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The general scalar potential of the
two-Higgs-doublet model (2HDM)

The 2HDM consists of two identical weak SU(2); doublet, hypercharge 1

scalar fields. The most general tree-level scalar potential is:

V = m, {01 + 0l — mio[®s +he] + I (@],)’
F I (B5D)2 + Ag(@]D1) (B5Dy) + Ag(@]Do) (B101)

F{s(@102)% + [o(@]81) + Ar(@]2)] B[@y + e}

where m?,, m2, and A\ 234 are real and m?, and A5 47 are potentiall
11 22 2,3, 12 0,

complex. In the most general model, ®; and ®5 couple to quarks and leptons
via dimension-four Yukawa couplings. In terms of the Higgs mass-eigenstates,

the most general Higgs-quark interactions are:
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where My and Mp are 3 X 3 diagonal quark mass matrices, K is the CKM matrix,

ei923pU’D are arbitrary complex 3 X 3 coupling matrices, and the gx; encode mixing angles

that arise from the diagonalization of the 3 X 3 Higgs scalar squared-mass matrix.

That is, the most general 2HDM exhibits

e CP-violating Higgs interactions

e Tree-level Higgs-mediated flavor changing neutral currents (FCNCs)

which for generic values of the 2HDM parameters are inconsistent with

observed particle physics phenomena.



To avoid these unseemly features within the 2HDM, one has two options:

e fine-tune the relevant 2HDM parameters (and/or arrange for the decoupling limit, in
which only a Standard Model-like Higgs boson remains in the low-energy effective theory)

to reduce the CP-violating and FCNC effects to an acceptable level.

e introduce a new symmetry governing the Higgs interactions to eliminate both CP-violating

and FCNC effects at tree-level.

The MSSM Higgs sector is one example of the second approach. It possesses a very special
2HDM scalar potential. In the SUSY limit,

m%1:m§2:|u|2, m%QZO, As = A¢ = A7 =0,
Al =2 = —(A3+ \g) Z%(QQ-FQ/Q), Ap = —A1 — A3 = —%QQ-

When soft-SUSY-breaking is added, mfl, mgz and m%z become independent (non-zero)

parameters, while the tree-level relations among the \; continue to hold.

What is special about the tree-level relations among the MSSM 2HDM scalar

potential parameters?




‘ Basis-independent formalism for the 2HDM |

The parameters of the 2HDM scalar potential introduced above are not
physical, since they can changed by redefining the scalar fields. A basis

change consists of a U(2) Higgs family transformation ®, — U, ; Py,

V=Y, ; 0Ly + 175 (0L (10,)

where Z ;.7 = Z.7,; and hermiticity implies Y ; = (Y33)* and Z_ ;.7 =
(Zvaaz)*. The barred indices help keep track of which indices transform
with U and which transform with UT. The most general U(1)gy-conserving

vacuum expectation value (vev) is:

0 R | |
(@) = % < N ) , with U, = e (cﬁ, 53 67’5) fora=1,2,
Uq

where v = 2myy /g = 246 GeV. The overall phase 7 is arbitrary.
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b!
minimum condition is given by the invariant condition:

If we define the hermitian matrix V ; = 0,07, then the scalar potential

r (VYY) + 20°Z,5,4VeaVae = 0.

The orthonormal eigenvectors of V_; are 0, and w, = v €y (with €10 =
—€o1 = 1, €11 = €92 = 0). Note that o7y, = 0. Under a U(2) transformation,
o — U, pUp, but:
— (det U) " U3 Wy,

where det U = e'X is a pure phase. That is, @, is a pseudo-vector with

respect to U(2). One can use w, to construct a proper second-rank tensor:
4%

NS -
ab — waw 5 Vab'

Note that tan 8 = vs /vy is a basis-dependent quantity, and hence

it is not a physical parameter in a general 2HDM.




A list of invariant and pseudo-invariant quantities

Yi=Tr (YV), Yo=Tr (YW),
Z]_ = Zagccz ‘/ba,vd(_37 ZQ = Zagccz WbC_LWd(_Z7
723 = Zyped VeaWae 24 = Zypeq VoeWaa

are invariants, whereas the following (potentially complex) pseudo-invariants

Ys=Y ;v wy, Zs = 2 ped Vs W Vs Wy
Ze = Zypeq Vs Up Vs Wy Lt = Zpeqg Vs Wp W Wy .

transform as

Y3, Zg, Z7] — (det U)"'[Y3, Zs, Z7] and Zs — (det U) *Zs.

