imO(x — 1) Inz. (94)
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The step function ©(z—1) in eq. (94) indicates that the dilogarithm of a real number possesses
an imaginary part only when the argument of the dilogarithm is greater than 1.

Formula (9) on p. 283 of Ref. [20], with the imaginary part modified appropriately? in
light of eq. (94), states that

Re [Lh(m) + Liy ( )} =1ir’ —iln*(z -1), for x > 1, (95)

r—1

and

Im |:L12(Zl§' + i€) + Liy ( ’ 1~ ze)} =nln(x — 1), for z > 1. (96)

xr —

Hence, eq. (93) yields,

F(z) = —ir* + iln*(zay — 1) —irIn(zzy — 1) = —3[r + i In® (22, — 1)]2. (97)
Noting that
1 1—ax_
zey —1l=——1= v —x—+, (98)
T x_ T
it follows that )
1
F(z):_§ [ﬁ—l—iln <x_+>] , for z > 4. (99)
x_
Employing eq. (88), we end up with
2
1 1+4/1-1
F(z)=— |mn+iln | ——— , for z > 4, (100)
2 1— /14
in agreement with eq. (50).
Finally, we can also treat the region of z < 0. Using eqgs. (77) and (92),
. . 2T 4
F(z) = — Lis(zx4) — Lig , for z < 0. (101)
zry —1

Note that zxy € (0,1) when z < 0, so the arguments of both dilogarithms are less than 1,
which means that F(z) is real, as expected from eq. (6). Thus, we can evaluate eq. (101) by
employing formula (8) on p. 283 of Ref. [20], which states that

Lis(z) + Liy (—1 ‘ ) =—1ln*(1-2), for x < 1. (102)
-z

Hence, eq. (101) yields,

F(z)=1in*(1 — zzy), for x < 1. (103)

— 2

4In formula (9) on p. 283 of Ref. [20], it has been implicitly assumed that z means x — ie in both the
arguments of the dilogarithms.
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Using eq. (98), it follows that

l—zp, ==V 2 (104)
Thus, we end up with,
for z <0, (105)

in agreement with eq. (16).

Appendix D: Generalizing the results of Appendix C

The integral treated in these notes is a special case of the more general integral,

1 2 g
G(xl;b,c):/ dx ln(x +bx+c ze) | (106)
0

T — 2 + by + ¢ — e

where x1, b and ¢ are real parameters and € is an infinitesimal constant (which can be
either positive or negative).® Note that the potential singularity of the integrand at z = z;
is removable. Omne can evaluate G(z1;a,b,c) by using the same techniques employed in
Appendix C. In this Appendix, we will provide details of the evaluation of eq. (106), and
verify that it reduces to the results obtained in Appendix C for G(0; —1,1/z).

We first consider the case of b> < 4c. In this case, ¢ > 0 and the polynomial equation
22 + bx + ¢ = 0 has two complex roots,

Ty = 3[-bEivic— ], (107)

which implies that 2% +bx +c > 0 for all . Consequently, it is safe to take the limit of € — 0.
After factoring the argument of the logarithm,

G(z1;b,¢) = G(z1,24) + G(ay,2_), (108)
where 1
G, 22) = / S (m) , (109)
o L — T T1 — T+

which consists of two equations (one for the upper signs and one for the lower signs). Changing
the integration variable to y = x — xy,

Glay,24) = /_Hl W, (1 - L) . (110)

Y Ty — I

°In the more general case where the argument of the logarithm is (ax? + bx + ¢ — i€)/(az? + bx1 + ¢ — i€)
where a # 0, one can always divide the numerator and denominator by a and change the sign of € if a < 0.
Thus, without loss of generality, one is free to consider the form of the integral as given by eq. (106).
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Employing eq. (76), we end up with

G(11,24) = —Li2< - n ) +Li2< - ) . (111)

Ty — I Ty — I
Note that
= e~ forop =0+ n70(x; — 1), 112
T+ —x1 Vo +bry+c ¢ (21 ) (112)
—T1 |21 +ig! /
= e~ for o' =60+ 7wO(xy1), 113
Ty —x1 Vo +bry+c ¢ (1) (113)
where

21’1"—()

2/22 by + ¢

To derive the above results, we calculate as follows,

cosf = — (114)

Lo (-w)le-—m)  1-m (<221 — b— iV — 7] . (115)

vy —xy  (vy —x)(v_ —x1)  2(22 4 bry + )

In a convention where —7 < ¢ < 7, it follows that

: (116)

and the two-fold ambiguity on the determination of ¢ is fixed by the sign of cos¢. In
particular, the sign of cos ¢ is equal to the sign of Re[(1 — z1)/(z+ — z1)]. That is,

1, if (1- 2 b

Sgn(cosgb) _ + ) 1 ( xl)( 1+ ) < 07 (117)

-1, if (1—1’1)(21’1+b)>0
It follows that,
1 25(71 +b
cosp = ————  segn((1 —x1)(221 + b)) = — sgn(l —x
¢ T+ tan o g (( 1) (221 )) 5 /—xf+bx1+c gn( 1)
= cosfsgn(l — z;) = cos(0 + 7 O(z; — 1)) , (118)

in agreement with the result for (1—x;)/(xy —x1) given in eq. (112). The other cases specified
in egs. (112) and (113) can be obtained similarly.

Hence, after using the definition of Liy(r, ¢) given in eq. (79) and making use of eq. (81),
we end up with

G(:El;b,c):2Li2( 24| 11—z ,9+7r@(x1—1)).

