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The general scalar potential of the

two-Higgs-doublet model (2HDM)

The 2HDM consists of two identical weak SU(2)L doublet, hypercharge 1

scalar fields. The most general tree-level scalar potential is:
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where m2
11, m

2
22 and λ1,2,3,4 are real and m2

12 and λ5,6,7 are potentially

complex. In the most general model, Φ1 and Φ2 couple to quarks and leptons

via dimension-four Yukawa couplings. In terms of the Higgs mass-eigenstates,

the most general Higgs-quark interactions are:
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where MU and MD are 3 × 3 diagonal quark mass matrices, K is the CKM matrix,

eiθ23ρU,D are arbitrary complex 3 × 3 coupling matrices, and the qki encode mixing angles

that arise from the diagonalization of the 3 × 3 Higgs scalar squared-mass matrix.

That is, the most general 2HDM exhibits

• CP-violating Higgs interactions

• Tree-level Higgs-mediated flavor changing neutral currents (FCNCs)

which for generic values of the 2HDM parameters are inconsistent with

observed particle physics phenomena.



To avoid these unseemly features within the 2HDM, one has two options:

• fine-tune the relevant 2HDM parameters (and/or arrange for the decoupling limit, in

which only a Standard Model-like Higgs boson remains in the low-energy effective theory)

to reduce the CP-violating and FCNC effects to an acceptable level.

• introduce a new symmetry governing the Higgs interactions to eliminate both CP-violating

and FCNC effects at tree-level.

The MSSM Higgs sector is one example of the second approach. It possesses a very special

2HDM scalar potential. In the SUSY limit,
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When soft-SUSY-breaking is added, m2
11, m2

22 and m2
12 become independent (non-zero)

parameters, while the tree-level relations among the λi continue to hold.

What is special about the tree-level relations among the MSSM 2HDM scalar

potential parameters?



Basis-independent formalism for the 2HDM

The parameters of the 2HDM scalar potential introduced above are not

physical, since they can changed by redefining the scalar fields. A basis

change consists of a U(2) Higgs family transformation Φa → Uab̄Φb.
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where v ≡ 2mW/g = 246 GeV. The overall phase η is arbitrary.



If we define the hermitian matrix Vab̄ ≡ v̂av̂
∗
b̄
, then the scalar potential

minimum condition is given by the invariant condition:
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where det U ≡ eiχ is a pure phase. That is, ŵa is a pseudo-vector with

respect to U(2). One can use ŵa to construct a proper second-rank tensor:

Wab̄ ≡ ŵaŵ
∗
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≡ δab̄ − Vab̄.

Note that tan β ≡ v2/v1 is a basis-dependent quantity, and hence

it is not a physical parameter in a general 2HDM.



A list of invariant and pseudo-invariant quantities

Y1 ≡ Tr (Y V ) , Y2 ≡ Tr (YW ) ,

Z1 ≡ Zab̄cd̄ VbāVdc̄ , Z2 ≡ Zab̄cd̄WbāWdc̄ ,

Z3 ≡ Zab̄cd̄ VbāWdc̄ , Z4 ≡ Zab̄cd̄ Vbc̄Wdā

are invariants, whereas the following (potentially complex) pseudo-invariants
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[Y3, Z6, Z7] → (det U)−1[Y3, Z6, Z7] and Z5 → (det U)−2Z5 .

Physical quantities must be invariants. For example, the charged Higgs boson

mass is m2
H± = Y2 +

1
2Z3v

2. Pseudo-invariants are useful because one can

always combine two such quantities to create an invariant.



The MSSM Higgs scalar potential revisited

Perhaps the significance of the relations among the MSSM Higgs scalar

potential parameters will become clearer when expressed in terms of invariant

quantities.
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where the phase χ is chosen such e−2iχZ5 is real and positive. (Since Z5, Z6

and Z7 are pseudo-invariants, these quantities can be appropriately rephased

without affecting any physical observable.)

However, as tanβ is basis-dependent, the above cannot be regarded as a

basis-independent characterization of the MSSM Higgs sector.



How to discover a symmetry of the 2HDM

Suppose we impose a Z2 symmetry, Φ1 → Φ1 , Φ2 → −Φ2 , on the scalar potential. Then

it follows that m2
12 = λ6 = λ7 = 0 . In a different basis for the scalar fields, the symmetry

defined above is no longer manifest. Nevertheless, the symmetry still persists. One can

formulate a basis-independent test for the existence of the Z2 symmetry. Defining
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As an example, suppose that the 2HDM scalar potential satisfies the following conditions:
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The three commutators above vanish, which implies that there exists some basis where the

discrete Z2 symmetry Φ1 → Φ1, Φ2 → −Φ2 is manifest.∗

∗In fact, in the original basis, the symmetry just exhibited corresponds to a permutation symmetryΦ1 ↔ Φ2.