Physical quantities must be invariants. For example, the charged Higgs boson

mass Is mzi = Y5 + %ngQ. Pseudo-invariants are useful because one can

always combine two such quantities to create an invariant.



‘ The MSSM Higgs scalar potential revisited |

Perhaps the significance of the relations among the MSSM Higgs scalar

potential parameters will become clearer when expressed in terms of invariant

quantities.
7y =Zy=3(9"+g'?)cos® 283, Zs=e"XZs+ (9 =37,
Z4 — 6_27;XZ5 _ %92 ) 6_27;XZ5 — i(g2 + 9/2) SiIlQ 257

e X Ty = —e X7y = i(g2 + ¢'?)sin2B cos 283,

where the phase  is chosen such e %X Z; is real and positive. (Since Zs, Zg
and Z-; are pseudo-invariants, these quantities can be appropriately rephased

without affecting any physical observable.)

However, as tan (8 is basis-dependent, the above cannot be regarded as a

basis-independent characterization of the MSSM Higgs sector.



‘ How to discover a symmetry of the 2HDM |

Suppose we impose a Zsy symmetry, ®; — P, &3 — — P, , on the scalar potential. Then
it follows that m%Q = X¢ = A7 = 0. In a different basis for the scalar fields, the symmetry
defined above is no longer manifest. Nevertheless, the symmetry still persists. One can

formulate a basis-independent test for the existence of the Zy symmetry. Defining
1) _ 11) _ (1 1) _
ZC(:,J) — 6552@50&? ZEJ ) — Zéa)Zchcz? YC;—) — YE)C_EZchJ?
then we require the following conditions to be satisfied:
1z vyl =12z", 2z =1 y" vl =o0.
As an example, suppose that the 2HDM scalar potential satisfies the following conditions:

2 2 * 2
mi; = Myy, A1 = X2, A7 =Xs, mj,and A5 are real.

The three commutators above vanish, which implies that there exists some basis where the

discrete Zo symmetry &1 — &1, 5 — — D5 is manifest.”

*In fact, in the original basis, the symmetry just exhibited corresponds to a permutation symmetry ®; <> ®5.



‘ Classification of 2HDM symmetries I

The 2HDM scalar potential is invariant with respect to the electroweak
SU(2)xU(1)y gauge symmetry. However, additional global symmetries
(either discrete or continuous) may be present.

e Higgs family symmetries

Consider the U(2) basis transformations, ®, — U, ;®Pp. The 2HDM scalar potential is
invariant under global U(1)y transformations, which is a subgroup of U(2). The Higgs
family symmetry consists of the largest subgroup of U(2) orthogonal to U(1)y that is a
global symmetry of the 2HDM scalar potential.

e Generalized CP (GCP) symmetries

The standard CP symmetry transformation is ®, — ®-. But, one can also consider

o
generalized CP transformations,
b, — Xabcb;—; :

where X is a unitary matrix.



Three distinct classes of GCP symmetries are possible.

e CP1: X is also symmetric = (CP1)* =1
e CP2: X is also antisymmetric = (CP2)* = —1
e CP3: X is neither symmetric nor antisymmetric == (CP3)* # +1

Note: In the CP1 case (and only in this case), one can always find a basis such that the

CP1 transformation is simply &, — ®_.

Because the terms of the tree-level scalar potential are at most dimension-4, the possible

symmetries of the 2HDM scalar potential are quite limited. Here is the complete list.

symmetry  maximal

class symmetry m3, m>, s A4 As A6 A7
Zs (Z2)? 0 0 0

U(1) 0(2) 0 0 0 0

SO(3) 0(3) m3, 0 A1 Al — Az 0 0 0
CP1 Zo real real real real
CP2 (Z)*  m2, 0 X\ — X6

CP3 O02)®Zz mij, 0 X\ A1 — Az — Ag (real) 0 0



The hierarchy of possible symmetries has the following structure:

U(1)

CPl < Zy <
CP2

} < CP3 < SO(3).