NE T NoETET:
(119)

It is convenient to allow the parameter x in Lis(x, ¢) to be negative. Then, eq. (79) implies
that

o6 211

Lig(—xz,60) = Lig(z,0 + 7). (120)
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In addition, note that
Lig(x,0) = Re Liy(z), (121)

which means that Lis(z,0) # Liy(z) for > 1, since in this regime Lis(z) possesses an
imaginary part, whereas Liy(z,0) is real.
It then follows that,

G(21;b,¢) = 2 Liy (_—xle) — 2L, (ie) , (122)
Vi T ber T e Vi b F e

where
21’1 + b

2/ +bay + ¢

in agreement with the result given in Appendix D of Ref. [21].
As a check, we set x1 =0, b= —1 and ¢ = 1/z, under the assumption that 0 < z < 4, to
obtain,

cosf) = — (123)

G(0;—1,1/z) = —2Liy(v/2,0) where cosf = 1

svVzand 0 < z < 4, (124)

in agreement with the result of eq. (84).
Next, we consider the case of b > 4c. In this case, the polynomial equation 22 +bx+4c = 0

has two real roots,
ry =31[-b+ Vb2 —4c]. (125)

Depending on the values of x,, x_ and z7, the argument of the logarithm may change sign
in the interval 0 < x < 1. If this happens, then the logarithm will develop an imaginary
part, whose sign is fixed by the presence of the ie term. However, it will be convenient to
first consider the case where the argument of the logarithm is strictly positive in the interval
of 0 <z < 1. In this case we can safely take the limit of ¢ — 0. Once we obtain the result
for this case, one can analytically continue the result into other parameter regimes simply by
replacing ¢ — ¢ — ie.

Thus, if we assume that x4 < z; and x4 < 0, then we can factor the argument of the
logarithm as we did in egs. (108)—(110), and we once again arrive at eq. (111),

G(11,24) = —Li2< - n ) +Li2< - ) . (126)

T+ — 1 T+ — X1

As expected, both dilogarithm arguments are less than 1, which confirms that the functions
G(z1,x4) are real, as expected. Hence eq. (108) yields,

G(xl;b,c):Li2< o )+Li2< — )—Li2<1_x1)—L12(1_x1). (127)
ry — 1 r_— — I Ty — T r_ — I

If we drop the assumption that z4 < x; and x4+ < 0, then some of the dilogarithm
arguments may be larger than 1 indicating that an imaginary part is present, in light of
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eq. (94). Thus, we now restore the ie factors by letting ¢ — ¢ — ie. In particular, we must
replace 4 — x4 + ie. For example,
—T —T —T €T —T _
L= ! . = Lo+ : = ! +iesgn g .
Ty — X ke 1€ e —x1 (rx—1)% 1i—1
(xe—xp) (1 £
T+ — T

(128)
Hence, it follows that independently of the values of . and 1,5

G(x1;b,c) = Liy < + jesgn :1:1) + Liy ( — jesgn :1:1)
Ty — I r_—I

1— 1—
—Li2< T4 desgn(a —1)) —Li2< T esgn(n —1)). (129)

Ty — a1 r— — I
As a check, we take x1 = 0, b = —1 and ¢ = 1/z, which yields, zx,x_ = z¢ = 1 and
G(0;—1,1/z) = — Lis(zx4 + i€) — Lig(zx_ — i€), for z > 4, (130)

in agreement with eq. (91).
For completeness, we examine a third case where b? = 4c. In this case, it is safe to take
the € — 0 limit, which yields,

1
G(xl;b,ibz):2/ LN
0

r — I

x+%b
ZL’1—|—%b

1—x1
:2Re{/ d—y1n<1+ - )}
—x1 Yy x1+§b
. 1 . LL’l—l
— 2Re{L L 131
e{ 12(x1+§b) 12(x1+§b)}’ (131)

after making use of egs. (24) and (76). It is a simple exercise to check that in the limit of
b? = 4e, egs. (122) and (129) both reduce to eq. (131), as expected.”

If the argument of the dilogarithm is larger than 1, then one can use formula (6) on p. 283
of Ref. [20] to write,

1
Re Liy(z) = +7° — Liy (—) —1im’z, for x > 1. (132)
T

The reader can rewrite the result of eq. (131) accordingly.

As one final check of the formulae derived in this Appendix, consider the limit where [b],
lc| = oo with » = ¢/b held fixed to a finite value. In this limit, one can neglect the factor
of 22 in the numerator and denominator of eq. (106), in which case,

1 o
G(21;b,c) :/ d ln<$+r “Sgnb) . (133)
0

T — I xr1+r —iesgnb

SEq. (129) corrects a typographical error that appears in eq. (D.6) of Appendix D in Ref. [21].
"When analyzing eq. (122), we have made use of egs. (120) and (121). When analyzing eq. (129), we have
used the fact that Lig(z + é€) + Lis(x — ie) = 2ReLis(x), in light of eq. (94).
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Suppose that x; and r take on values such that (z+7)/(z1+7) > 0 over the interval 0 < z < 1.
In this case, we can safely take the limit of ¢ — 0. Hence,

G(x'bc)—/l d 1n<x+r)—/l_m@ln(l+ Y )
b 0 T — T T+ e Y x4

. r1 \ . [z
() (252)) 31

To obtain a result that is independent of the values of x; and r, one must restore the ie factor
by letting r — r — iesgn b. Hence, we end up with,

Il—l

G(z1;b,¢) = Liy ( L sgn(bxl)) — Liy (

x|+

+ iesgn(b(zy — 1))) : (135)

T+

This result corrects a typographical error in eq. (D.9) of Appendix D of Ref. [21] (the latter
was valid only in the case of b < 0). One can verify that eq. (135) is reproduced when
evaluating eq. (129) in the limit of |b|, |¢| — oo with r = ¢/b. In performing this check, note
that if b > 0 then x_ — oo and ;. — —r, whereas if b < 0 then z, — oo and x_ — —r.
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