Classification of 2HDM symmetries

The 2HDM scalar potential is invariant with respect to the electroweak

SU(2)×U(1)Y gauge symmetry. However, additional global symmetries

(either discrete or continuous) may be present.

• Higgs family symmetries

Consider the U(2) basis transformations, Φa → Uab̄Φb. The 2HDM scalar potential is

invariant under global U(1)Y transformations, which is a subgroup of U(2). The Higgs

family symmetry consists of the largest subgroup of U(2) orthogonal to U(1)Y that is a

global symmetry of the 2HDM scalar potential.

• Generalized CP (GCP) symmetries

The standard CP symmetry transformation is Φa → Φ∗
ā. But, one can also consider

generalized CP transformations,

Φa → XābΦ
∗
b̄ ,

where X is a unitary matrix.



Three distinct classes of GCP symmetries are possible.

• CP1: X is also symmetric =⇒ (CP1)2 = 1

• CP2: X is also antisymmetric =⇒ (CP2)2 = −1

• CP3: X is neither symmetric nor antisymmetric =⇒ (CP3)2 6= ±1

Note: In the CP1 case (and only in this case), one can always find a basis such that the

CP1 transformation is simply Φa → Φ∗
ā.

Because the terms of the tree-level scalar potential are at most dimension-4, the possible

symmetries of the 2HDM scalar potential are quite limited. Here is the complete list.

symmetry maximal
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2 0 0 0

U(1) O(2) 0 0 0 0

SO(3) O(3) m2
11 0 λ1 λ1 − λ3 0 0 0

CP1 Z2 real real real real

CP2 (Z2)
3 m2

11 0 λ1 −λ6

CP3 O(2)⊗Z2 m2
11 0 λ1 λ1 − λ3 − λ4 (real) 0 0



The hierarchy of possible symmetries has the following structure:

CP1 < Z2 <

{
U(1)

CP2

}
< CP3 < SO(3) .

Basis-independent conditions for each symmetry class have also been obtained.

• Custodial symmetry

Consider the 2HDM scalar potential that is invariant with respect to global SU(2)L×U(1)Y

transformations. The largest symmetry allowed global group (corresponding to the symmetry

group of the kinetic energy terms) is:

Φ
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The matrix Q satisfies:

QT
PQ = P , Q†Q = 14×4 , where P =

(
0 1

−1 0

)
.

That is Q ∈ Sp(2). This conclusion continues to hold if we gauge the SU(2)L symmetry.

Thus in the limit of g′ = 0, the largest symmetry group of the 2HDM scalar potential is

SU(2)L× Sp(2). The custodial symmetry group corresponds to SU(2)L× SU(2)R, which is

a subgroup of the maximal symmetry group. We can explicitly identify SU(2)R by choosing,

U = cos θ e
iα

1 , V = sin θW ,

where W is an arbitrary symmetric unitary matrix and α and θ are arbitrary angles. Different

choices of W correspond to different basis choices. The global U(1)Y transformations

provide the diagonal generator for SU(2)R and corresponds to cos θ = 1.

After electroweak symmetry breaking, the SU(2)L× SU(2)R symmetry is spontaneously

broken down to the diagonal SU(2)V subgroup, which is commonly identified as the custodial

symmetry. Of course, the custodial symmetry is broken once g′ 6= 0, corresponding to the

gauging of the U(1)Y .



Basis-independent conditions for a custodial-symmetric 2HDM potential

• The 2HDM scalar potential is CP-conserving. That is, one can choose

a phase convention such that the pseudo-invariants Z5, Z6 and Z7 are

simultaneously real.

• One additional condition must be satisfied:
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where ǫ56 and ǫ57 correspond to the sign of Z5 in the phase convention

where the pseudo-invariants are real.