Basis-independent conditions for each symmetry class have also been obtained.

e Custodial symmetry

Consider the 2HDM scalar potential that is invariant with respect to global SU(2)r, xU(1)y
transformations. The largest symmetry allowed global group (corresponding to the symmetry

group of the kinetic energy terms) is:
® = U,y ®y + Va*b&)b :
where ® = i02<1>2, and the matrices U and V satisfy

vt +vvi=1, UV _-—vu=o.

We can then construct the 4 X 4 matrix



The matrix O satisfies:

- ' 0 1
Q PO =P, Q'O = 1444, where P = . NE

That is @ € Sp(2). This conclusion continues to hold if we gauge the SU(2)r symmetry.
Thus in the limit of ¢’ = 0, the largest symmetry group of the 2HDM scalar potential is
SU(2)r,x Sp(2). The custodial symmetry group corresponds to SU(2)r X SU(2)g, which is
a subgroup of the maximal symmetry group. We can explicitly identify SU(2)r by choosing,

U =cosfe“1, V =sinf0 W,

where W is an arbitrary symmetric unitary matrix and « and 6 are arbitrary angles. Different
choices of W correspond to different basis choices. The global U(1)y transformations

provide the diagonal generator for SU(2)r and corresponds to cos 6 = 1.

After electroweak symmetry breaking, the SU(2)r x SU(2)r symmetry is spontaneously
broken down to the diagonal SU(2)y subgroup, which is commonly identified as the custodial
symmetry. Of course, the custodial symmetry is broken once g’ # 0, corresponding to the

gauging of the U(1)y.



Basis-independent conditions for a custodial-symmetric 2HDM potential

e The 2HDM scalar potential is CP-conserving. That is, one can choose
a phase convention such that the pseudo-invariants Z5, Zg and Z; are

simultaneously real.

e One additional condition must be satisfied:

.
€56|Z5] for Z¢ #0,

Z4 = X 857‘25‘, for Z7 75 O,
\:E‘Z5‘, for Z6:Z7:O,

where €56 and €57 correspond to the sign of Z5 in the phase convention

where the pseudo-invariants are real.



‘ Stability under renormalization group (RG) running |

Any true symmetry properties of the dimension-4 terms of the scalar potential must be

stable with respect to RG-running.

applied. Consider

symmetry class  m3,

The MSSM Higgs potential fails this test when naively

m%Q )\2 >\4 >\5 )\6 )‘7

SO(3) m%l

0 A1 A1 — A3 0 0 0

MSSM m%l

0 A1 —A1— A3 O 0 0

Focusing on the scalar and vector boson contributions to RG-running, given the constraints

A1 = A2 and A5 = A\g = A7 = 0, compare

DAy + Az — A1) = 1A + As — A1) (12X1 + 40, — 9g° — 3¢")

D(As+ Az + A1) = —3 (992 + 39/2) (A1 + A3+ A1)

2 (3A1 + (3Xs + 2X0) A1 + 223 + 227 + 3A504)

2 4
-|-i (9g4 + 6g2g/ + Sg' ) .



The SO(3) relation Ay = A1 — A3 is stable under RG-running. The MSSM relation
A4 = —A1 — Az is not. Perhaps you are concerned that | have not yet made use of the
fact that the parameters of the scalar potential are related to gauge couplings in the MSSM.

Imposing those conditions yields:
2 4
DM+ A3+ M) =3¢" +2¢9°¢" +4",
i.e., Ay = —A3 — Ay is still not stable under RG-running.

In order to achieve stability under RG-running for the MSSM Higgs scalar potential, one
must also include the effects of the superpartners. The gaugino and higgsino interactions

generate additional terms, which in the SUSY limit yield

dsusy(DA1) = —394 —g°g"" - %g/4a
4 4
Ssusy(DA3) = —3¢" + ¢°¢"* — Lg'*,

dsusy (DAs) = 2g* — 24°¢"%.
Hence,

4
Ssusy{D(Aa + As + M)} = —(3g" +2¢°" + ¢"),
which is precisely what is required to obtain: D(Ay + A3+ A1) = 0.



‘ Reconciling the MSSM scalar potential |

Do basis-invariant conditions exist that guarantee the existence of a basis
in which the MSSM conditions of the Higgs scalar potential parameters are

satisfied? Ferreira, Silva and | found a necessary but not sufficient condition:

The Higgs sector of the MSSM is a CP3-symmetric 2HDM.