Stability under renormalization group (RG) running

Any true symmetry properties of the dimension-4 terms of the scalar potential must be

stable with respect to RG-running. The MSSM Higgs potential fails this test when naively

applied. Consider

symmetry class m2
22 m2

12 λ2 λ4 λ5 λ6 λ7

SO(3) m2
11 0 λ1 λ1 − λ3 0 0 0

MSSM m2
11 0 λ1 −λ1 − λ3 0 0 0

Focusing on the scalar and vector boson contributions to RG-running, given the constraints

λ1 = λ2 and λ5 = λ6 = λ7 = 0, compare
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The SO(3) relation λ4 = λ1 − λ3 is stable under RG-running. The MSSM relation

λ4 = −λ1 − λ3 is not. Perhaps you are concerned that I have not yet made use of the

fact that the parameters of the scalar potential are related to gauge couplings in the MSSM.

Imposing those conditions yields:

D(λ4 + λ3 + λ1) = 3g
4
+ 2g

2
g
′2
+ g

′4
,

i.e., λ1 = −λ3 − λ4 is still not stable under RG-running.

In order to achieve stability under RG-running for the MSSM Higgs scalar potential, one

must also include the effects of the superpartners. The gaugino and higgsino interactions

generate additional terms, which in the SUSY limit yield
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which is precisely what is required to obtain: D(λ4 + λ3 + λ1) = 0.



Reconciling the MSSM scalar potential

Do basis-invariant conditions exist that guarantee the existence of a basis

in which the MSSM conditions of the Higgs scalar potential parameters are

satisfied? Ferreira, Silva and I found a necessary but not sufficient condition:

The Higgs sector of the MSSM is a CP3-symmetric 2HDM.

We also provided an explicit basis-invariant condition for CP3 symmetry (you

don’t want to see it!). But suffice it to say that for a CP3-symmetric scalar

potential, one can always find a basis in which

m2
11 = m2

22 , λ1 = λ2 , and m2
12 = λ5 = λ6 = λ7 = 0 .

These conditions are satisfied by the MSSM Higgs sector, but the additional

condition λ4 = −λ1 − λ3 and the relation of the λi to gauge couplings are

not imposed.



To achieve a complete basis-invariant formulation of the MSSM Higgs sector,

one must also incorporate the gaugino-Higgs-higgsino interaction. In the

MSSM, the latter is given by:
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However, if we relax the constraints imposed by SUSY, we should consider

more general dimension-4 interaction terms,
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a
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U and f ′ aD transform as vectors under a Higgs basis U(2)

transformation.



Basis-invariant relations that enforce SUSY gaugino-Higgsino-Higgs couplings are:
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Basis-invariant relations that enforce a SUSY scalar Higgs potential involve the basis-

invariant quantities constructed from both the Higgs scalar potential and the gaugino-Higgs

interactions,
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ā∗
U f̂

b
D Yab̄,

and

Zαβγδ = f̂
ā∗
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where the indices α, β, γ, and δ can take the values D or U .



Then, the basis-invariant relations that enforce a SUSY scalar Higgs potential are given by:

YDD = YUU , YDU = YUD = 0,

ZDDDD = ZUUUU = 1
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ā ∗
U f

a
U + f
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′ ā ∗
U f

′ a
U

]
,

ZDUUD = ZUDDU = −ZDDDD − ZDDUU ,

ZDUDU = ZUDUD = ZUDDD = ZDUDD = ZDDUD = ZDDDU

= ZDUUU = ZUDUU = ZUUDU = ZUUUD = 0.

In the basis-independent formalism, tan β is not a physical parameter. However,

basis-invariant tan β-like parameters can be defined. To give two examples,

| tan βU | ≡
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where the hats indicate unit vectors. In the SUSY-limit, tan βU = (tan βD)
∗ = tan β .

Since tan βU and tan βD are defined directly in terms of basis-invariant quantities (which

are thus physical), one can in principle test experimentally for supersymmetry by verifying

that the tan β-like parameters coincide (at leading order).



Conclusions and future directions

• Basis-independent methods provide a powerful technique for studying the theoretical

structure of the two-Higgs doublet model.

• All physical observables can be expressed in terms of basis-invariant quantities. This

allows for model-independent experimental analysis of 2HDM phenomena. Then, experiment

can determine the nature of any additional global discrete or continuous symmetries (or

supersymmetry) that govern the 2HDM interactions.

• The classification of 2HDM symmetries can be extended to include other sectors of the

theory. In particular, it is important to include the Higgs-fermion interactions in classifying

all possible symmetries of the Higgs interactions. Some work in this direction has already

been carried out.

• A set of collider tools needs to be more fully developed to carry out this program in its

full generality. I expect that there is still many improvements that can be made to the

LHC analysis of 2HDM phenomena., Eventually, the full power of this program can only be

realized at a precision Higgs factory such as the ILC.