We also provided an explicit basis-invariant condition for CP3 symmetry (you
don’t want to see it!). But suffice it to say that for a CP3-symmetric scalar

potential, one can always find a basis in which
2 92 N 2 _ _ _

These conditions are satisfied by the MSSM Higgs sector, but the additional
condition Ay = —\1 — A3 and the relation of the \; to gauge couplings are

not imposed.



To achieve a complete basis-invariant formulation of the MSSM Higgs sector,
one must also incorporate the gaugino-Higgs-higgsino interaction. In the
MSSM, the latter is given by:

MSSM ) ' k1.7 k
ggaugmo Higgs — :ue?lj?p}-ID j \/7>\oz ’ (W ZT + €’ w%D®1>

igf)\/ (3, @57 — iy, oF) + he..

However, if we relax the constraints imposed by SUSY, we should consider

more general dimension-4 interaction terms,
i . . L
o%gaugino—Higgs — 7)\047'% ( %{Uf(C/L’(I)Z_LT + EZkZp%{Df% (IDS)
7_)\/ (w] f (I)’LT ’ikw}{Df/a* >—|—h.C.,

where 3, f#, fi* and f5' transform as vectors under a Higgs basis U(2)

transformation.



Basis-invariant relations that enforce SUSY gaugino-Higgsino-Higgs couplings are:

fofp =0,
fify =0,

a * a* 2
fulfv = fofp =9,

fofi" = gd,

fofp™ =0,
fo'fp” =0,

a * a * 2
fote™ =Ipfp =49,

fo f5 =99

Basis-invariant relations that enforce a SUSY scalar Higgs potential involve the basis-

invariant quantities constructed from both the Higgs scalar potential and the gaugino-Higgs

interactions,

ca ~b
Yoo = fp fb Yap

pax pb
You = fp fu Yaps

and

cax b
Yvu = f{}* To Yap

ax 2b
Yup = fir [p Yaps

rax pb pex pd
Zaﬁ’y(S — fg* fﬁ fi* f(S ZchJ’

where the indices «, 3, v, and 6 can take the values D or U.



Then, the basis-invariant relations that enforce a SUSY scalar Higgs potential are given by:

Yoo = Yuu, Ypu = Yup = 0,
Zpppp = Zvvvu = § | K fj‘_é*f%} ;
Zppvu = Zvupp = s [ fo — fi° "0 S
Zpvup = Zuppu = —Zpppp — ZDDUU,

Zpupu = Zupup = ZuppDp = ZpUuDD = ZppUD = ZDDDU

= Zpyvv = Zupvu = Z2vvupu = Zyvup = 0.

In the basis-independent formalism, tan (3 is not a physical parameter.  However,

basis-invariant tan 3-like parameters can be defined. To give two examples,

o e, f?
| tan By| = __U 1, | tan Bp| = A_—afD 3
€ b'i}af[l} ?)*,ﬁa,

where the hats indicate unit vectors. In the SUSY-limit, tan By = (tan 8p)*" = tan 3.
Since tan By and tan Bp are defined directly in terms of basis-invariant quantities (which

are thus physical), one can in principle test experimentally for supersymmetry by verifying

that the tan (-like parameters coincide (at leading order).



‘ Conclusions and future directions |

e Basis-independent methods provide a powerful technique for studying the theoretical

structure of the two-Higgs doublet model.

e All physical observables can be expressed in terms of basis-invariant quantities. This
allows for model-independent experimental analysis of 2HDM phenomena. Then, experiment
can determine the nature of any additional global discrete or continuous symmetries (or

supersymmetry) that govern the 2HDM interactions.

e The classification of 2HDM symmetries can be extended to include other sectors of the
theory. In particular, it is important to include the Higgs-fermion interactions in classifying
all possible symmetries of the Higgs interactions. Some work in this direction has already

been carried out.

e A set of collider tools needs to be more fully developed to carry out this program in its
full generality. | expect that there is still many improvements that can be made to the
LHC analysis of 2HDM phenomena., Eventually, the full power of this program can only be

realized at a precision Higgs factory such as the ILC.



